

Programa de Pós-Graduação em

Computação Aplicada
Mestrado/Doutorado Acadêmico

Vinicius Facco Rodrigues

HealthStack:

Providing an IoT Middleware for Malleable QoS Service

Stacking for Healthcare 4.0

São Leopoldo, 2020

Vinicius Facco Rodrigues

HEALTHSTACK:
Providing an IoT Middleware for Malleable QoS Service Stacking for Healthcare 4.0

Thesis presented as a partial requirement to
obtain the Doctor’s degree by the Applied
Computing Graduate Program of the Unisinos
University

Advisor:
Prof. Dr. Rodrigo da Rosa Righi

Co-advisor:
Prof. Dr. Cristiano André da Costa

São Leopoldo
2020

Catalogação na Publicação (CIP):

Bibliotecário Alessandro Dietrich - CRB 10/2338

R696h Rodrigues, Vinicius Facco.

 HealthStack : providing an IoT middleware for malleable

QoS service stacking for Healthcare 4.0 / Vinicius Facco

Rodrigues. – 2020.

145 f. : il. ; 30 cm.

Tese (doutorado) — Universidade do Vale do Rio dos

Sinos, Programa de Pós-Graduação em Computação

Aplicada, São Leopoldo, RS, 2020.

Advisor: Dr. Rodrigo da Rosa Righi.

Co-advisor: Dr. Cristiano André da Costa.

 1. Internet of things. 2. Healthcare. 3. Distributed

systems. 4. Quality of service. 5. Medical informatics.

I. Título.
CDU: 004.738.5:614

I dedicate this work to my parents.

You gave the only tool that
I need to help the world be

a better place: EDUCATION.
— VINICIUS FACCO RODRIGUES

ACKNOWLEDGEMENTS

I want to thank everyone that accompanied me on this incredible journey: especially my
family, friends, colleagues, and professors. Thank you all for all the technical and mental
support you gave me. Also, I want to thank some organizations that made this research possible.
First, the Universidade do Vale do Rio dos Sinos (UNISINOS), in particular, the Programa de
Pós Graduação em Computação Aplicada (PPGCA) for providing me this great opportunity.
Second, the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), particularly the whole
team of the Machine Learning and Data Analytics Lab (MadLab) for having me for six months
in Erlangen, Germany. What an experience! Last but not least, the Siemens Healthineers for
supporting the entire project.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior - Brasil (Capes) - Finance Code 001.

“All we have to decide is what to do

with the time that is given us.”.
(J.R.R. Tolkien)

ABSTRACT

Healthcare 4.0 is a new concept that originates from hospitals’ evolution due to technolog-
ical advances in medical activities. Nowadays, more and more doctors and healthcare admin-
istrators require real-time data analysis from sensors and surgery monitoring. In such settings,
having real-time information may represent the difference between death or life. Currently, the
analysis of data from medical settings takes place reactively. Actions to tackle problems with
the patients’ health are only taken when critical situations take place. With the arrival of the
Internet of Things (IoT) in these environments, the data revolution can allow medical processes
to generate many sorts of real-time data automatically. Specialized applications rely on central-
ized systems to transform medical data into precise feedback so that actuators, whether humans
or not, can take the right actions. Although positive, centralized systems suffer from scalability
problems. As the connected number of sensors and applications increase, the system might fail
due to too many connections. Therefore, quality of service (QoS) is essential because, without
it, the applications’ results become unreliable. Although several approaches currently provide
QoS for healthcare applications, it is still challenging to produce real-time data from sensors.
More specifically, current studies present architecture models that employ different strategies to
optimize the time to deliver data from sensors to the final users. Although presenting valuable
contributions, they are restrained by the following limitations: (i) do not focus on hospital high
critical environments; (ii) do not combine multiple strategies in different levels; (iii) do not put
effort specifically in real-time data transmissions; and (iv) do not consider all relevant informa-
tion for workflow analysis. Given the background, this study proposes HealthStack, a sensor
middleware model for hospital settings. HealthStack collects data from sensors, stores them
in a database, and delivers them to user applications meeting QoS requirements. HealthStack
aims at reducing the delay and jitter in sensor data transmissions for user applications and, at
the same time, reduce resource consumption. The model prototype was developed and tested in
an operating room with depth cameras and an ultra-wideband (UWB) real-time location system
(RTLS) for surgery workflow monitoring. This study presents scientific and technical contribu-
tions, and also contributions to society on behalf of hospital services. Its scientific contributions
are twofold: a middleware model for healthcare environments with automatic QoS support for
real-time data transmission; and a QoS strategy based on artificial neurons to select middle-
ware components with poor performance. The experiments demonstrate that the strategy can
improve the applications experienced jitter mean by 92.3% and delay mean by 28% for position
data samples. Also, it resulted in a reduction of network, memory, and CPU consumption by
up to 66.4%, 5.06%, and 48.3%, respectively. Besides the technical contributions, the solu-
tion offers a new level of reliability to time-critical applications directly impacting the patients’
health. This research provides the improvement of medical services for patients, contributing
to the hospital administration processes because they can access real-time data with QoS guar-
antees.

Keywords: Internet of things. Healthcare. Distributed systems. Quality of service. Medical
Informatics.

LIST OF FIGURES

1 A multi-sensor system: applications with different requirements consume
data from device sensors through a data service that may suffer scalability
problems. The width of the lines connecting sensors and applications to the
data service demonstrates the higher requirements. 27

2 Introduction of a QoS Manager to monitor the system and adapt QoS service
stacks from the middleware. 30

3 Research development steps. Light blue boxes indicate steps that might oc-
cur more than once, representing a cycle of adjusts and implementations. . . 32

4 Example of monitored workflow steps in an operating room. Each circle rep-
resents one staff member, while the colors indicate their assignments (yellow
for the anesthetist, red for the surgeon, green for the nurse). 34

5 An RFID based RTLS called LogiTrack, which provides hospitals, nurs-
ing homes, and clinics a method to accurately track, locate, and monitor
assets and people, and trigger events in real time based on location and sta-
tus (LOGITRACK RTLS, 2018). 36

6 Pose estimation technique employed by Kadkhodamohammadi et al. (2017).
The lines represent body parts recognized by their thechnique. 39

7 Characteristics that differ hospital middlewares from traditional middlewares.
Time and cost are related and critical for safety in these environments. . . . 46

8 Filtering process sequence. Filter II removes most of the articles due to their
focus be different than healthcare. 47

9 Comparinson of sensor middlewares: (a) typical approach; and (b) Health-
Stack main idea. HealthStack comprises a Manager to monitor metrics, ap-
plication requirements, and provide services for user applications and sen-
sors. 59

10 HealthStack components connecting sensors to applications. The light blue
boxes represent the contributions of HealthStack. 60

11 Deployment of the architecture in an actual hybrid operating room. Three
ToF camera devices and several RTLS tags track the surgery workflow. The
server processes the data and provides visualization for remote physicians
and hospital administrators. 61

12 HealthStack architecture. Light blue boxes represent the HealthStack com-
ponents, while white boxes represent existing software and hardware. 62

13 Packet traveling path and timestamps. 65
14 HealthStack message types and their contents. All messages use the same

network header, which identifies the packets. 66
15 Communication process the components perform to produce data samples. . 68
16 Communication sequence that the Manager starts with the Core and Collec-

tor instances to monitor their measurements. 69
17 Application communication process to subscribe and receive data from a

specific sensor data stream/topic. 70
18 HealthStack’s closed-loop model with a Manager in charge of monitoring

and adapting the middleware according to the workload. From the user per-
spective, a denotes the number of user applications. From the middleware
perspective, n denotes the number of nodes running a Collector instance ac-
quiring data from sensors. 72

19 QoS Manager main monitoring cycle. The idea is to monitor the compo-
nents’ metrics and organize QoS services according to the measurements.
The Manager collects metrics from Core and Collector instances and orga-
nizes their QoS service stacks when QoS violations occur for user applica-
tions. 73

20 A look inside the QoS Manager. The component receives measurements
from the middleware components and evaluates them for decision-making.
The output is QoS service changes in the components’ stacks, if necessary,
to guarantee QoS. 74

21 Example of a monitored metric and its calculated aging. The figure high-
lights two specific points in which the raw value of the metric exceeds a QoS
limit. In these points, the calculated aging smooths these values resulting in
no violations. 78

22 A look at the whole QoS model operation. The QoS Manager performs
three main monitoring tasks: (1) monitors applications’ metrics; (2) moni-
tors Core, and Collector instances; (3) computes PA for Core and Collector
instances; and (4) manages service stacks from Core and Collector instances. 80

23 Matrices from an example scenario with three applications and three Collec-
tors. Red boxes indicate QoS violations. The values delayth1, delayth2, and
jitterth3 are the threshold values expected by the applications. The values
delay1 and delay2 are current delay measures for applications 1 and 2, while
jitter1 is the current jitter measure for application 3. 82

24 HealthStack prototype modules and their corresponding technologies. 88
25 Deployment overview of the hardware, middleware, and software compo-

nents among the evaluation infrastructure. 90
26 Experiment laboratory setup in which Sewio RTLS system and Microsoft

Kinects are deployed. The laboratory also contains a Siemens SIREMOBIL
Compact L C-Arm. 91

27 The sequence of application connections in the eight workload scenarios.
One application connects at each minute, requesting a Data type, a QoS type,
and a QoS threshold. The application index refers to the sequence of the
application connection to the middleware. 93

28 Workload scenarios based on the QoS threshold and the number of connected
applications over time. 95

29 Delay results considering the two different sensor types: (a) depth and (b)
position. Each bar is calculated with the mean delay of each application. . . 98

30 Jitter results considering the two different sensor types: (a) depth and (b)
position. Each bar is calculated with the mean jitter of each application. . . . 99

31 Proportion of the number of monitoring observations in which the appli-
cations QoS was violated. At each observation, for each application, the
violation_time increments, and at the last observation, violation_proportion
divide results from dividing the violation_time by the total number of ob-
servations. The bars represent this proportion of all 32 applications in each
scenario. 100

32 Resource consumption of the node2 for all workload scenarios. The values
correspond to the mean of all samples from the monitoring observations. . . 101

33 Resource consumption of the node0, in which Collector instances 0 runs. . . 102
34 Resource consumption of the node1, in which Collector instances 1 runs. . . 102

35 Delay and Jitter means of all observations from Collector instances 1 and 2. 103
36 Measures of delay and jitter over time for applications 1, 2, 3, and 4 from

scenarios S1 and S1’. 105
37 Resource consumption over time of Core and Collector instances from sce-

narios S1 and S1’. 107
38 Looking at the Service Orchestration details. Weights w5() and w6(), Poten-

tial of Adaptation PA(), and number of QoS services enabled over time of
Collector instances 1 and 2 from scenarios S1 and S1’. The figures show the
weights’ variation, and the instant QoS services are stacked for each Collec-
tor instance. The QoS service sequence occurs as follow: 1st Data Frequency
Rata, 2nd Data Compression, and 3rd Data Prioritization. 108

39 The sequence of application connections in the new workload scenario. One
application connects every six seconds requesting a Data type, a QoS type,
and a QoS threshold. The application index refers to the sequence of the
application connection to the middleware. 109

40 Delay results for the new evaluation scenario considering the two different
sensor types: depth and position. Each bar is calculated with the mean delay
of each application. 110

41 Jitter results for the new evaluation scenario considering the two different
sensor types: depth and position. Each bar is calculated with the mean jitter
of each application. 111

42 All nodes’ resource consumption over time, including the number of con-
nected applications in the middleware, and the services delivered for each
node. In the last row, the y-axis represents whether a service is active (zero)
or not (one). 114

43 Application ID 4 delay and jitter measurements over time with QoS Service
Stacking disabled versus enabled. The goal is to visualize the impact on
measurements when QoS services are enabled. 115

LIST OF TABLES

1 Technical details of the communication standards and protocols. 38
2 Technical details about the camera devices. 40
3 QoS metrics for healthcare applications. 43
4 Databases for the inclusion criteria. 46
5 Summary of the researches and their strategies addressing QoS in healthcare

solutions. 48
6 Description of the network header’s fields. 66
7 Description of the data attributes from sensor data messages. 67
8 QoS services short description. 75
9 Input variables the QoS Manager collects to employ the QoS Service Stacking. 77
10 Libraries and software used in the prototype development. 89
11 Equipment installed in the environment. 90
12 Technical details from the sensors installed in the simulated operating room. 92
13 Prototype parameters. 96
14 Average resource consumption of each node CPU, memory, and network.

Additionally, the last column represents the variation in resource consump-
tion when enabling the QoS Service Stacking strategy. 112

15 Variation in average delay and jitter of all applications when enabling the
QoS Service Stacking. Improvements are highlighted in blue boxes. 117

16 Variation in resource consumption of all applications when enabling the QoS
Service Stacking. Improvements are highlighted in blue boxes. 117

LIST OF ACRONYMS

AI Artificial Intelligence

API Application Programming Interface

AODV Ad hoc On-Demand Distance Vector

BLE Bluetooth Low Energy

COVID-19 Coronavirus Disease 2019

CPU Central Processing Unit

CV Computer Vision

DICOM Communications in Medicine

ECG Electrocardiogram

ELE Enhance Living Environment

ETSI European Telecommunications Standards Institute

FPS Frame Per Second

HTTP Hypertext Transfer Protocol

I4.0 Industry 4.0

IC-FUC Instituto de Cardiologia - Fundação Universitária de Cardiologia

ICE Integrated Clinical Environment

ICU Intensive Care Unit

ID Identification

IoT Internet of Things

IoHT Internet of Health Things

IP Internet Protocol

ITU-T International Telecommunication Union’s Telecommunication Standardization Sec-
tor

JSON JavaScript Object Notation

MAC Media Access Control

MAPE Monitor-Analyze-Plan-Execute

MEM Memory

MQTT Message Queue Telemetry Transport

NET Network

NFC Near Field Communication

NTP Network Time Protocol

QoS Quality of Service

RFID Radio Frequency Identification

RGBD RGB-Depth

RTLS Real-Time Location System

SES Simple Exponential Smoothing

SDN Software Defined Network

SL Structured Light

SLA Service Level Agreement

SV Stereo Vision

TCP Transmission Control Protocol

TDMA Time-Division Multiple Access

ToF Time-of-Flight

UTC Coordinated Universal Time

UWB Ultra-wideband

VM Virtual Machine

WBAN Wireless Body Area Network

WLAN Wireless Local Area Network

WSN Wireless Sensor Network

LIST OF SYMBOLS

cm Centimeter

GHz Gigahertz

Hz Hertz

Kbps Kilobits Per Second

m Meter

Mbps Megabits Per Second

MHz Megahertz

ms Milliseconds

s Seconds

CONTENTS

1 INTRODUCTION . 23

1.1 Motivation . 24
1.2 Research Problem . 26
1.3 Goals . 29
1.4 Research Plan . 31
1.5 Document Organization . 31

2 BACKGROUND . 33

2.1 Workflow Monitoring . 33
2.2 Sensing Technologies . 35
2.2.1 Real-Time Location Systems . 35
2.2.2 Computer Vision Techniques . 38
2.3 Quality of Service . 41
2.4 Summary . 44

3 RELATED WORK . 45

3.1 Search Methodology . 45
3.2 State-of-the-Art . 47
3.2.1 Wireless Body Area Network . 50
3.2.2 Telemedicine . 52
3.2.3 Internet of Things . 53
3.2.4 Other Approaches . 53
3.3 Discussion and Research Opportunities . 54
3.4 Summary . 55

4 THE HEALTHSTACK MODEL . 57

4.1 Design Decisions . 57
4.2 Architecture . 60
4.2.1 Application Classes . 63
4.2.2 Time Synchronization . 64
4.3 Communication Protocol . 65
4.3.1 Middelware Communication Process . 65
4.3.2 Application Communication Process . 68
4.4 Quality of Service Model . 70
4.4.1 Managing QoS . 71
4.4.2 QoS Services . 73
4.4.3 Definition of Input Variables . 76
4.4.4 Dynamic QoS Service Stacking . 78
4.5 Summary . 84

5 EVALUATION METHODOLOGY . 87

5.1 Prototype Implementation . 87
5.2 Infrastructure Setup . 88
5.3 Workload Model and Evaluation Scenarios . 90
5.4 Parameters . 94
5.5 Summary . 96

6 RESULTS . 97

6.1 Applications’ Delay and Jitter . 97
6.2 Resource Consumption . 100
6.3 Applications’ Delay and Jitter Time Series . 104
6.4 Enhancing the Experiments . 108
6.4.1 Applications’ Average Delay and Jitter . 110
6.4.2 Resource Consumption . 112
6.4.3 Applications’ Measurements Time Series . 115
6.5 Discussion . 116
6.5.1 Main Results . 116
6.5.2 Limitations . 118
6.6 Summary . 119

7 CONCLUSION . 121

7.1 Lessons Learned . 122
7.1.1 Lesson 1: Build a Strong Partnership . 122
7.1.2 Lesson 2: Consider the Complexity of the Environment in the System Design . . 122
7.1.3 Lesson 3: Tailor the Technology to the Target Environment 123
7.1.4 Lesson 4: Critically Analyze the Results to Find Solutions 124
7.2 Main Contributions . 124
7.3 Publications . 125
7.4 Limitations and Future Work . 132

REFERENCES . 135

23

1 INTRODUCTION

The future of the Internet of Things (IoT) has arrived. In the last few years, many authors ar-

gued that the IoT paradigm would reach more than 50 billion connected devices by 2020 (FEKI

et al., 2013). Well, we finally reached 2020, and what does that mean for the healthcare sce-

nario? The vast number of connected devices, producing many kinds of information, was one

of the foundations during the rise of Industry 4.0 (I4.0) (OZTEMEL; GURSEV, 2020). More

specifically, one of the pillars of I4.0 is the combination of IoT and Artificial Intelligence (AI)

technologies (OZTEMEL; GURSEV, 2020). While IoT brings the sensors and the data gener-

ation, AI applications process data in real-time to provide insights, recognize actions, and even

predict outcomes (BAIG; HOSSEINI; LINDÉN, 2016). Besides, the arrival of IoT to hospital

wards tailored the new Internet of Health Things (IoHT) concept, which regards the many sen-

sors generating information from patients (COSTA et al., 2018). Following I4.0, currently it is

already common to read terms as “Healthcare 4.0”, “Health 4.0”, “Hospital 4.0”, and “Surgery

4.0” to refer to the revolution of hospitals due to the arrival of IoT technologies in healthcare

environments (ACETO; PERSICO; PESCAPé, 2020; THUEMMLER; BAI, 2018; FEUSSNER

et al., 2017; AFFERNI; MERONE; SODA, 2018). In this new paradigm, the main focus re-

lies on the personalization of clinical services to increase patients’ quality of care (ACETO;

PERSICO; PESCAPé, 2020).

In Healthcare 4.0, sensor devices spread all over the hospital settings can provide data to

support medical decisions. Wearable sensors attached to patients, medical staff, and even equip-

ment collect important information, such as physiological (e.g., pulse rate, heart rate, etc.) and

physical (e.g., movements, position, etc.) data. Many sensors can provide information from

single individuals, equipment status, or even entire processes. These data can provide infor-

mation to support decision-making processes and medical data analytics (ACETO; PERSICO;

PESCAPé, 2020; GIATRAKOS et al., 2019). Combined, such a variety of information can

produce more valuable insights. New information and monitoring systems capture, store, and

process data in real-time for medical decisions. The main goal is to support the medical team in

the decision-making process locally or remotely. More importantly, tracking individuals, equip-

ment, and environment data allows information systems to give the medical team feedback to

avoid medical errors. For instance, real-time solutions can monitor procedure workflows, de-

tect critical scenarios, and avoid delays to tackle them (MOGHIMI; WICKRAMASINGHE;

ADYA, 2020; ALBAHRI et al., 2019). In such scenarios, data analytics can indicate flaws in

the surgery processes that can be corrected. Even more, real-time analysis can indicate critical

situations that may lead to medical errors. As another example, in medication processes, the

medical team must administrate the right doses to the right patients at the right times. There-

fore, tracking medications and patients, including dose timing, can avoid human errors that may

occur (MAGALHÃES et al., 2015).

Given the background, response time for critical situations is decisive to save lives in health-

24

care. With several sensors distributed in several hospital settings, it emerges the need for a sys-

tem that can gather all information and make it available to specialized applications. Given the

importance of the sensor information, providing the right data to the right person at the right

time is vital. More importantly, faster actions to treat a health crisis increase the probability of

better outcomes. In this context, users require the system to respect levels of performance. Such

a performance level is commonly called Quality of Service (QoS), and it directly impacts the

user experience (VARELA; SKORIN-KAPOV; EBRAHIMI, 2014; OODAN et al., 2003).

In the era of Healthcare 4.0, hospitals contain several sensors and equipment that take dis-

tinct processing and network requirements to generate heterogeneous datasets. Such hetero-

geneity increases the complexity of applications with individual QoS requirements to make

sense of the incoming data. The variety of sensors and applications in healthcare requires real-

time systems to be aware of data’s heterogeneity and relevance to choosing the best processing

and transmission strategies. That means that the solution must adapt its strategies depending

on the data and application requirements (delay, jitter, etc.). For instance, medical workflow

data analysis depends on the arrival of data with acceptable delay to predict situations before

they happen (ZHOU et al., 2020). In mission-critical telerobotic applications, fluctuating delay

and jitter can lead to instabilities and failures (SZYMANSKI; GILBERT, 2010). Furthermore,

not only humans can profit from real-time feedback in healthcare, but also autonomous agents

using robotics and machine learning (AHMED; LE MOULLEC, 2017; CHEATLE et al., 2019).

With quick access to information, proper actions can be taken to reduce risks for the patients’

lives.

1.1 Motivation

Currently, the analysis of data from medical settings takes place reactively (COSTA et al.,

2018). Actions to tackle problems with the patients’ health are only taken when critical situa-

tions take place. A physician decides the actions to take based solely on traditional examination

data from the patient. For instance, in the intensive care unit (ICU), patients are placed in beds

side by side in individual blocks. Each block contains special equipment that monitors a specific

patient. Next to the patient’s bed, a display system outputs all sensors’ measurements that mon-

itor the patient. This display also provides configurable parameters to physicians set thresholds

to the patient’s measurements. Regularly, a physician passes by to check for abnormalities. He

takes note of the patient’s file and only comes back in the next checkup interval. In case of an

emergency (e.g., a cardiac arrest), the patient’s monitor sounds an alarm, and the medical staff

has to rush to control the situation. This situation exemplifies the reactiveness of medical pro-

cesses, in which action is taken after an emergency occurs. Further, this process is individual

for each patient. It does not contain a centralized analysis of everything that happens in the

medical environment. Ideally, decision-making should employ a global analysis of the medical

processes, generated in real-time using data from all patients and the medical environment. In

25

this context, patients’ health parameters remote monitoring is becoming crucial (PONCETTE

et al., 2020). That would allow a proactive analysis of data to predict critical situations before

they occur. Furthermore, this view enables the acquisition of further knowledge, for example,

the spread of disease within the hospital setting.

In such scenarios, emerging Healthcare 4.0 brings a series of opportunities. The numer-

ous sensor devices scattered all over the hospital, generating information from various assets,

including the patients and the medical team, play an essential role in the hospital revolution.

On top of such infrastructures, it is feasible to employ AI technologies (SONG et al., 2020;

PONCETTE et al., 2020). Currently, AI applications emerge to handle this increasing data

volume. Those applications generate valuable information and perform predictions that might

save lives, bringing proactiveness to the processes. Specialized applications transform medical

data into precise feedback so that actuators, whether humans or not, can take the right actions.

Among many strategies, three stand out: (i) Data Prediction (NYCE; CPCU, 2007); (ii) Pat-

tern Recognition (TVETER, 1997); and (iii) Data Correlation (WILLIAMS et al., 2018). Data

prediction enables forecasting of measurements and situations, anticipating problems, and the

required countermeasures. In turn, Pattern Recognition offers strategies to identify situations

that already occurred in the past. Hence, one only needs to verify what was done when such

situations occurred and whether the action was valid. Lastly, Data Correlation combines infor-

mation from multiple parameters to identify the source of specific situations. For instance, data

correlation strategies are currently employed for ICU patients with Coronavirus Disease 2019

(COVID-19) to identify the relation of many indicators (LIU et al., 2020). The outbreak of new

diseases brings the public health systems the necessity to discover new treatments by analyzing

the patient’s response to current methods.

It is clear that AI brings many advantages to clinical analysis; however, it depends on var-

ious sensor data sources to work correctly. Collecting data from physically distributed hetero-

geneous sources is challenging, and it imposes complexity on application design. To close this

gap, centralized systems are common strategies present in many sectors. They provide a global

data analysis by collecting distributed data and providing them to applications. Although pos-

itive, centralized systems suffer from scalability problems. Scalability is the system’s ability

to maintain its performance and QoS regardless of the input workload and internal process-

ing (BONDI, 2000). Centralized systems concentrate data processing at a single point. As

the connected number of sensors and applications increases, the system might fail due to too

many connections. That would cause instabilities in the flow of data to different systems, which

can be critical, depending on the application. Therefore, a sensor data middleware for medical

settings must provide QoS to the applications. Data from sensors should arrive at the corre-

sponding destination in time and steadily to all of that correctly work. Imagine an application

that processes data in real-time to trigger an alarm in the operating room (a visible red light,

for instance). The application generates a warning if it predicts that the patient’s heart rate will

exceed a certain threshold of five seconds in the future. If the sensor’s data delays ten seconds

26

to arrive or even does not arrive, the application will not work.

As another example, some applications also might depend on a predictable and stable time

interval between the arrival of data packets. An application that requests to receive ten data

samples per second in a timely way expects to receive one sample every 100 milliseconds.

Variations in the time arrivals, called jitter, can produce an undesirable effect in the user ap-

plication. A typical example regards video stream applications. Image sensors generate image

frames that applications project on screens one after another to see what is going on in the pro-

cedures. Suppose the time between each frame deviates too much from the desired interval.

In that case, the user will perceive a loss of quality since the video will not be synchronized

appropriately (STEINMETZ, 1996). This effect would be easily perceived by the medical staff

that examines the videos, impacting the user experience and the analysis’s quality.

There are two main reasons why QoS is essential for medical applications. First, most

applications handle multimedia data that follows a video Codec standard, such as Digital Imag-

ing and Communications in Medicine (DICOM) (MUSTRA; DELAC; GRGIC, 2008). Video

streams require a cadence of data arrival to make sense. Therefore, high jitter can impact user

experience. Second, some applications deal with sensitive health data. Such applications re-

quire that the system does not fail to deliver these data. Otherwise, the application will not

identify critical situations, which may lead to severe consequences. Issues of this kind can rep-

resent the difference between the life and death of a patient. Therefore, it is essential to build a

middleware between sensors and applications that efficiently manages the communication pro-

cess. The middleware should provide QoS guarantees that the correct data arrives at the right

destination at the right time. Hence, it should take actions that focus on maintaining perfor-

mance without imposing penalties. It is not desirable to decrease delay but, at the same time,

cause an increase and jitter (and vice-versa).

1.2 Research Problem

Figure 1 depicts the main research problem the current study focuses on. The number of

user applications and sensors connected to the system can vary dynamically over time. As the

data service has limited resources, overload situations may occur, reducing the system’s per-

formance. Such situations can directly impact the applications’ perceived performance, which

can be invalid depending on the degree of such performance loss. The figure demonstrates a

scenario in which the data service collects data from three different devices with different data

transmission requirements. At the users’ level, five applications collect data at different rates

and from different sensors, which leads to different data transmission requirements. The width

of the lines connecting sensors and applications to the data service demonstrates the higher re-

quirements. Besides, the lines connected to the data service demonstrate its limited resources

that all connections share. In the example, applications B and E have higher requirements and

are affected by the system’s performance loss.

27

Figure 1: A multi-sensor system: applications with different requirements consume data from
device sensors through a data service that may suffer scalability problems. The width of the lines
connecting sensors and applications to the data service demonstrates the higher requirements.

Device
A

Application A Application B Application C Application D Application E

Device
B

Device
C

Data
Service

Hospital Settings

User Applications

Heterogeneous
data transmission

requirements

...

...

Limited resources

Source: elaborated by the author.

Although there are several approaches to provide QoS for healthcare applications, it is chal-

lenging to produce and deliver real-time data from sensors (SISINNI et al., 2018). Such sys-

tems consist of complex distributed infrastructures that may suffer from many problems, such

as transmission interference and energy constraints. On one side, we have an increasing number

of sensors producing data. On the other side, we have an increasing number of applications re-

questing data from different sensors with different QoS requirements. That leads to scalability

problems and may affect the QoS experienced by applications and the infrastructure’s resource

consumption. It is not trivial to deploy monitoring systems that inherit the present infrastruc-

ture in the current state of hospital settings. Therefore, achieving real-time data transmission

requires new approaches to adapt to these new environments. The current literature presents

many studies that employ QoS strategies for healthcare architectures. More specifically, studies

present architecture models that employ different strategies to optimize the time to deliver data

from sensors to the final users.

In summary, these models present methods in the network level including scheduling pro-

tocols (LIU; YAN; CHEN, 2017; SAMANTA; MISRA, 2018; SAMANTA; LI; CHEN, 2018;

IRANMANESH; RIZI, 2018; VENKATESH et al., 2019), data prioritization (BANOUAR

28

et al., 2017; POORANI et al., 2017; LIU; LIU; CHEN, 2017; SAMANTA; LI; CHEN, 2018;

GUEZGUEZ; REKHIS; BOUDRIGA, 2018; IRANMANESH; RIZI, 2018; WANG et al., 2019;

AL-TARAWNEH, 2019; VENKATESH et al., 2019; KHALIL; MBAREK; TOGNI, 2019; GOYAL

et al., 2020; IBRAHIM et al., 2020), and routing protocols (AHMED; LE MOULLEC, 2017;

GUEZGUEZ; REKHIS; BOUDRIGA, 2018; ZITTA et al., 2018; IRANMANESH; RIZI, 2018;

TSENG; WANG; YANG, 2020; ZUHRA et al., 2020; WAHEED et al., 2020; VADIVEL;

RAMKUMAR, 2020; IBRAHIM et al., 2020). Additionally, some solutions have a different

approach employing resource management schemes to improve the system performance as a

whole, including the energy efficiency (HASSAN; ALRUBAIAN; ALAMRI, 2016; AGIRRE

et al., 2016; BANOUAR et al., 2017; POORANI et al., 2017; LEE; JUNG; LEE, 2017; MAA-

TOUGUI; BOUANAKA; ZEGHIB, 2017; CELDRÁN et al., 2018; WANG; SUN; JI, 2018;

GOYAL et al., 2020). Although these studies present valuable contributions, they are restrained

by the following limitations:

(i) Strategies do not focus on hospital high critical environments;

(ii) Solutions do not combine multiple strategies in different levels;

(iii) Initiatives do not put effort specifically in real-time data transmissions;

(iv) Studies do not consider all relevant information for workflow analysis;

(v) Studies do not focus on the scalability problem of the system they propose.

Maintain a desirable QoS for real-time applications that consume data from the healthcare

workflow is challenging since the number of sensors and user applications might dynamically

change. The growth of the number of sensors and devices increases the complexity of real-time

information monitoring. The more the number of nodes, the higher the amount of information

that the middleware must handle. Besides handling many information data sources present

in the environment, the middleware must also manage user application requests, demanding

real-time data. Therefore, the middleware should identify and handle such situations to keep a

certain level of QoS, not impacting the user experience. At the same time, it is also essential

to take into consideration computational resource consumption. It is not desirable to tackle one

problem by increasing resource consumption considerably and, therefore, the total cost. Thus,

taking all of this into consideration, the following statement defines the current thesis hypothesis

to guide this research:

An adapting-driven middleware for sensor-based healthcare environments, with dynamic

sensors and applications connected to the system, can efficiently provide an acceptable quality

of service for end-user applications.

First, adapting-driven refers to policies the middleware employs to change the system be-

havior to improve or maintain performance. These strategies range from parameter adjustments

29

to replications of middleware components to maintain scalability. Second, dynamic sensors

and application refers to the number of applications and sensors connected to the system,

which can change over time. The amount of data and requests that the middleware manages

depends on how many sensors and applications are connected. Both sensor data and user ap-

plication requests change over time, increasing or decreasing its load on the system. Third,

efficiently refers to resource consumption and cost characteristics. Employing more compu-

tational resources to achieve its goal is not ideal since it consequently increases the total cost.

Finally, acceptable quality of service refers to the system’s final performance to the user ap-

plication. An acceptable performance means that the average performance of the target QoS

metric for the applications is equal or lower than a threshold the application expects. Based on

the hypothesis, the following research question arises:

Which self-adaptative strategies a healthcare middleware, with dynamic sensor and appli-

cation connections, needs to efficiently provide timed data for applications?

The above question is the central question of the current research that, jointly with the

hypothesis, guide this study. The next section presents the research goals defined to answer the

research question and test the research hypothesis. More specifically, it describes this study’s

proposal to addresses the hypothesis and the research question.

1.3 Goals

Based on the hypothesis and the research question above, this study proposes the Health-

Stack middleware model. Figure 2 illustrates how this research study intends to solve the re-

search problem. In summary, HealthStack introduces two main ideas: (i) QoS Manager; and

(ii) QoS service stacks. HealthStack implements different QoS strategies called QoS services

that the QoS Manager can stack for each middleware component. The QoS Manager monitors

the middleware performance and organizes the QoS service stacks accordingly. Its main goal

is to enable QoS services to improve resource utilization and reserve more resources for ap-

plications with higher requirements without impacting the others. The QoS services comprise

different QoS strategies, such as data prioritization, resource elasticity, data compression, and

data frequency rate.

HealthStack is a sensor-based middleware for healthcare environments that provides QoS

strategies to improve its performance and resource consumption. To achieve that, HealthStack

introduces the QoS Service Stacking, a self-adaptive strategy to handle overload situations that

may impact the middleware’s performance. This strategy aims at reorganizing QoS services

for sensors on-the-fly according to workload changes. HealthStack proposes separate compo-

nents to extract data from individual sensor data sources. Through these individual components,

HealthStack can stack QoS services applied to the sensor data to improve performance and re-

source consumption. The self-adaptative strategies are agnostic to the applications’ point of

30

Figure 2: Introduction of a QoS Manager to monitor the system and adapt QoS service stacks
from the middleware.

Device
A

Application A Application B Application C Application D Application E

Device
B

Device
C

Data
Service

Hospital Settings

User Applications

...

...

QoS
Manager

Stacks of
QoS Services

Source: elaborated by the author.

view. HealthStack performs reconfigurations to accommodate all applications in a transparent

manner. Its leading role is to access data from several sensors and provide these data to appli-

cations with QoS guarantees, not requiring them any adaptions to profit from the QoS strategy.

Accordingly, the following statement defines the principal goal of this research:

Develop an adaptable middleware model for healthcare employing different QoS strategies

to provide timed data for applications, also improving hardware utilization, regardless of the

sensors and applications load on the system.

To complete the principal goal, the research must fulfill several secondary objectives. They

support the development of the model and the applications necessary for its validation. The

following objectives define how this study is going to achieve the main goal:

(i) Perform literature research regarding middlewares for healthcare to find the existing lacks

in the area and which QoS strategies they employ;

(ii) Develop a distributed system that supports multiple QoS strategies to collect data from

sensors, accept applications connections, and send real-time data to them;

31

(iii) Determine the user application model with types of applications to define standard QoS

requirements in case the user does not specify them;

(iv) Define a time synchronization strategy between the middleware components and the user

clocks to be possible to calculate the approximate delay to deliver data at the application

side;

(v) Specify the communication protocols employed in the middleware to allow future re-

search to extend the middleware capacity;

(vi) Define an artificial neuron-based algorithm to evaluate all metrics from the middleware

and applications, and select the QoS services to improve performance for applications;

(vii) Provide a lower average delay and jitter for applications, and at the same time reduce

resource consumption.

1.4 Research Plan

This study follows a research plan composed of six steps to achieve its goals. Four steps in-

tegrate an adaption and implementation cycle, as shown in Figure 3. First, step 1 represents the

study of fundamental concepts related to the research topic to form this document’s background.

Then, step 2 consists of literature research in the context of the topic research. Following, steps

3, 4, 5, and 6 establish a closed-loop to perform adaptations and implementations of the pro-

posed model. Step 3 is the development of the model focusing on the goals presented in the

previous section. In turn, step 4 encompasses the implementation of the prototype following the

model definitions. Subsequently, step 5 consists of an experimental evaluation of the prototype,

analysis of results, and article production based on these analyzes. Depending on these results,

in step 6, it is possible to propose adaptions in the model and start the cycle again in step 3.

Otherwise, when the results and production of articles are satisfactory, the research ends. The

current research development fell one time in the “NO” answer for question 5.1. Therefore, the

current steps compose the current study: 1, 2, 3, 4, 5, 6, 3, 4, and 5.

1.5 Document Organization

This document is structured in seven chapters, and they present the outcomes of the research

steps depicted in Figure 3. Chapter 2 presents the fundamental concepts required to understand

the subjects that this study approaches, resulting from step 1. Next, Chapter 3 introduces the

literature research presenting the state-of-the-art middlewares for healthcare, which is obtained

through step 2. In turn, Chapter 4 presents the core of this document, which is the HealthStack

model defined in step 3. The chapter introduces the design decisions, the architecture of the

model, and the QoS model. Following, Chapter 5 proposes the evaluation methodology to

32

Figure 3: Research development steps. Light blue boxes indicate steps that might occur more
than once, representing a cycle of adjusts and implementations.

Start

1
Background

2
Related work and

research
opportunity

4
Prototype

implementation

3
Model

development

5
Experiments, results
analysis, and article

writing

6
Proposal of

adaptions in the
model

5.1
Satisfactory

results?

End

YES

NO

Source: elaborated by the author.

validate the model proposal, including the prototype implementation from step 4. Chapter 6

presents the results of the experiments according to step 5. The analysis of results leads to

step 6; therefore, Chapter 6 also presents some adaptations in the methodology and results

from complementary experiments. Finally, Chapter 7 presents the final remarks of this study,

presenting the contributions, limitations, future work, and the publications achieved.

33

2 BACKGROUND

This chapter introduces the essential terminologies and concepts that this document uses

in the coming chapters. It shows the importance of workflow monitoring in medical settings

and the definition of QoS and its importance. Section 2.1 describes the workflow monitoring

process, which is essential for tracking medical processes. Following, Section 2.2 presents tech-

nologies employed for tracking and monitoring in healthcare scenarios. The section presents

the most employed technologies in the current literature. Finally, QoS is an important concept

to understand the current study. Therefore, Section 2.3 introduces the QoS aspects in the con-

text of telecommunication technologies. Then, Section 2.4 summarizes the ideas present in the

chapter.

2.1 Workflow Monitoring

A workflow is a set of activity steps with a partial ordering aiming to achieve a particular

objective (ELLIS, 1999). Specifics of such a definition can vary depending on the application

scenario. In the particular case of hospital environments, workflows are quite dynamic (ROJAS

et al., 2016). They must be continuously updated due to new regulations, and the introduction

of new treatment methods, medications, and technologies (RUTLE et al., 2013). Niazkhani

et al. (2009) present a structure to describe the workflow of healthcare activities. Their model

encompasses six main questions regarding an activity: who, what, when, where, how, and

which resources. The present document focuses on four of the aforementioned questions: who,

where, how, and when. The first three questions can be answered by three respective aspects

related to actors in a hospital: (i) their identity; (ii) their location; and (iii) their state. In turn,

the last question can be answered with the inclusion of timing information when observing

these aspects. Thus, in this study, the triple identity, location, state defines an activity of an

arbitrary actor and a sequence of activities ordered by time from one or more actors defines a

workflow.

The two remaining questions, what and which, do not relate to the scope of monitoring

workflow or provide information already obtained with the other four. The what question de-

fines which specific task is being executed by an actor. When considering monitoring, it aligns

with the final steps of the process. That is, the analysis of identity, location, state, and activity

data should enable the characterization of all tasks being undertaken in the environment. In

turn, which relates to the resources (i.e., the medical equipment) used by each actor to conduct

activities.

The optimization of medical workflows is a fundamental process to improve clinical services

(HAZLEHURST et al., 2003). In turn, an essential element in this process is the monitoring

of activities to document clinical procedures (NIAZKHANI et al., 2009). Traditional methods

involve manual document analysis and staff testimony (MALHOTRA et al., 2007). As a result,

34

it can generate imprecise results, leading to suboptimal management decisions (RUTLE et al.,

2013). In turn, automated monitoring is non-intrusive and achieves reliable results if correctly

planned and implemented (VANKIPURAM et al., 2011). Consequently, it offers a sound basis

for decision-making on workflow changes.

An example of a healthcare workflow is a surgical procedure that takes place in an operating

room. Such a workflow would vary greatly depending on factors like the type of procedure and

patient condition. For the sake of brevity, a “generic” procedure comprised of two steps is

assumed: (i) anesthesia; (ii) operation. A workflow monitoring system aims to identify these

steps, the actors that participate in them, and their sequence of actions. Figure 4 illustrates an

example of these steps with some of the information expected to be acquired by the system.

As shown, some of the data expected to be acquired without manual intervention are the staff’s

location in the room, their current activities, and interactions with equipment.

Figure 4: Example of monitored workflow steps in an operating room. Each circle represents
one staff member, while the colors indicate their assignments (yellow for the anesthetist, red for
the surgeon, green for the nurse).

Monitoring patient

Us ing vital sign monitor

Assis ting anesthes ia

Not using equipment

Applying anesthes ia

Not using equipment

MoMoMoMonininininitototototoringngngngng p p p p patient

UsUsUsUsinininining g g vivivivivitatatal l l l sisisisisigngngngngn mononononitititororororor

Monitoring patient

Us ing vital sign monitor

Assis ting g g ananananananesesesthththththes ia

Not using g g g equipment

Assis ting anesthes ia

Not using equipment

Applyingngngngng a a anenenenenestststststhehehehehes is is is ia

Not t t t usususususinininining eqeqeqeqequiuipmpmpmpmenenenenentttt

Applying anesthes ia

Not using equipment

Source: adapted from Nollert and Wich (2009).

An architecture to monitor healthcare workflows is bound to result in a dataset of consid-

erable size. The acquisition of actual knowledge about the workflows requires the analysis of

collected data. Depending on the monitoring system scale, such analysis may present chal-

lenges similar to those found in Big Data (JAGADISH et al., 2014). In fact, the vast amount of

data generated by current healthcare systems already presents a Big Data scale (FANG et al.,

2016). The application of Big Data concepts to such systems can potentially improve the qual-

ity of care of patients. Additionally, the combination of Big Data and Smart System concepts

35

can lead to new solutions for various aspects of healthcare (PRAMANIK et al., 2017).

Fang et al. (2016) summarize the main challenges of Big Data on healthcare. These include:

(i) high heterogeneity of structured and unstructured data formats used to store medical data; (ii)

lack of standardization for datasets; (iii) difficulty to process such datasets, especially regarding

storage and computational power; and (iv) security and privacy considerations when dealing

with sensitive patients’ data. Such challenges will arise to any system tailored to analyze a

large healthcare dataset, including monitoring workflow in such spaces.

2.2 Sensing Technologies

Sensing devices are ubiquitous in hospital environments, but their primary goal is to eval-

uate patients’ clinical conditions. In turn, recent work shows that sensors can be applied to

recognize workflow elements, including those from healthcare environments (VANKIPURAM

et al., 2011). Two main areas encompass these studies. The first one is the IoT, which presents

considerable work tailored for healthcare applications (ISLAM et al., 2015). IoT technolo-

gies focus on monitoring the identity and location aspects. In particular, Real-Time Location

System (RTLS) is considered a promising method to monitor and document medical activities

(BOULOS; BERRY, 2012). The second area is Computer Vision (CV), which presents several

studies related to human activity recognition using data collected from cameras (SÁNCHEZ;

TENTORI; FAVELA, 2008). It has a greater focus on the state aspect. Thus, a combination of

sensing technologies based on RTLS and Computer Vision can be used to capture the workflow

of a hospital environment, enabling its analysis and improvement.

2.2.1 Real-Time Location Systems

RTLS are solutions for indoor identification and location tracking of persons and assets.

Such systems consist of a set of fixed readers or anchors reading wireless signals from tags (BOU-

LOS; BERRY, 2012). The system applies position estimation methods to these signals, out-

putting the tag position in its coordinate system. Thus, by assigning a tag to a specific target, it

is possible to monitor its location within a building facility (indoor spaces). Nowadays, specif-

ically in the healthcare landscape, solutions are employing Wireless Sensor Networks (WSN)

technologies in RTLS, such as Wi-Fi, Radio Frequency Identification (RFID), Bluetooth, and

Ultra-wideband (UWB) (TAN et al., 2015; ADAME et al., 2018; DECIA et al., 2017; RE-

GOLINI et al., 2019; KOLAKOWSKI; DJAJA-JOSKO; KOLAKOWSKI, 2017). Particularly,

UWB technologies surpass low-frequency technologies when it comes to interference since it

implements adaptive frequency hopping (LEE; SU; SHEN, 2007).

WSNs can provide location information, which is a crucial factor in understanding the ap-

plication context (LIU et al., 2012). The low cost of sensor technology has eased the pro-

liferation of WSNs in many areas, such as healthcare and smart buildings (MAINETTI; PA-

36

TRONO; VILEI, 2011). A WSN is a network of tiny devices that cooperate using wireless

protocols to collect information about a target physical environment (RAWAT et al., 2014).

WSNs comply with a wide range of solutions, thus being characterized by their high hetero-

geneity (MAINETTI; PATRONO; VILEI, 2011). Data gathered by different devices can be

stored and combined locally or sent to other networks, such as the Internet (RAWAT et al.,

2014). A typical WSN usage scenario is to employ technologies such as Wi-Fi or Bluetooth for

indoor location purposes (SCHEUNEMANN et al., 2016; XIAO et al., 2016). WSNs applied

to the healthcare field aim to improve monitoring systems and services (ALEMDAR; ERSOY,

2010). For example, Wheeler (2007) demonstrates the value of a WSN that can report the loca-

tion of patients, medical staff, and critical equipment. Another example is presented in Figure 5,

which depicts the Logitrak1 solution from Logi-Tag Systems (LOGITRACK RTLS, 2018).

Figure 5: An RFID based RTLS called LogiTrack, which provides hospitals, nursing homes,
and clinics a method to accurately track, locate, and monitor assets and people, and trigger
events in real time based on location and status (LOGITRACK RTLS, 2018).

Source: adapted from LogiTrack RTLS (2018).

These technologies generally employ sensor devices embedded with memory, processor,

and wireless communication protocols to transmit data (RAWAT et al., 2014). A WSN uses a

collection of devices to produce information about things and the context. However, a WSN

1https://logi-tag.com/real-time-location-system/

37

itself is not able to identify a target object independently (RAWAT et al., 2014). Conversely,

RFID is a modern technology aiming to provide object identification in a short-range (WANT,

2006). Therefore, combining WSN and RFID technologies is an attractive solution for better

information monitoring (RAWAT et al., 2014; MITROKOTSA; DOULIGERIS, 2009).

Unlike printed code technologies, RFID (ISOs 15693 and 14443) permits short-range iden-

tification without requiring visibility between readers and tags. RFID tags have exclusive iden-

tifications (ID) and can store and transmit information about the manufacturer, environment,

and technical parameters. They segment into two principal standards: active, which require a

power source like batteries, and passive, which do not require a power source (WANT, 2006).

Proposals extensively apply RFID solutions aiming at activity recognition since RFID is a ma-

ture and low-cost technology (ALEMDAR; ERSOY, 2010). In turn, the creation of the Near

Field Communication (NFC) Forum (NFC Forum, 2017) in 2004 is a direct result of attempts

to spread RFID applications further. This forum’s principal goal is to bring together exist-

ing mobile RFID standardization efforts and introduce short-range communication capabilities

into RFID (WANT, 2011). It also aims to standardize mechanisms in which sensor devices

can exchange information in very short distances. NFC technologies that operate in the high-

frequency band at 13.56 MHz (ISO 14443, ISO 18092) support tag readings from distances of

10cm (WANT, 2011).

Regarding wireless communication protocols, UWB (PORCINO; HIRT, 2003), Wi-Fi (IEEE

Computer Society, 2007) and Bluetooth (Bluetooth, 2017a; IEEE Computer Society, 2005) are

part of the short-range wireless field (LEE; SU; SHEN, 2007; RAWAT et al., 2014). UWB is

a radio frequency technology that provides information exchange by transmitting data through

continuous short radio pulses. Wi-Fi is a well-known protocol that allows data transmission

in higher ranges with larger data throughput. However, these factors result in higher values of

energy consumption. Lastly, Bluetooth aims to cover wireless communication in short ranges

focusing on low-cost devices. This protocol works in the 2.45 GHz band employing frequency

hopping strategies to increase performance.

The IEEE standard 802.15.4 (IEEE Computer Society, 2016) aims at wireless communica-

tion devices with low energy consumption, cost and data rate (LEE; SU; SHEN, 2007; RAWAT

et al., 2014). Many communication technologies apply this standard (RAWAT et al., 2014),

for example Bluetooth Low Energy (BLE) (Bluetooth, 2017b), 6LoWPAN (RFC 4944) (MON-

TENEGRO et al., 2007) and ZigBee (ALLIANCE, 2017; FARAHANI, 2008). BLE is an attrac-

tive choice for WSN applications that require high data transmission in short distances between

devices. Similar to BLE, ZigBee is a wireless communication technology for applications that

focus on low energy consumption and cost (LEE; SU; SHEN, 2007; RAWAT et al., 2014). Like-

wise, the 6LoWPAN standard adapts the IPv6 over IEEE 802.15.4 networks focusing on low

energy approaches. Recent work promotes the adoption of this standard instead of proprietary,

rigid ones (MAINETTI; PATRONO; VILEI, 2011). Table 1 summarizes technical aspects from

the aforementioned technologies.

38

Table 1: Technical details of the communication standards and protocols.

Technology RFID NFC Wi-Fi Bluetooth UWB ZigBee 6LoWPAN BLE

Specification ISO 15693,
ISO 14443,
ISO 18000

ISO 14443,
ISO 18092

IEEE
802.11

IEEE
802.15.1

IEEE
802.15.3a

IEEE
802.15.4

IEEE
802.15.4,
RFC 4944

IEEE
802.15.4

Frequency band < 100 MHz,
868 MHz,
915 MHz,
2.45 GHz

13.56 MHz 2.4 GHz,
5 GHz

2.4 GHz 3.1-10.6
GHz

868-928
MHz,
2.4 GHz

868-928
MHz,
2.4 GHz

2.4 GHz

Max signal rate – 424 Kbps 54 Mbps,
540 Mbps

3 Mbps 110 Mbps 250 Kbps 250 Kbps 1Mbps

Nominal range 30 cm, 1 m,
3-5 m

10 cm 100 m 10-100 m 10 m 10-100 m 1-100 m 200 m

Source: adapted from Antunes et al. (2018).

2.2.2 Computer Vision Techniques

RGB-Depth (RGBD) devices have become very popular and accessible in recent years,

being extensively used in CV applications. Since they encompass color and depth data, there

is usually no real advantage in choosing RGB cameras over RGBD. Some even have readily

available implementations of skeletal tracking, hand tracking, and gesture recognition, which

are strictly related to an actor’s state. The analysis of actions and activities from one or more

individuals is a fundamental aspect of workflow monitoring. It falls in the scope of surveillance,

one of the main applications of CV-based human motion capture and evaluation (MOESLUND;

HILTON; KRüGER, 2006). The study from Moeslund, Hilton, and Krüger (2006) reviews an

extensive body of work that laid the foundation for current human motion analysis. Authors

identify the following main contribution from early work in this field:

(i) image segmentation and tracking methods that enable recognition of subjects in uncon-

trolled, outdoor environments with frequent of object occlusion;

(ii) pose estimation techniques based on probabilistic approaches that enabled high accuracy

on challenging natural, uncontrolled images;

(iii) model-based techniques to recognize complex human body movements for activity track-

ing;

(iv) use of pose estimation techniques to recognize simple human activities, such as sitting,

walking, and running.

In recent years, the field of CV and human motion analysis further advanced at a higher pace

due to breakthroughs in computer processing capabilities. These enabled the implementation

of algorithms with previously prohibitive complexity. Consequently, CV methods can analyze

images and models of higher complexity and extract a richer set of information as a result.

Kadkhodamohammadi et al. (2017) is an example in which the authors employ CV techniques to

39

estimate the pose of medical staff in an operating room. Figure 6 shows their results employing

a 3D pictorial structures approach.

Figure 6: Pose estimation technique employed by Kadkhodamohammadi et al. (2017). The
lines represent body parts recognized by their thechnique.

Source: adapted from Kadkhodamohammadi et al. (2017).

According to their working principles, the majority of RGBD cameras can be generalized

into three categories: Stereo Vision, Structured Light, and Time-of-Flight. These different depth

imaging approaches attribute advantages and limitations of their own to the equipment. While

hardware components and techniques may vary drastically among devices, their principles re-

main the same. Table 2 presents some camera devices and their technical details, including

the approach adopted by each one. In the next sections, a brief overview of each category is

presented.

2.2.2.1 Stereo Vision

Stereo cameras are usually composed of two (sometimes more) RGB camera components

aligned over a common baseline at known positions and orientation. Analogous to human eyes,

the cameras’ disposition ensures slightly different scene perspectives while preserving a sub-

stantial overlap of their fields of view. Using the acquired color images, also called stereo pairs,

Stereo Vision (SV) algorithms can synthesize depth images. Depth pixel values are computed

through triangulation, requiring its position to be identified in both stereo pair images. The

process of identifying corresponding pixels in two RGB images, known as the correspondence

problem (HUSSMANN; HAGEBEUKER; RINGBECK, 2008), is the major challenge tackled

by SV algorithms.

SV solutions can be implemented using any pair of RGB cameras since most of the com-

plexity lies in algorithms rather than hardware. Among the advantages of SV are high reso-

40

Table 2: Technical details about the camera devices.

Devices

T
y
p

e Data Modalities Depth Image
Communication

RGB

Image

Depth

Image
Max Resolution

Max

FPS
Range

Stereolabs ZED
S

te
re

o
V

is
io

n
X X

4416 x 1242 (15 fps),
3840 x 1080 (30 fps),
2560 x 720 (60 fps),
1344 x 376 (100 fps)

100 0.7 - 20m USB 3.0

Microsoft Kinect v1

S
tr

uc
tu

re
d

L
ig

ht

X X 640 x 480 30

0.8 - 4m
(default),
0.4 - 3m
(near
mode)

USB 2.0

Intel RealSense R200 X X 640 x 480 60

0.6 - 3.5m
(indoor),
0.6 - 10m
(outdoor)

USB 3.0

Intel RealSense SR300 X X 640 x 480 60 0.2 - 1.5m USB 3.0

Asus Xtion Pro Live X X
640 x 480 (30 fps),
320 x 240 (60 fps)

60 0.8 - 3.5m USB 2.0/3.0

Occipital Structure X
640 x 480 (30 fps),
320 x 240 (60 fps)

60 0.4 - 3.5m USB 2.0

Microsoft Kinect v2

T
im

e-
of

-F
li

gh
t

X X 512 x 424 30 0.5 - 4.5m USB 3.0

Creative Senz3D X X 320 x 240 30 0.15 - 1m USB 2.0

PMD CamBoard Pico Flexx X 224 x 171 45 0.1 - 4m USB 2.0/3.0

Heptagon Taro X 120 x 80 - Up to 5m USB, SPI, UART,
I2C, Optocoupler
I/O, WiFi, Zigbee,
Bluetooth

Source: adapted from Antunes et al. (2018).

lution and the fact that it does not require energy emission (HUSSMANN; HAGEBEUKER;

RINGBECK, 2008). This passive approach benefits outdoor usage and prevents equipment

interference, making multicamera implementations quite feasible.

2.2.2.2 Structured Light

Like SV, Structured Light (SL) cameras also perform triangulation based on their compo-

nents’ position. However, instead of relying on the scene to provide meaningful features to solve

the correspondence problem, it projects light patterns over the observed area (SCHMALZ et al.,

2012). Since projected patterns are known beforehand, instead of a camera pair, it is possible to

build an SL device with a single camera and a light projector (CHUA; REN; ZHANG, 2014).

Depth results from deformations observed in the patterns (HARTMANN; SCHLAEFER, 2013;

PAULY et al., 2015).

Addressing the main issues found in passive stereo, this active approach offers a robust so-

lution to deal with untextured surfaces. On top of that, projected patterns may lead to captured

images, which are trivial to match (SCHARSTEIN; SZELISKI, 2003), requiring less computa-

tionally intensive algorithms. Also, projectors can act as light sources in low light environments,

41

making such devices more robust in that regard as well.

2.2.2.3 Time-of-Flight

Time-of-Flight (ToF) cameras are a recent technology compared to triangulation based alter-

natives and are becoming increasingly popular (FüRSATTEL et al., 2016; BAUER et al., 2013).

Usually, the principal components of these devices are a light emitter and an image sensor. The

emitter dispatches modulated light pulses or continuous-wave to the observed scene (FOIX;

ALENYA; TORRAS, 2011). Light reflects at the sensor, which demodulates it in parallel for

each pixel. Devices emitting discrete pulses calculate distance based on pulses’ time to travel

forth and back to the camera. Meanwhile, continuous-wave solutions measure phase differences

between the original signal and the received one.

One of ToF cameras’ main advantages is that they are immune to environmental light-

ing conditions, working even in the dark (FüRSATTEL et al., 2016). Solid colored surfaces

also pose no challenge as this strategy completely avoids the correspondence problem (HUSS-

MANN; HAGEBEUKER; RINGBECK, 2008). Lastly, the parallel acquisition of the whole

pixel matrix at the hardware level makes it a very efficient solution.

2.3 Quality of Service

The concept of QoS in the telecommunication field is not new. In the last century, the

telecommunication advance allowed humans to send high volumes of information from one

physical place to another (LINDSEY; SIMON, 1991). Telecommunication technologies in-

troduced distributed systems network connected performing data transmission remotely. For

instance, in telephony, it is possible to capture and transmit back and forth the human voice in

nearly real-time, allowing people to talk to each other, even being remotely distant. In such a

setting, users easily perceive poor performance impacting their experience of using the system.

For instance, too many packet losses in voice transmission practically make the conversation not

feasible. In this context, the QoS of a system is strongly related to its performance, impacting

user experience (VARELA; SKORIN-KAPOV; EBRAHIMI, 2014; OODAN et al., 2003).

Nowadays, QoS is a well-established concept that addresses the overall performance of

services provided by systems through data transmissions, such as cloud computing, computer

networks, and telephony. Several standards and recommendations from different institutes de-

fine the term QoS in their documents (VARELA; SKORIN-KAPOV; EBRAHIMI, 2014). In

the E.800 recommendation, the International Telecommunication Union’s Telecommunication

Standardization Sector (ITU-T) defines QoS as a telecommunication service’s ability to satisfy

its user needs (ITUT, 2008). The document shows that QoS is a perceived characteristic by

users of a telecommunication system. Basically, QoS refers directly to system communication

performance, which impacts the user experience. That is, data transmission problems cause the

42

service to offer poor performance and a bad experience for the user.

In turn, the European Telecommunications Standards Institute (ETSI) defines QoS as a level

of quality of a service (ETSI, 1994). Mainly, the document makes a relation between QoS and

network performance. It introduces four points of view to clarify the E.800’s generic definition

of QoS: user’s QoS requirements, QoS offered by the service provider, QoS achieved by the

service, and QoS perceived by the user. According to the document, QoS is expressed through

parameters that can be technical, such as packet loss, or non-technical, such as time of avail-

ability.

Both definitions have the user in common experiencing the final system’s performance. It

demonstrates that a system’s QoS is centered on the system’s ability to achieve the user’s ex-

pected performance. To measure QoS, most of the parameters fall in one of the two possible

groups (VARELA; SKORIN-KAPOV; EBRAHIMI, 2014; OODAN et al., 2003): (i) network-

related (or technical-related) parameters; (ii) non-network related (or non-technical related)

parameters. For the first one, commonly, several performance metrics measure the QoS of

a system, such as throughput, delay, jitter, and packet loss rate (VARELA; SKORIN-KAPOV;

EBRAHIMI, 2014; OODAN et al., 2003). These metrics have in common that they refer specifi-

cally to the system’s network performance, indicating data transmission problems. For example,

the delay metric is a measure of time to transmit data from one point to another in the network.

In turn, jitter refers to the expected time interval between two consecutive data receptions. Mul-

timedia streaming helps the understanding of jitter. For instance, in video transmission, each

video frame is transmitted individually and in the same recording sequence. The interval each

frame arrives at the destination should be the same for a smooth visualization. Irregular inter-

vals between packets directly impact the video frame rate visualization, which the user instantly

perceives.

Besides network-related metrics, QoS can also be measured through non-network related

performance, such as service provisioning time, availability, reliability, maintainability, or even

satisfaction rate (VARELA; SKORIN-KAPOV; EBRAHIMI, 2014; OODAN et al., 2003). In

these cases, they do not represent a single metric measurement, but the system’s assessment

from a point of view. For instance, availability is a characteristic of a system to be available

when needed. From the users’ point of view, they can require a system to be available 99%

of the time. From the provider’s point of view, this translates to network parameters such

as the number of successful replied requests. As another example of a non-network related

performance metric is user satisfaction with the service. In this particular case, it is essential

to understand the user’s satisfaction level. This can leads to bad ratings of the system, which

can be correlated with technical parameters at the provider’s side. What all non-network related

parameters have in common is that they are of easy understanding by the users. That helps

them define their requirements, which are further translated to technical terms by the service

provider.

In the context of healthcare applications, QoS refers to specific metrics and also limit val-

43

ues for them. Many studies present different types of metrics that target different health data

types (MUKHOPADHYAY, 2017; NANDA; FERNANDES, 2007; MALINDI; KAHN, 2008;

LEE et al., 2011; SKORIN-KAPOV; MATIJASEVIC, 2010). To illustrate that, Table 3 presents

some traditional healthcare data types and their related QoS metrics. As the table shows, be-

sides audio and video information, equipment telemetry and patient metrics are fundamental

data types in healthcare. Such information is valuable to track the patients’ health within the

medical workflow. Electrocardiogram (ECG), pulse rate, and blood pressure are examples of

this type of data. They represent the patient status and require much less bandwidth for data

transmission. Considering their metrics, they have essential requirements in data transmission

delay because time is an important factor in handling a medical crisis. Although the table de-

fines a fixed number of data types, currently, the advance of Healthcare 4.0 brings new data

types into the healthcare scope as location information, for instance. Therefore, the information

available for medical decisions is continuously growing, and the specific QoS metrics for them

are not available yet.

Table 3: QoS metrics for healthcare applications.

Data Type Data Rate
QoS Metric

Maximum

Delay

Maximum

Jitter

Packet

Loss (%)

Voice 4-25 Kbps 150-400 ms - 3

High Quality Voice 384 Kbps 100 ms 50 ms -

Diagnostic Sound 32-256 Kbps 100-300 ms - 1

High Quality Video 0.64-5 Mbps 100-300 ms 30-50 ms 0

Uncompressed Image 30-40 MB - - 0

Region of Interest Image 15-19 MB - - 0

ECG 24 Kbps 1 s - 0

Pulse Rate 2-5 Kbps 1 s - 0

Blood Pressure 2-5 Kbps 100 ms 25 ms -

Telemetry (diagnostic) 25.6 Kbps 200 ms 200 ms -

Telemetry (alarms) 5.1 Kbps 200 ms 200 ms -

Infusion Pump (status) 1 Kbps 200 ms 1s -

Infusion Pump (alert) 1 Kbps 200 ms 1s -

Barcode Medication Administration 0.8 Kbps 500 ms 500 ms -

Electronic Medical Record 4.1 Mbps 200 ms 5 ms -
Source: elaborated by the author.

44

2.4 Summary

This chapter presented a few concepts to a better understanding of this document focusing

mainly on three subjects: (i) healthcare workflow monitoring; (ii) sensing technologies in the

scope of healthcare; and (iii) definition of QoS. The healthcare workflow consists of a series of

tasks performed to achieve a given objective in the hospital. These tasks characterize activities

executed by the medical staff team in several hospital facilities. Specifically, medical settings

are essential environments, and their workflow comprises critical tasks that influence patients’

health. The workflow monitoring of such environments provides valuable information that can

improve the performance of medical services.

Different technologies are employed in healthcare to track and monitor assets, equipment,

and people. Nowadays, two areas emerge as the leading solutions to monitor hospital services:

(i) RTLS; and (ii) Computer Vision. RTLS solutions focus primarily on tracking the position

of tags or badges in real-time. A subject under tracking carries a tag that is assigned to it.

Therefore, the tag positioning is associated with the person or equipment that is carrying the

tag. On the other hand, Computer Vision techniques are less intrusive since they do not need to

bear with a device. These techniques are most suitable for activity recognition in which human

pose estimation strategies attempt to extract the position and the skeletal tracking of the subjects

from image frames.

Monitoring data from healthcare environments can improve medical services significantly.

However, users’ great demands can decrease the ability of systems to deliver services for user

applications. This situation is a common problem in telecommunication distributed systems.

The concept of QoS defines the level of performance of such systems that can impact the user

experience. QoS can be seen as the performance properties of a system in delivering its services.

These properties can be both technical and non-technical. For instance, in the first group, time

delay in data transmission is a technical metric that measures lags in transmission channels. In

the second group, the availability of a system describes its capacity to be available when needed.

Several other properties can measure the QoS of a system, making it essential to deliver quality

services for users.

45

3 RELATED WORK

This chapter reviews the current state-of-the-art regarding the use of QoS strategies in the

healthcare scope. It focuses on this specific scope to find related literature that considers the

challenges of deploying computing systems in clinical environments. Such environments deal

with critical information from patients and medical staff that require confidentiality and respon-

sibility in its use. Section 3.1 describes the search strategy to gather the most relevant articles

for the current study. Following, Section 3.2 describes the details of the selected articles from

the search strategy. In turn, Section 3.3 discusses the articles showing the main gaps. Finally,

Section 3.4 summarizes the content present in this chapter.

3.1 Search Methodology

The literature review in this study adopts the principles of systematic reviews (BIOLCHINI

et al., 2005; KITCHENHAM; CHARTERS, 2007) to achieve reproducibility and high-quality

results. It targets providing an overview of solutions that employ QoS strategies in healthcare

systems and platforms. The current methodology consists of two criteria:

(i) Inclusion criteria: definition of search parameters, such as keywords, year range, and

databases;

(ii) Exclusion criteria: definition of removal filters to select only the most relevant articles.

Concerning the hospital scope, middlewares have specific characteristics, as presented in

Figure 7. Real-time, safety, and cost are primarily related to clinical activities; therefore, mid-

dlewares for hospitals differ from traditional middlewares, which do not have these character-

istics. Thus, to limit the scope of the article search strategy, the search string is defined as

follows:

(“QoS” in the title) AND (“health” OR “healthcare” OR “hospital” in the metadata)

The inclusion policy consists of considering articles that explicitly describe a QoS strategy

in a healthcare scenario, presenting their methods and algorithms. Writing paper guidelines

suggest that the article’s title should present the aim of the research (MACK, 2012). Therefore,

the current research opts to find articles that mention the word “QoS” to hit research focusing

specifically on QoS strategies.

The search strings’ combination as a search string to be used in the target databases repre-

sents the inclusion criteria. Besides, to guarantee that the study reflects the most recent findings

on monitoring technologies, the scope is limited to the last five years (in the date of this writing,

studies published between January 2015 and November 2020). Considering the related article

sources, the scope of the literature search encompasses the selection of literature databases.

46

Figure 7: Characteristics that differ hospital middlewares from traditional middlewares. Time
and cost are related and critical for safety in these environments.

...

m applications

n sensors

Middleware Hospital characteristics:

- real-time

- life or death issues

- limited cost

Hospital

...

- confidentiality

Source: elaborated by the author.

It is narrowed to sources that: (i) index articles from relevant conferences and journals from

Computer Science and Medicine; and (ii) include a broad selection of venues to maximize the

number of returned articles. Based on these criteria, Table 4 presents the seven databases that

compose the inclusion criteria.

Table 4: Databases for the inclusion criteria.

Database URL

ACM Digital Library https://dl.acm.org/

Google Scholar https://scholar.google.com.br/

IEEE Xplore https://ieeexplore.ieee.org/

Microsoft Academic https://academic.microsoft.com/

PubMed https://www.ncbi.nlm.nih.gov/pubmed/

ScienceDirect https://www.sciencedirect.com/

Springer Link https://link.springer.com/

Source: elaborated by the author.

The inclusion criteria result in a set of articles, called raw literature corpus. Following the

methodology, the exclusion criteria select the most relevant articles from the raw corpus in this

study. The following removal filters form the criteria:

I. Duplicate removal: The remaining studies from individual databases are grouped, and

duplicates are eliminated;

II. Title and abstract review: The title and abstract from each study are reviewed, and those

that do not address sensing technologies applied to healthcare monitoring are removed;

III. Full-text analysis: The remaining studies’ full text is further analyzed to remove articles

not expressly related to the current study.

47

Figure 8 depicts the filtering process sequence to achieve the final corpus. The total corpus

resulting from the first search methodology step consists of 392 articles. After applying steps

I and II, the corpus reduces to 93 items. The article analysis from step III consists of reading

each article’s abstract to check whether the article is related. This analysis resulted in a set of

35 related articles, which the next sections describe.

Figure 8: Filtering process sequence. Filter II removes most of the articles due to their focus be
different than healthcare.

IEEE Xplore

PubMed

Science Direct

Springer Link

Google Scholar

392 322 93 35

Removal Filter I Removal Filter II Removal Filter IIIdatabases:

Inclusion Criteria Exclusion Criteria

ACM Digital Library

Microsoft Academic
search
string

49

93

61

32

5

42

110

Source: elaborated by the author.

3.2 State-of-the-Art

Table 5 summarizes the characteristics of each article showing their primary focus and the

QoS strategies they employ. From the analysis of the state-of-the-art regarding QoS strategies

in the healthcare domain, most of the strategies focus on three main fields:

(i) Wireless Body Area Network (WBAN) (65.7%) (SAMANTA; MISRA, 2018; AHMED;

LE MOULLEC, 2017; PANDIT et al., 2015; HU et al., 2015; BRADAI et al., 2015;

SAMANTA; LI; CHEN, 2018; IRANMANESH; RIZI, 2018; WANG; SUN; JI, 2018;

GUEZGUEZ; REKHIS; BOUDRIGA, 2018; HASSAN; ALRUBAIAN; ALAMRI, 2016;

RAZZAQUE et al., 2015; JACOB; JACOB, 2015; LEE; JUNG; LEE, 2017; PURI; CHALLA;

SEHGAL, 2015; BAI et al., 2019; LIU; LIU; CHEN, 2017; LIU; YAN; CHEN, 2017;

POORANI et al., 2017; TSENG; WANG; YANG, 2020; GOYAL et al., 2020; ZUHRA

et al., 2020; WAHEED et al., 2020; IBRAHIM et al., 2020);

(ii) Telemedicine (14.2%) (POORANI et al., 2017; WANG et al., 2019; AGIRRE et al., 2016;

MAATOUGUI; BOUANAKA; ZEGHIB, 2017; SODHRO et al., 2019);

(iii) IoT (14.2%) (ZITTA et al., 2018; KHALIL; MBAREK; TOGNI, 2019; BANOUAR et al.,

2017; GATOUILLAT; BADR; MASSOT, 2018; VADIVEL; RAMKUMAR, 2020).

The following subsections group the articles’ analysis according to these fields. Also, arti-

cles that do not fall in at least one of these fields form an additional subsection.

48

Table 5: Summary of the researches and their strategies addressing QoS in healthcare solutions.

Paper Year Real-

time

Focus QoS Strategy Description

(JACOB; JACOB,

2015)

2015 WBAN Data prioritization, and

sleeping scheduler (en-

ergy)

Sleeping mechanisms for

WBAN sensors to improve

energy performance

(RAZZAQUE et al.,

2015)

2015 X WBAN Service differentiation (dy-

namic data priorization),

error control mechanism

Error recovery in WBAN

multi level.

(PANDIT et al.,

2015)

2015 X WBAN Dynamic data priorization QoS MAC protocol for

WBAN.

(PURI; CHALLA;

SEHGAL, 2015)

2015 WBAN Data classifica-

tion/priorization, time

slot allocation protocol

Time slot allocation strategy in

the MAC layer for WBASNs.

(BRADAI et al.,

2015)

2015 WBAN Data classifica-

tion/priorization, ad-

minission control

QoS-aware architecture for re-

mote signal monitoring in

WBANs.

(HU et al., 2015) 2015 WBAN Multi-level data prioriza-

tion

Multi-level QoS strategy in the

MAC layer for WBAN.

(HASSAN; AL-

RUBAIAN;

ALAMRI, 2016)

2016 X WBAN Resource elasticity Cloud model to provide medi-

cal services from WBANs.

(AGIRRE et al.,

2016)

2016 Teleme-

dicine

Admission control Middleware for remote health

monitoring.

(AHMED;

LE MOULLEC,

2017)

2017 WBAN Channel selection Channel optimization ap-

proach for WBANs.

(BANOUAR et al.,

2017)

2017 IoT Data prioritization, re-

source elasticity

QoS mechanism for IoT mid-

dlewares to enhance living en-

vironments.

(POORANI et al.,

2017)

2017 WBAN,

Teleme-

dicine

Cloud elastiticy, data prior-

ization (alerts)

Remote monitoring system of

WBAN.

(LEE; JUNG; LEE,

2017)

2017 WBAN Energy control algorithm,

data rate adaptation

Energy control algorithm for

WBAN.

(LIU; LIU; CHEN,

2017)

2017 WBAN Data priorization Transmission rate adaptation

strategy in WBANs.

(LIU; YAN; CHEN,

2017)

2017 WBAN Scheduling protocol Slot time and order allocation

strategy for WBANs.

(MAATOUGUI;

BOUANAKA;

ZEGHIB, 2017)

2017 Teleme-

dicine

MAPE control loop, re-

source elasticity

Cloud-based remote patient

monitoring system.

Continued on next page

49

Table 5 – continued from previous page
Paper Year Real-

time

Focus QoS Strategy Description

(SAMANTA;

MISRA, 2018)

2018 X WBAN Connectivity stablishment,

packet scheduling protocol

(data priorization)

Dynamic connection estab-

lishment and packet schedul-

ing for WBANs.

(SAMANTA; LI;

CHEN, 2018)

2018 WBAN Scheduling protocol with

data prioritization, admis-

sion control algorithm

Packet scheduling algorithm

for data transmission in

WBANs.

(CELDRÁN et al.,

2018)

2018 X ICE Load balancing ICE architecture to manage se-

curity, privacy, QoS, and high

availability.

(GUEZGUEZ;

REKHIS;

BOUDRIGA, 2018)

2018 X WSN,

WBAN

Data prioritization, ad-

mission control algorithm,

routing protocol

Sensor cloud architecture for

health services that combines

WSN and WBAN.

(ZITTA et al., 2018) 2018 X IoT Multi-channel transmis-

sion

IoT infrastructure to monitor

QWL.

(IRANMANESH;

RIZI, 2018)

2018 WBAN Data prioritization, ad-

mission control algorithm,

routing protocol, time slot

allocation protocol

QoS solution for co-existing

WBAN.

(WANG; SUN; JI,

2018)

2018 WBAN Power control model Power control scheme for

multi-WBANs.

(GATOUILLAT;

BADR; MASSOT,

2018)

2018 IoT Feedback and adaptation

loop

IoT self-adaptive system for

critical monitoring

(SODHRO et al.,

2019)

2019 X Teleme-

dicine

Video smoothing QoS control algorithm to 5G

telemedicine.

(WANG et al., 2019) 2019 Teleme-

dicine

Data priorization Slicing framework for eHealth

media applications over 5G

networks.

(AL-TARAWNEH,

2019)

2019 Medical

network

Service differentiation,

data categorization, and

data prioritization

Medical grade QoS solution.

(VENKATESH

et al., 2019)

2019 X SDN Service differentiation,

routing protocol

QoS-aware multipath al-

gorithm for medical data

transmission in a SDN.

(BAI et al., 2019) 2019 WBAN Clock synchronization Protocol for QoS and energy

efficiency in WBAN.

(KHALIL;

MBAREK; TOGNI,

2019)

2019 X IoT Traffic differentiation IoT architecture for data ac-

cess.

Continued on next page

50

Table 5 – continued from previous page
Paper Year Real-

time

Focus QoS Strategy Description

(TSENG; WANG;

YANG, 2020)

2020 X WBAN Channel selection Dynamic channel and super-

frame selection scheme in

IEEE 802.15.6 WBANs to

avoid interference.

(GOYAL et al., 2020) 2020 X WBAN Data prioritization, data

rate adaptation

Energy efficiency transmission

rate approach for WBANs

with data classification.

(ZUHRA et al.,

2020)

2020 X WBAN Routing protocol Strategy for selecting an op-

timal end-to-end route which

considers a composite metric

(link quality metric).

(WAHEED et al.,

2020)

2020 WBAN Routing protocol Modification in the Ad hoc

On-Demand Distance Vector

(AODV) routing protocol for

medical data.

(VADIVEL;

RAMKUMAR,

2020)

2020 IoT Routing protocol Bio-inspired based rout-

ing protocol for IoT-based

healthcare applications us-

ing cognitive radio ad hoc

networks.

(IBRAHIM et al.,

2020)

2020 WBAN Routing protocol and data

prioritization

WBAN architecture with a

single sink node and routing

protocol for high priority data

transmission.

3.2.1 Wireless Body Area Network

In the literature, the acronym for body area networks varies between BAN, BSN, WBAN,

or WBSN. The current study adopts WBAN for all cases to maintain consistency and make the

reading easier. WBAN consists of several sensors attached to a patient’s body, acquiring phys-

iological information and forwarding it to a central node. The central node then transmits this

information through a network connection to a server. Many strategies focus on delivering QoS

in such architectures. Samanta and Misra (2018) propose a dynamic QoS connection estab-

lishment. They focus on a master sensor moving and changing the connection from an access

point to another. Ahmed and Le Moullec (2017) propose a channel optimization approach that

consists of an algorithm to choose the best channel for the communication between the central

node and the gateway. Moving nodes perform automatic handover between different gateways

when the patient changes from one location to another. Tseng, Wang, and Yang (2020) also

propose a channel optimization approach. They focus on medical emergency settings with mul-

tiple WBANs interfering with each other’s data transmission. Their strategy consists of looking

51

at the historical state of channels to choose the most appropriate data transmission channel.

Focusing on energy consumption, Pandit et al. (2015) propose an energy-efficient Media

Access Control (MAC) protocol to classify the data into six different classes that define the

transmission priorities. The class of a packet might change dynamically according to context.

Also employing data classification, Hu et al. (2015) employ a service prioritization strategy in

data transmission on different levels: user, data, and time. They focus on the IEEE 802.15.4

MAC beacon mode protocol focusing on high priority data transmissions. Likewise, Bradai

et al. (2015) propose PMAC (Priority MAC) and a QoS aware architecture for remote signal

monitoring. The coordinator node classifies data into three categories for data prioritization:

emergency, normal, on-demand. The strategy also employs an admission control mechanism

that checks if it is possible to provide the required QoS for new incoming data. In turn, Goyal

et al. (2020) focus on the energy efficiency aspect. The strategy employs a Genetic Algorithm

to adjust the transmission rate of each node. Additionally, the study proposes the classification

of packets in high or normal priority data.

Co-existing WBANs pose a challenge in data transmission because of mutual interference.

In this context, Samanta, Li, and Chen (2018) focus on co-existing WBANs sharing access

point bases. The authors propose a packet scheduling algorithm for high critical priority data

transmissions. They also present an admission control strategy to guarantee QoS employing

an optimization problem solution using Lagrangian Multipliers. Iranmanesh and Rizi (2018)

propose MultiBodyQoS, a QoS solution for co-existing WBANs. MultiBodyQoS detects in-

terference and applies several methods to mitigate the problem: channel change, different time

slots allocation, admission control, and data prioritization. In turn, Wang, Sun, and Ji (2018)

propose a transmission power adaption scheme. The authors design a Nash bargaining game

model scheme for power control. They focus on the problem of interference between multiple

co-located WBANs.

With a different scope, Guezguez, Rekhis, and Boudriga (2018) propose an admission con-

trol mechanism to choose between a WSN route or a 4G connection to send the data from the

WBAN to the cloud. The solution employs traffic classification to guarantee real-time data

streaming: high-priority and best effort. Also, employing cloud computing, Hassan, Alruba-

ian, and Alamri (2016) propose a cloud model to provide medical services employing elasticity

strategies. They propose a virtual machine (VM) allocation strategy to improve cost, energy

efficiency and reduce response time for remote WBANs. Differently, Razzaque et al. (2015)

employ a service differentiation strategy, which defines two different prioritization levels: crit-

ical and non-critical. The authors propose an error recovery mechanism based on network

conditions to deal with network packet transmission errors.

Among several challenges, WBANs undergo the problem of constraint resources. As its

architecture contains several nodes with low computing and energy capacity, guaranteeing sys-

tem availability is the target of many studies. For instance, Jacob and Jacob (2015) propose

a sleeping mechanism for WBAN sensors to improve energy performance. Also, the strategy

52

changes data acquisition from cyclic pooling to priority pooling in emergencies. Also, Lee,

Jung, and Lee (2017) present an energy control algorithm that adjusts the transfer rate from

sensors according to users’ QoS requirements. In turn, Puri, Challa, and Sehgal (2015) focus

on an energy-efficient time slot allocation strategy in the MAC layer for WBANs. Their solution

calculates the time slot duration according to the payload size and employs data packets classifi-

cation for transfer prioritization: emergency, critical, reliability constrained, delay constrained,

and normal. Bai et al. (2019) focus on energy consumption to improve network lifetime and

performance. The authors propose a protocol for clock synchronization since synchronization

between the clocks is essential for nodes to wake-up at the right time.

Liu, Liu, and Chen (2017) propose a transmission rate adaption strategy in WBANs. The

strategy evaluates the quality of the link to decide changing or not the transmission rate. Besides,

the solution provides a high priority queue to handle abnormal signals. The same authors also

propose a slot time and order allocation strategy for WBANs in a different article (LIU; YAN;

CHEN, 2017). They employ a TDMA-based (Time-Division Multiple Access) MAC protocol

to avoid collisions by scheduling sensors to transmit data to the central node.

Finally, some studies propose new routing protocols for WBANs. Zuhra et al. (2020) pro-

pose a routing protocol to optimize the end-to-end route in data transmission. They focus on

defining a strategy that addresses a composite metric to evaluate the quality of each route. Wa-

heed et al. (2020) introduce a new routing protocol as an extension for the Ad hoc On-Demand

Distance Vector (AODV) protocol (DAS; PERKINS; ROYER, 2003). The authors propose new

metrics to evaluate the quality of links. Lastly, Ibrahim et al. (2020) present a WBAN architec-

ture with a single sink node. The system implements a routing protocol for high priority data

transmission to decrease energy consumption and improve network performance. Their strategy

directly routes critical packets to the sink node and routes data with other priorities for different

paths.

3.2.2 Telemedicine

In the field of Telemedicine, strategies focus on remote monitoring systems employing dif-

ferent technologies. Poorani et al. (2017) propose a real-time system to monitor health informa-

tion from WBANs. The solution classifies health data into five categories for data prioritization:

very low, low, normal, high, and very high. The method consists of a severity scheduler in the

cloud to deliver alerts for doctors. Also, Agirre et al. (2016) propose a middleware for health

monitoring based on multiple nodes acquiring information from multiple sensors. They present

a case of study for a remote fire emergency system to monitor one subject in a home. The

authors designed a QoS manager that performs three operations: admission control, QoS mon-

itoring, and composition algorithm, including task prioritization.

Focusing on cloud computing, Maatougui, Bouanaka, and Zeghib (2017) present a self-

adaptive cloud-based remote patient monitoring system. The system employs the MAPE (Monitor-

53

Analyze-Plan-Execute) loop model performing adaptations based on QoS constraints. In their

context, QoS is a Service Level Agreement (SLA) input using response time, the number of

service invocation failures, and cumulative service invocation cost as metrics in a threshold-

based strategy. In the field of 5G networks, two articles present some advances. First, Wang

et al. (2019) propose a slicing framework for e-health media applications over 5G networks.

The solution employs traffic classification and priority queues in the inbound traffic. Second,

Sodhro et al. (2019) present a QoS control algorithm to 5G networks. The strategy consists of

a window rate adjusted to smooth video playbacks on the client’s side.

3.2.3 Internet of Things

In the context of healthcare solutions, some strategies focus on IoT infrastructures to sup-

port medical applications. Zitta et al. (2018) propose an IoT infrastructure that employs a multi

communication channel approach to guarantee QoS. The strategy focuses on the quality of work

in medical environments. The approach consists of redundant real-time data transmission to the

server through two or more channels. Khalil, Mbarek, and Togni (2019) present QBAIoT, an

IoT architecture for e-health services. The authors propose in the architecture a service differ-

entiation for data transmission composed of four classes: real-time mission-critical, real-time

non-critical mission, streaming, and best-effort. QoS is achieved through data prioritization

transmission for real-time classes. In turn, Vadivel and Ramkumar (2020) introduce the emer-

gence of IoT in healthcare applications. In this scope, the authors focus on specific data trans-

mission in cognitive radio ad hoc networks. They propose a routing protocol to select alternate

routes over the failures of nodes and active routes.

With a different approach, Banouar et al. (2017) propose a QoS mechanism for IoT middle-

wares to enhance living environments (ELE). The strategy adds a field to the HTTP (Hypertext

Transfer Protocol) header to define one of the three priority levels: high, medium, and low. They

propose an algorithm that evaluates the header’s value and applies some methods to deal with

requests: rejection, delaying, or scheduling. Also, they propose resource elasticity methods in

the middleware components to improve its performance. Lastly, Gatouillat, Badr, and Massot

(2018) propose an IoT self-adaptive system using a patient health monitoring case of study.

The architecture consists of gateways connected to one or more sensors, which the feedback

and adaption loop mechanism monitors. The solution monitors parameters from the sensors,

such as battery level, and triggers adaptions in defined situations.

3.2.4 Other Approaches

Finally, three studies push the research into different bounds than the previous ones. First,

Al-Tarawneh (2019) present a medical-grade QoS solution using IEEE 802.11e WLAN (Wire-

less Local Area Network). The solution employs a service differentiation defining different

54

priority levels depending on the type of data. Second, Venkatesh et al. (2019) propose a QoS-

aware multi-path algorithm for medical data transmission in a Software Defined Network (SDN)

framework. They focus on the time delay of medical data employing differentiated packet flows.

Third, Celdrán et al. (2018) propose an Integrated Clinical Environment (ICE) architecture to

manage security, privacy, QoS, and high availability. The strategy employs a QoS policy that

evaluates the sampling rate of data and, based on a threshold, deploy new access points to bal-

ance the load. The authors explore edge computing to run medical applications and guarantee

low latency.

3.3 Discussion and Research Opportunities

The state-of-the-art shows that articles that present QoS strategies focus mainly on three

fields of study: (i) WBAN; (ii) Telemedicine; and (iii) IoT. In particular, the great majority of

the studies focus on WBAN technology. WBAN is a promising solution that is gaining much

attention in the last few years in the healthcare scope. In the WBAN field, the authors focus

on improving data transmission quality from sensors to the master node and from the master

node to the server. Some strategies also focus on providing energy efficiency strategies in data

transmissions to improve the network lifetime. One of the main problems in this field is the co-

existence of multiple WBANs, which might interfere with each other. Therefore, the researchers

seek to mitigate these problems by employing scheduling algorithms to avoid collisions. In

the fields of Telemedicine and IoT, authors propose architectures to provide remote access to

medical data. The main challenge these solutions tackle regards guaranteeing service quality

to the remote user. Considering the QoS strategies authors employ in their strategies, five main

strategies are commonly used, independently the focus of the research:

(i) data prioritization;

(ii) admission control;

(iii) resource elasticity;

(iv) routing protocols;

(v) scheduling protocols.

Several studies employ data prioritization to improve the time delay for data transmission.

The strategy consists of defining different classes for each data type and prioritizing transmis-

sion for data packets with high priority levels. Some approaches employ admission control

algorithms to guarantee that new data transmissions do not decrease the network’s quality.

Therefore, the system only admits new connections before applying an evaluation algorithm

that checks the network’s current state and estimates the new state. Resource elasticity is a

common strategy in cloud environments, and some researchers employ this idea to provide

55

QoS. In such strategies, solutions employ VM allocation and migration strategies to increase

some modules’ performance in overloaded situations. Finally, authors also employ routing and

scheduling protocols to improve network performance and decrease transmission delay. The

former consists of algorithms that define the best route to transmit data according to the current

network status. On the other hand, the latter consists of algorithms that control the time slot

allocation for each data transmission and their order according to the amount of data and data

type. Although targeting different fields and strategies, the current literature has some gaps that

can be further explored. Among them, three main points can be explored and are highly related

to the current study:

(i) Focus on hospital high critical environments;

(ii) Combine multiple strategies in different levels;

(iii) Give emphasis specifically in real-time data transmissions.

First, most strategies focus on remote health sites, like nursing homes, and only WBANs

for patient health monitoring. Within a hospital, there are many critical locations, such as oper-

ating rooms, in which a system can provide useful data from patients and physicians. Second,

a healthcare system has two main actors: the sensors at the hardware level, generating informa-

tion, and the users at the application level, which consume and process data from the system.

Strategies focus mainly on the first level to provide QoS in data transmission from the sensor to

the network. Furthermore, although some initiatives present concerns regarding real-time, they

do not focus intensely on this issue. In general, solutions that focus on real-time only consider

improving time delay from priority packets or providing an architecture that supports real-time

data transmissions.

3.4 Summary

This section presented an overview of the current literature in the scope of Qos for health-

care. Several studies propose new systems and architectures for data monitoring in the health-

care scenario in the last few years. Hospitals administrators and stakeholders are paying at-

tention to the technological advance and how IoT technologies can revolutionize healthcare

environments. Looking at this scope, most of the recent studies concentrate their efforts on

providing QoS for WBAN architectures, IoT systems, and Telemedicine solutions. In all cases,

the main QoS strategies the literature investigates are data prioritization, admission control, re-

source elasticity, routing protocols, and scheduling protocols. Although diverse techniques, the

studies focus on employing them in particular cases, not combining them dynamically, neither

considering high critical environments with many data sources. Besides, the strategies do not

focus on the whole workflow of medical processes. Assuring data transmission of assets and

physicians is not on the scope of these strategies. The lack of studies in these fields raises a

research opportunity that the current study targets.

56

57

4 THE HEALTHSTACK MODEL

This chapter details the HealthStack model and the main contributions of this research.

HealthStack is a QoS-aware real-time middleware that focuses on hospital facilities. The mid-

dleware collects data from sensors, stores it in a database, and delivers it to user applications

meeting QoS requirements. Its main characteristic is its ability to provide QoS for both user

applications and sensors according to the system load. The number of sensors and user ap-

plications may change over time, and HealthStack analyzes their effects on the applications’

performance in real-time. Its main goal is to guarantee that medical applications keep consum-

ing real-time data regardless of the system load. The model contains a manager component in

charge of monitoring and adaptation tasks to provide the multi-level QoS. HealthStack is based

on the publish-subscribe paradigm, in which applications subscribe to data streams from sen-

sors to receive updated readings in real-time. In the healthcare scope, applications are sensitive

to jitter and delay depending on the application’s purpose. Therefore, it is essential to guarantee

that sensor data arrives at the applications’ side according to their requirements. HealthStack’s

differential approach covers the following topics:

(i) automatic and transparent QoS management to the application user;

(ii) a mechanism for applications to request and receive sensor data with or without QoS

requirements;

(iii) the dynamic QoS Service Stacking strategy to enable different QoS services to acquire

sensor data, improving the middleware performance and resouce consumption.

The next sections present characteristics and algorithms that HealthStack employs. Sec-

tion 4.1 presents the design decisions of the model development. Next, Section 4.2 describes

the model architecture and its components. Section 4.3 defines the middleware’s communica-

tion protocol. Then, Section 4.4 presents the HealthStack QoS model. This section defines QoS

parameters, algorithms, and strategies HealthStack employs in its model, including the Service

Orchestration model. Finally, Section 4.5 summarizes the concepts from this chapter.

4.1 Design Decisions

Real-time is a significant issue in healthcare since data support medical staff and hospital

administrators to monitor medical processes (KURMOO et al., 2020; DJELOUAT et al., 2020).

HealthStack provides soft real-time data to user applications and for storing purposes in the

context of data acquisition. One of the characteristics of soft real-time systems is that they have

a soft deadline, which means that an occasional delay in the data production does not have a

catastrophic impact on the environment (KOPETZ, 1997). Currently, healthcare environments

fit in this concept since data acquired from sensors do not trigger immediate actions. That is,

58

no actions are made based on single sensor data measurements. Instead, physicians and admin-

istrators always analyze these data for decision support. HealthStack focuses on guaranteeing

real-time data avoiding data loss and respecting QoS requirements, and at the same time im-

proving resource consumption. In summary, the HealthStack design comprises the following

decisions:

(i) user applications can inform QoS thresholds of delay and jitter;

(ii) the middleware allows configuration of default QoS parameters for each sensor; therefore,

if the application user does not inform QoS requirements, the middleware assumes the

default;

(iii) programmers do not need to adapt the application to profit from the middleware QoS

services;

(iv) the middleware components are interconnected in a private wired network environment

to improve network performance;

(v) the clock from the middleware architecture components are synchronized to an internal

time server in the same network.

(vi) the model focus on medical sensors for medical workflow monitoring;

(vii) QoS focuses on supporting soft real-time data;

(viii) the deployment allows configuration of sensor priorities and the type of data they produce;

(ix) data from sensors include the data source identification, data type, timestamp, and raw

information from the sensor.

The model has two main actors involved in the production and consumption of data: (i) sen-

sors; and (ii) user applications. HealthStack implements QoS strategies, called QoS services,

to meet QoS requirements by monitoring different metrics in both sensor and user application

levels. On the one hand, at the user level, applications that consume middleware data can define

QoS requirements that the middleware monitors. If the user application does not provide its

requirements, HealthStack sets default requirements depending on the data the application re-

quests (details in Subsection 4.2.1). On the other hand, the middleware defines requirements to

guarantee data acquisition at the sensors level, even if there are no user applications requesting

data. Besides, the middleware also adjusts sensors parameters to improve hardware utilization

and energy consumption through an additional manager component that periodically monitors

the system’s health. Figure 9 depicts the HealthStack idea in comparison to a traditional mid-

dleware without QoS support. The figure shows the QoS Manager as an additional component,

managing QoS requirements, metrics, and services. Additionally, the Manager employs a Ser-

vice Orchestration model, called QoS Service Stacking, to address QoS violations.

59

Figure 9: Comparinson of sensor middlewares: (a) typical approach; and (b) HealthStack main
idea. HealthStack comprises a Manager to monitor metrics, application requirements, and pro-
vide services for user applications and sensors.

QoS Manager

D
a
ta

 C
o

lle
ct

io
n

a
n
d

A
n
a
lis

ys
S
e
rv

ic
e

Medical
Sensor

Application
0

Application
a

...

Medical
Sensor

...

Sensor
Middleware 0

Sensor
Middleware d...

D
a
ta

 C
o

lle
ct

io
n

a
n
d

A
n
a
lis

ys
S
e
rv

ic
e

Medical
Sensor

Application
0

Application
a

...

Medical
Sensor

...

QoS
requirements

Metrics

Services

QoS Model

(a) (b)

ys

HealthStack Middleware

...Medical Data
Collector 0

Medical Data
Collector d

Sensor
Middleware 0

Sensor
Middleware d

...

Data Core Service

Source: elaborated by the author.

HealthStack monitors specific metrics related to time to deliver packets (delay) and time

variation between data packets (jitter). In addition to these two, it also monitors computing

resources such as CPU (Central Processing Unit), memory, and network. Based on the results

of such monitoring, the HealthStack QoS Service Stacking adds or removes services to the mid-

dleware components to meet the QoS requirements. The service adaptations do not impact the

user application execution, which does not need to take any actions. This set of services com-

prises vertical elasticity, data rate adaptation, data prioritization, and compression strategies.

The model adopts vertical elasticity in the operating system level of nodes running components

from HealthStack architecture. HealthStack employs this elasticity model because replication

of components would require network connection reorganization, which directly impacts data

availability. On the other hand, data rate adaptation and compression are strategies focused on

changing the middleware’s behavior. They impact the system delay and network utilization,

improving response time when many sensors and applications are connected to the middleware.

In turn, data prioritization is a common QoS strategy that differentiates packets from different

sources with priority levels. HealthStack provides different data queues for each priority. Then,

it provides more or fewer resources to process them depending on the queue.

Regarding sensor data acquisition, HealthStack design comprises a distributed system that

extracts raw samples from several sensor devices. It encodes them into JavaScript Object No-

tation (JSON) format with information regarding the source, type, and timestamp, and delivers

60

it to connected applications. Also, HealthStack stores each sample in a database for offline

queries. Further, HealthStack requires some previous configurations considering the differ-

ent types of sensor devices attached to the system. HealthStack is aware of the applications’

QoS parameters and provides QoS services to improve delay, jitter, and resource consumption.

Additionally, different sensors generate different types of data that require distinct priority re-

quirements. HealthStack requires at the deployment point the configuration of the priorities for

each sensor, the classes they belong, and also the default QoS parameters for each class.

4.2 Architecture

HealthStack’s architecture introduces four distributed components that have specific roles

in the middleware: (i) Data Core Service (Core); (ii) Medical Data Collector (Collector); (iii)

Data Access Wrapper; and (iv) QoS Manager. Figure 10 briefly shows their organization linking

applications to sensors. Instead of connecting directly to sensors and implementing their Ap-

plication Programming Interface (API), the applications connect to the Core through the Data

Access Wrapper. The Core is the central component that collects data from multiple Collector

instances. In turn, a Collector instance extracts data from each sensor. Finally, the QoS Manager

manages the Core and Collector instances to provide QoS services.

Figure 10: HealthStack components connecting sensors to applications. The light blue boxes
represent the contributions of HealthStack.

Medical
Sensors

Applications

Medical Data
Collector

Data Core
Service

QoS
Manager

Data Access
Wrapper

Sensor data

Control data

HealthStack

Source: elaborated by the author.

This research comprises a clinical partner that provides a real hybrid operating room for

experiments. At the deployment point of view, Figure 11 depicts the overview of the architecture

installed at the clinical partner Instituto de Cardiologia - Fundação Universitária de Cardiologia

61

(IC-FUC)1, Porto Alegre, Rio Grande do Sul, Brazil. The architecture was deployed in a real

hybrid operating room to monitor and track surgeries. The figure depicts how the components

are distributed and how the data is provided to applications. It shows three ToF camera devices

and several RTLS tags for workflow monitoring. The Collector instances acquire image frames

from the cameras and position samples from the medical team, and forward them to the Core.

The Core processes the information and provides data visualization for remote physicians and

hospital administrators. The applications access the data through the Data Access Wrapper that

provides specific functions in the publish-subscribe model. Finally, the QoS Manager monitors

the whole architecture’s parameters and modifies them to improve QoS for applications and

resource consumption.

Figure 11: Deployment of the architecture in an actual hybrid operating room. Three ToF
camera devices and several RTLS tags track the surgery workflow. The server processes the
data and provides visualization for remote physicians and hospital administrators.

Medical Data
Collector

Operating Room

Control Room

tags

cameras

Medical Data
Collector

Medical Data
Collector Data Core

Service

Data Access
Interface

QoS
Manager

Source: elaborated by the author.

Going deeply into the architecture and communication details, Figure 12 illustrates the or-

ganization of the middleware components, highlighting the contributions in light blue boxes.

The Core is the central component in processing incoming data from sensors and dispatching

them to both Data Information Service and PubSub (publish-subscribe) Broker. Several Man-

ager sub-components compose the Core to perform operations accordingly: Sensor Connection

Manager; Database Manager; Queue Manager; and Client Manager. The Sensor Connection

Manager is in charge of managing Collector connections, and their incoming data flows. The

1http://www.cardiologia.org.br/

62

Database Manager stores each incoming frame and sends them to the Queue Manager that reads

the frame header to define which queue the data will be included. In turn, the Client Manager

monitors the queues flushing their data to the Broker. The middleware comprises d Collectors

corresponding to the number of sensor data sources. A sensor data source might provide data

from one or several sensors of the same type. For instance, RTLS provides an API to access

many tracking tags, while a camera sensor provides images from only one camera. Each Collec-

tor extracts raw data from a singular sensor data source and forwards it to the Core at a defined

rate. In a scenario with two camera sensors (two image data sources) and an RTLS solution

(one position data source), the middleware has three Collector instances.

Figure 12: HealthStack architecture. Light blue boxes represent the HealthStack components,
while white boxes represent existing software and hardware.

Application 1

PubSub

Broker

Data

Core

Service

Data

Information

Service

QoS

Manager

... Application a

Data Access
Wrapper

Application

Layer

S
er

vi
ce

 L
a
ye

r
C

a
p
tu

re
 L

a
ye

r

Sensor Layer

Middleware

 Queue
 Manager Default

Priority

Sensor Connection
Manager

Database Manager

Clock
Synchronization

Service

Configuration
Agent

Client Manager

...

Data Access
Wrapper

M
e
d
ic

a
l D

a
ta

 C
o
lle

ct
o
r
1

Sensor Middleware

QoS Service Stack

Frame Packing

Connection
Manager

Medical
Sensor

Configuration
Agent

M
e
d
ic

a
l D

a
ta

 C
o
lle

ct
o
r
1

Sensor Middleware

QoS Service Stack

Frame Packing

Connection
Manager

Configuration
Agent

M
e
d
ic

a
l D

a
ta

 C
o
lle

ct
o
r
1

Sensor Middleware

QoS Service Stack

Frame Packing

Connection
Manager

Medical
Sensor
Medical
Sensor

Configuration
Agent

M
e
d
ic

a
l D

a
ta

 C
o
lle

ct
o
r
d

Sensor Middleware

QoS Service Stack

Frame Packing

Connection
Manager

Medical
Sensor

Configuration
Agent

M
e
d
ic

a
l D

a
ta

 C
o
lle

ct
o
r
d

Sensor Middleware

QoS Service Stack

Frame Packing

Connection
Manager

Configuration
Agent

M
e
d
ic

a
l D

a
ta

 C
o
lle

ct
o
r
d

Sensor Middleware

QoS Service Stack

Frame Packing

Connection
Manager

Medical
Sensor
Medical
Sensor

Configuration
Agent

Caption Control messageSubscribe requestSensor dataCaption Control messageSubscribe requestSensor data

Source: elaborated by the author.

Two parameters define each Collector’s behavior: prid, the priority value of the attached

sensor, and fps, the number of data samples per second in Hertz (Hz) to extract from the

sensor. HealthStack allows the definition of a priority value (prid) for each sensor. prid should

be a positive integer value (prid > 0) that the Core uses in its decision-making process to

calculate the priority level of each sensor (see Section 4.4.4). At each fps÷ 1000 milliseconds

(ms), the Collector acquires the data through the sensor vendor API, packs it as a frame, applies

63

QoS services, and sends it to the Core. The QoS Service Stack is its primary sub-component

in which applies QoS services for each data sample according to configurations performed

automatically by the QoS Manager. Reconfigurations are transparent and do not interrupt the

Collector’s primary process, consisting of extracting and sending information to the Core.

On top of all components, the QoS Manager monitors several metrics and performs the QoS

Service Stacking process. Its main goal is to address QoS violations by stacking QoS services

for the middleware components. It carries this out by monitoring the applications’ QoS level

and performance measurements from all middleware components individually. The Manager

uses a communication protocol exclusive for requesting metrics from the Collector and Core

instances. It establishes a connection with each one and subscribes to their metrics. Then,

they send updates of CPU, memory, network, delay, and jitter. Regarding the Core instance,

it also sends to the Manager the QoS requirements of each application and their current delay

and jitter. To acquire these values, the Data Access Wrapper sends updates to the Core at each

second. The one-second interval is chosen to compute the mean delay, and jitter of all samples

arrived for each second as the application has a defined number of frames per second to receive.

The Manager periodically acquires measurements from all components and the applications’

QoS level, and it uses these data to determine which services should be stacked. These services

are employed directly to data samples in the Collector instances through the QoS Service Stack

sub-component. Section 4.4 describes in detail this module and its functions.

4.2.1 Application Classes

The middleware requires all sensors to be defined from one of the two existing classes

to guarantee that all sensors have default QoS values. HealthStack allows the configuration of

such parameters at the deployment phase, making the system flexible for different deployments.

Default QoS parameters are essential since some applications might request data without pro-

viding QoS parameters. In such cases, it is also crucial to monitor QoS violations even if the

application does not provide QoS requirements. Therefore, the middleware can maintain a min-

imum QoS level to those applications respecting different default values. The model defines

two application classes according to the type of data they require from the middleware:

(i) health monitoring systems;

(ii) workflow monitoring systems.

On the one hand, health monitoring systems target monitoring health parameters from pa-

tients to monitor their conditions. They collect vital signs and process them to provide insights

into current conditions and forecast possible scenarios. Therefore, these applications focus on

identifying critical situations that are occurring or might occur with the patient. For instance,

an application may process health parameters to identify patterns and trends in these measure-

64

ments to alert the medical staff. This class of applications comprises sensor of blood pressure,

heart rate, respiratory rate, temperature, and all sensors related to the patient.

On the other hand, workflow monitoring systems aim at tracking medical processes within

a critical environment. These systems focus on acquiring image information from the envi-

ronment and also position estimations from the hospital staff. Such information is essential to

monitor phases of processes and control in real-time treatments and medications. Additionally,

external applications may process such information to assess the medical staff’s current activi-

ties individually in real-time. This class of applications covers sensors ranging from cameras to

presence sensors and RTLS.

4.2.2 Time Synchronization

Clock synchronization in the architecture is important because sensor data packets contain a

timestamp value in the Unix time format that defines the instant the data was generated. Differ-

ent components from the architecture use this value to measure the data transfer delay. The com-

ponents acquire the local time from the computing node in which it is running. Each node has

its local clock used to measure the node’s local time. Different nodes have different local times,

and, therefore, clock synchronization is required between them so that events can be analyzed

based on standard time. This standard time is frequently referred to as the approximate global

time representing a global time for all nodes of a distributed system (KOPETZ; OCHSENRE-

ITER, 1987). In the architecture, several clocks are observed from the nodes that run the Core

and Collector instances and the applications. The model performs two different synchroniza-

tion processes: (i) middleware synchronization; and (ii) application clock calibration. In the

middleware, since all modules work in a private network, they synchronize their local clocks

to a primary time source (global clock) present in the same network through the Network Time

Protocol (NTP) (MILLS, 1991) following the Coordinated Universal Time (UTC) standard.

The service layer provides an NTP time server, which all nodes use to synchronize their clocks

timely. Particularly, this time server runs at the same node where the Core runs.

The model does not require the application users to synchronize their operating systems’

clock with the middleware clock to allow the end-delay measuring. After an application starts

a new connection, a time calibration protocol takes place as a hand-shake process. The Data

Access Wrapper hides this process from the application user, making it entirely transparent to

the application. At each new application connection event, the Core calculates the clock offset

and saves it to a local state. Every time the model calculates the time delay, it corrects its value

applying the time shift after acquiring the application operating system clock. The calibration

process consists of approximating the time difference between the application local clock to the

global clock. This approximation is based on the NTP protocol as presented by Mills (1991).

The Core’s sub-component Clock Synchronization Service performs the calibration process

by sending a set of i roundtrip packets to determine the clock offset. These packets contain

65

four timestamps: ti0, ti1, ti2, and ti3. Figure 13 demonstrates message transmission and where

the timestamps are acquired. ti3 and ti0 are the times before Core sends the packet and after

receiving it back, respectively. ti1 and ti2 are the time instants the application received the

packet and sent it back to the Core. The Core only sends a new packet after receiving the last

one back. It uses the timestamps to calculate the clock offset Oi for each packet i according to

equation 4.1. After calculating Oi for i packets, the Core employs the minimum filter to choose

the offset from the packet with a lower delay.

Figure 13: Packet traveling path and timestamps.

ti0

ti1 ti2

ti3

Core

Application

timecore

timeapplication

Packet sent Packet received

Source: adapted from Mills (1991).

Oi =
(ti1 − ti0) + (ti2 − ti3)

2
(4.1)

4.3 Communication Protocol

This section describes the communication protocol of HealthStack in two levels: middle-

ware; and application. Section 4.3.1 focuses on the middleware components communication

protocol. It defines the messages the components exchange. In turn, Section 4.3.2 defines the

user application communication protocol and its methods.

4.3.1 Middelware Communication Process

There are three different messages HealthStack components might transmit between them:

(i) configuration data; (ii) metrics measurements; and (iii) sensor data. The middleware requires

that all messages arrive at their destination without errors. Therefore, HealthStack employs the

Transmission Control Protocol (TCP) from the Internet Protocol (IP) for all network transmis-

sions. HealthStack employs TCP since it provides reliability guarantees on data transmission.

Data transmission consists of messages including a 9-byte network header, which identifies the

messages (details in Table 6), and a variable payload that contains one of the three messages.

66

Figure 14 depicts the fields of the network header and the composition of each type of message.

While the header is fixed for all messages, each payload is different depending on the message

type.

Table 6: Description of the network header’s fields.

Field Description

Type The payload type.

ID Identification of the request.

Payload Size The size of the payload in bytes.

Priority The priority of the packet.

Compression Identification of whether the payload is compressed or not.
Source: elaborated by the author.

Figure 14: HealthStack message types and their contents. All messages use the same network
header, which identifies the packets.

Sensor Raw Data
Data

Attributes

Network

Header

Information data

from sensors
Message type 1

variable bytes

Configuration Data
Network

Header

Middleware modules’

parameters
Message type 2

variable bytes

Measurements
Network

Header

QoS

measurements
Message type 3

variable bytes

Network header

payload sizetype id priority

0 1 3 7

9 bytes

compress

8

Network

Header

Source: elaborated by the author.

Sensor data messages (type 1) represent the central information that HealthStack transmits.

Medical Data Collector instances gather sensor raw information data from hardware sensors

through their API or a vendor’s provided service. The Collector packs it into a JSON, which

is the payload of this message, to transmit it. This package contains six specific data at-

tributes: (i) Sensor_ID ; (ii) Device_ID ; (iii) Data_Collector_ID ; (iv) Sample_Counter ; (v)

67

Timestamp ; and (vi) Type . Table 7 organizes the details of each one of them briefly. The

Sensor_ID , Device_ID , and Data_Collector_ID fields identify the source of the sensor data.

Medical Data Collector instances might extract data from different physical sensors. Therefore,

this set of IDs identify the sources individually. The Sample_Counter defines the sample se-

quence of the sensor data, and the Timestamp is the instant of time that the data was extracted

from the physical sensor. Finally, the Type defines the data type, which can be, for instance,

a position or an image frame. Jointly to these fields, it is attached the raw sensor information

data composing a sensor data message.

Table 7: Description of the data attributes from sensor data messages.

Field Bytes Description

Type 1 Data type.

Timestamp 8 Time in milliseconds that the data is collected from the sensor.

Sample_Count 4 Sequence number of the collected data.

Data_Collector_ID 2 Identification of the Collector instance that collected the data.

Device_ID 2 Identification of the device from which the data was collected.

Sensor_ID 2 Identification of the sensor from which the data was collected.
Source: elaborated by the author.

In turn, configuration data messages (type 2) contain component configurations and might

be used for two reasons. First, to check the current configuration of a specific component

instance. Second, to change the components’ configurations. Its payload is also a JSON, but

with the Collector’s fps parameter and a flag for each QoS service to activate or deactivate them.

The QoS Manager uses it to update the components’ service stacks on-the-fly by communicating

with the Configuration Agent sub-component. The configuration also contains the network

address and port the Collector uses to connect to the Core and send the data samples. Figure 15

illustrates the communication process the components perform to produce data samples. First,

the Core sends a message type 2 to each Collector informing their configurations. Second, the

Collector sets its local configuration and replies it to the Core. After that, the Collector starts

to collect data samples from its sensor, and at each new data sample, it packs into a message

type 1 and sends it to the Core. When receiving data samples, the Core dispatches them to the

PubSub Broker and stores them in the database. This process occurs in a loop and is the same

for each Collector instance.

Finally, metric measurement messages (type 3) contain samples of metrics from the mid-

dleware components. It also contains a JSON as its payload, which encompasses the metrics

measurements. The QoS Manager uses these samples to evaluate the middleware’s status and

monitor QoS violations for user applications. Based on that, the Manager employs the QoS Ser-

vice Stacking model to guarantee QoS to applications. Figure 16 illustrates the communication

68

Figure 15: Communication process the components perform to produce data samples.

CoreCore CollectorCollector

message_type2

message_type2

GetDataSample()

SetConfiguration()

message_type1

Store()

looploop

ApplicationPubSub BrokerApplicationPubSub Broker

message_type1

Publish()

Source: elaborated by the author.

sequence that the Manager starts with the Core and Collector instances. It first starts a TCP con-

nection with each component and requests their measurements. The components send a reply to

the Manager with their local configurations to acknowledge the request. Then, the components

acquire their local measurements and send them in a message type 3 to the Manager in a loop.

Finally, the Manager receives each message and processes it for decision-making. This process

repeats for each Collector instance.

4.3.2 Application Communication Process

At the applications side, the Data Access Wrapper plays an essential role in the middle-

ware’s communication process. It works as a wrapper of the publish-subscribe communication

protocol allowing the programmer to use the traditional calls without adapting the application.

Because of the Wrapper, the application does not need to connect to the sensor data sources

directly. Instead, it only needs to access the Core through the Wrapper to consume data from

many sensors in a standard data format. To do so, programmers must import HealthStack’s

communication library that offers the middleware QoS services transparently. It provides three

calls:

(i) bool Connect(ADDRESS, PORT) ;

(ii) bool SubscribeData(CONNECTION, SOURCE, FPS, DELAY_QOS, JITTER_QOS) ;

(iii) bool ReceiveData(CONNECTION, &DATA, &BYTES) .

The Connect method starts a TCP connection with the server ADDRESS at port PORT .

The ADDRESS is the network address of the server that runs the PubSub Broker, and PORT

is the listening port of the service. For instance, the address mqtt.eclipse.org is a

69

Figure 16: Communication sequence that the Manager starts with the Core and Collector in-
stances to monitor their measurements.

CoreCore CollectorCollectorQoS ManagerQoS Manager

looploop

RequestMetrics()

SetConfiguration()

message_type2

message_type3

Process()

RequestMetrics()

SetConfiguration()

message_type2

GetMeasurements()

message_type3

Process()

GetMeasurements()

Source: elaborated by the author.

public MQTT (Message Queue Telemetry Transport) broker that listens the port 1833 2. The

method Connect returns a CONNECTION object that is used as a parameter in the other two

methods. The SubscribeData sends a subscription request of data from sensor SOURCE

to the connection CONNECTION . The parameters FPS , DELAY_QOS , and JITTER_QOS

are optional and, if defined, represent the frames per second, the maximum delay, and maximum

jitter. In the case of ReceiveData , the function receives a data sample from the connection

CONNECTION .

Figure 17 exemplifies the application calls and demonstrates the communication process

from generating a data sample until delivering it to the application. The application connects

the PubSub Broker and, after it, subscribes to a specific data stream. Then, the application

only needs to keep receiving data that the Core publishes on the related topic. As mentioned

in the last subsection, the Collector sends each new data sample to the Core, which stores it

and publishes it in the PubSub Broker. The Broker is in charge of forwarding this data to

applications that have subscribed to the corresponding topic.

The application can subscribe to topics and receive data without knowing the additional

operations in the communication layer. Suppose the application does not provide a specific

QoS threshold. In that case, HealthStack assumes the delay as the target QoS with a predefined

value according to the application class defined by the sensor. Besides providing specific calls,

2https://mqtt.eclipse.org/

70

Figure 17: Application communication process to subscribe and receive data from a specific
sensor data stream/topic.

ApplicationApplicationApplicationApplication CoreCore CollectorCollector

GetDataSample()

message_type1

Store()

looploop

ApplicationPubSub BrokerApplicationPubSub Broker

message_type1

Publish()

Connect()

Success

message_type1

Process()

SubscribeData()

Success

ReceiveData()

Source: elaborated by the author.

the Wrapper unpacks incoming data according to the data sample’s services. In particular,

the Collector’s data may be compressed, and uncompressing is the Wrapper’s role. Finally,

the Wrapper also measures the packet delay and jitter to send this information to the Core

periodically. To do so, the Wrapper performs the clock calibration described previously in

Subsection 4.2.2.

4.4 Quality of Service Model

HealthStack focuses on providing strategies to adapt the middleware to meet both user ap-

plication and sensor requirements. As the application users have the system’s final perception,

it is crucial to guarantee QoS meeting their demands. For instance, a defined frame per sec-

ond (FPS) must be respected not to impact the user experience. Thus, the middleware must be

able to adapt itself to guarantee that. HealthStack provides multi-level QoS strategies to ensure

that data is provided respecting specific QoS parameters. Besides providing strategies focus-

ing on user-specific parameters, HealthStack also provides QoS parameters and services in the

architecture’s sensor level. Since HealthStack generates and stores data in real-time for the fu-

ture, even if no user applications are consuming real-time data, the middleware must guarantee

continuous data acquisition and storage. Thus, the HealthStack Core also demands QoS from

Medical Data Collector instances.

The main goal of HealthStack is to provide real-time data to guarantee the user experi-

ence and, at the same time, improve hardware utilization. The model defines QoS parameters

71

focusing on middleware performance to provide online services for user applications. Con-

sidering healthcare environments, the middleware provides security for patients and medical

staff by providing valuable information. Besides real-time, the middleware also provides data

consumption from past events, critical for workflow analysis. It leads to improvements in the

healthcare process and medical staff tasks.

The HealthStack QoS model is designed as a closed feedback-loop architecture (GHAN-

BARI et al., 2011; LIM et al., 2009). Figure 18 illustrates the architecture components and

their organization showing the main control tasks of the QoS Manager. The middleware com-

ponents can be distributed among computing nodes in a cluster within the hospital facilities or a

single server. The QoS Manager has access to each HealthStack component instance regardless

of their locations among servers or clusters. The architecture is composed of a server and n

nodes in which the HealthStack components perform their roles depicted in Figure 12. Con-

trol theory is an engineering and mathematics branch focused on dynamical systems behavior

and how they are affected by feedback (LORIDO-BOTRAN; MIGUEL-ALONSO; LOZANO,

2014). Therefore, service provisioning decisions should be made based on system performance

according to application requirements. The service provisioning is obtained by the QoS Service

Stacking model (detailed in Section 4.4.4), which evaluates a series of QoS metrics and defines

the set of QoS services for each component of the middleware. The QoS Manager presents

three primary functions that characterize control systems: a sensor to acquire monitoring data,

a controller to evaluate measurements, and an actuator to provide modifications and services.

4.4.1 Managing QoS

The QoS Manager monitors the metrics and delivers the different component instances’

QoS services. Its main task consists of collecting metrics from each process to compute it and

decide whether actions are required to meet QoS requirements. In particular, the HealthStack

components have individual QoS service stacks that might change over time, according to the

QoS Manager decisions. Figure 19 depicts this task showing the QoS Manager monitoring

cycle. Each process has particular metrics which the Manager evaluates individually. The

Manager executes this procedure at a given time interval for two main reasons. First, continuous

monitoring can increase considerable data traffic in the network and consequently impact sensor

data transfer. Second, that prevents the Manager to take actions based on metric outliers that can

occur in short periods. At each monitoring cycle, the QoS Manager decides the QoS services

available for each component. These actions only take place if the QoS of applications is not

respected.

Figure 20 further details the QoS Manager depicting its inputs and outputs. The Middleware

Interface interacts with the middleware to collect metrics and send updates. It allows the col-

lection of metric measurements from components and applications. Subsection 4.4.3 describes

in details all input variables the Manager receives. The Middleware Interface also provides

72

Figure 18: HealthStack’s closed-loop model with a Manager in charge of monitoring and adapt-
ing the middleware according to the workload. From the user perspective, a denotes the number
of user applications. From the middleware perspective, n denotes the number of nodes running
a Collector instance acquiring data from sensors.

Sensor
Devices

Middleware

QoS Manager

...

Node n-1

Node 0

Server

Database

Sensor:
Monitoring

Controller:
Metrics load and QoS

Service Stacking

Actuator:
QoS actions and
service provision

nt ll

Actuator

Network

APP
1

APP
2

APP
3 APP

4
APP

a

Workload

...

...Users

Caption

APP
User
application

switch

P
HealthStack
process

Sensor Device

Computing
node

P

P

API

API

...

PPP

QoS Service
Stack

QoS Service
Stack

QoS Service
Stack

QoS Service
Stack

QoS Service
Stack

Source: elaborated by the author.

methods to send configuration updates to change parameters from the middleware components

to activate QoS services. All input and output messages respect the communication protocol

defined in Subsection 4.3.1. In particular, it allows receiving messages type 2 and sending

messages type 3.

Following, the Metric Monitoring is in charge of collecting each QoS metric measurement

periodically at a given time interval. Thus, the main component, called Dynamic Service Stack-

ing, analyzes these measurements. It contains the main strategies the Manager applies to adapt

the middleware QoS service stacks. Data and Performance Analyzer evaluates the middleware’s

QoS metrics, comparing them with QoS requirements to generate violation events. Thus, as the

name suggests, the Service Stacking Definition defines the proper QoS service stacks for each

component. After defining the QoS services, the Engine calls the Service Provider component

to deliver the needed QoS services. This component can call either the Middleware Interface to

send parameters or the Resource Management.

Algorithm 1 details the Manager’s operations and procedures that occur periodically. The

procedures from lines 4 and 5 collect data from the middleware and compute the QoS metrics.

The qos_service_stacking() computes the service stacks for each component according to the

qos_metrics. This procedure defines the QoS services the Service Provider must deliver to

73

Figure 19: QoS Manager main monitoring cycle. The idea is to monitor the components’ met-
rics and organize QoS services according to the measurements. The Manager collects metrics
from Core and Collector instances and organizes their QoS service stacks when QoS violations
occur for user applications.

Collect metric
measures.

Analyze
measures.

Performs the
QoS Service

Stacking

Are there
QoS

violations?

Wait until next
monitoring cicle.

Start

YES

NO

Collector 1

Elasticity

Data Frequency Rate

Data Compression

Data Prioritization

...

QoS Service Stacks

Collector d

Elasticity

Data Frequency Rate

Data Compression

Data Prioritization

Core

Elasticity

Data Frequency Rate

Data Compression

Data Prioritization

Should
stop?

Stop

YES

NO

Source: elaborated by the author.

tackle QoS violations through the procedure provide_services(). The monitoring cycle ends in

the procedure sleep(), which blocks the process in a given time interval.

4.4.2 QoS Services

The QoS Service Stack is in charge of transparently change QoS services from the Collector.

The stack can receive four different QoS services: (i) Data Prioritization; (i) Data Frequency

Rate; (i) Data Compression; and (i) Resource Elasticity. These services aim at improving the

Collector capabilities to provide sensor data quickly to the Core. Hence, improving the per-

formance of applications. Table 8 shortly summarizes the services, and the next subsections

describe them individually.

74

Figure 20: A look inside the QoS Manager. The component receives measurements from the
middleware components and evaluates them for decision-making. The output is QoS service
changes in the components’ stacks, if necessary, to guarantee QoS.

Service
Provider

Metric
Monitoring

Middleware
Inferface

Metrics
measurements

Middleware
parameters

Dynamic Service Stacking

QoS
Services

QoS
Metrics

Data and
Performance

Analyzer

Service Stacks
Definition

Resource reconfigurations

Input OutputCaption

Resource
Management

QualiCare Manager

Source: elaborated by the author.

Algorithm 1 QoS Manager main tasks.
Input: component_addresses[], &running_flag = true, monitoring_interval

Output: QoS service stacks adaptations.

1: cycle← 0;

2: while running_flag do

3: measurements[]← collect_monitoring_data(component_addresses[]);

4: qos_metrics[]← compute_metrics(measurements[], cycle);

5: qos_service_stacks[][]← qos_service_stacking(qos_metrics[], qos_services[]);

6: if qos_service_stacks > 0 then

7: provide_services(qos_service_stacks[][]);

8: qos_service_stacks.clear();

9: end if

10: sleep(monitoring_interval);

11: cycle++;

12: end while

4.4.2.1 Data Prioritization

The model allows data classification through an additional 1-byte field in the message header

(see Subsection 4.3.1). This flag defines the package classification as high priority or low prior-

ity, but more can be included. The Manager delivers this QoS service by defining the flag from

75

Table 8: QoS services short description.

QoS Service Description

Data Prioritization Packet priority differentiation.

Data Frequency Rate Sampling rate adaptation.

Data Compression Lossless data compression.

Resource Elasticity Computing resources provisioning.
Source: elaborated by the author.

packages of a particular Collector instance to high priority. This QoS service can not be acti-

vated for more than one Collector simultaneously. It works like a token, and only one Collector

can hold it at a time. Therefore, two or more Collectors can not produce high priority packages

simultaneously. According to the flag, incoming messages in the Core are scheduled into two

different queues. For each queue, a time slice factor (TSFq) defines the proportion of the time

that data from the queue q will be consumed. For instance, if the high priority queue has a

factor (TSFh) of 0.7 (70%) the low priority queue factor (TSFl) is 0.3 (30%). At each package

processing time, the core chooses one of the queues based on a lottery strategy (SHARMA;

ADARKAR; SENGUPTA, 2003; WALDSPURGER; WEIHL, 1994) in which it generates a

random value between the interval [0, 1]. If the value falls between the interval [0, TSFh], the

core consumes a package from the high priority queue. Otherwise, it consumes a package from

the low priority queue. Such a strategy aims at reducing the risk of starvation in the low priority

queue since high priority packages can arrive at a higher rate than low priority packages.

4.4.2.2 Data Frequency Rate

Collector instances send data to the Core at different frequencies according to their con-

figurations. For each Collector, fps defines the number of frames per second to send to the

Core. The minimum value for this parameter is 1 Hz, and the maximum depends on the sen-

sor capacity. The higher the fps, the higher the rate of transmitted data. Therefore, changing

this parameter causes effects on the sensor’s throughput and its bandwidth requirements. To

stack the Data Frequency service, the Manager can adapt the individual fps of each Collector

on-the-fly. In summary, when this service is active, the Collector’s fps is 1 Hz.

4.4.2.3 Data Compression

This service consists of enabling or disabling lossless data compression in the Collector in-

stances. The strategy aims at reducing the amount of data transmitted between the Collector in-

stances and the Core to avoid network overload situations. At any time, the Manager can change

the Collector configurations stacking this service. It happens through a flag compression in the

76

Collector configuration. Before transmitting the data to the Core, the Collector checks the status

of compression. In case it is true, the Collector compresses the data payload for transmission.

Network packet headers contain a specific flag that defines whether the payload data from the

message is compressed (see Subsection 4.3.1 for more details in the packet header).

4.4.2.4 Resource Elasticity

Elasticity is a popular concept in cloud platforms, which refers to a system’s capacity to

adapt resource provisioning according to workload changes automatically (GALANTE; BONA,

2012). Modules from the architecture can be deployed in VM instances allowing vertical elas-

ticity. In this elasticity model, the Manager resizes VM instances by increasing or decreasing

allocated resources (e.g., CPU and memory). Physical machines can run one or more VMs

encapsulating modules from the architecture. The amount of resources each VM receives de-

pends on the physical machine’s available resources and the number of VMs sharing the same

physical machine. For instance, a particular physical machine can host only one VM, and the

allocated share of resources to this particular VM can vary up to 100%. In a different scenario,

a particular physical machine can host two or more VMs, and these VMs share the available

resources dynamically. This service provides resource scalability in the infrastructure resources

to improve the system capacity according to user application demands. Overload situations re-

quire a large number of resources during periods. However, in periods in which high demand

for resources is not required, the allocated resources can be released, improving the system

energy efficiency (MORENO; XU, 2011).

4.4.3 Definition of Input Variables

The QoS model is one of the QoS Manager component’s attributions, which employs a con-

trol loop monitoring strategy, as aforementioned. To do these tasks, it monitors several metrics,

here, called input variables. Table 9 describes all variables the Manager collects and uses as

input in the QoS Service Stacking model. At the application’s side, the two variables delaya

and jittera measure the current values for delay and jitter that the middleware delivers for ap-

plication a. In the Core scope, three variables measure the usage load of CPU, memory, and

network resources: cpud+1, memd+1, and netd+1. The index uses a plus one since the archi-

tecture comprises d nodes, one for each Medical Data Collector, and an additional Core server.

Finally, Collectors have seven different variables since they are responsible for acquiring and

packing samples from sensors. As for the Core, the first three variables regard computational

resources. Next, delayd and jitterd correspond to Collector instance d regarding the arrival of

its samples at the Core. The remaining two variables, connd and prid, define how many appli-

cations consume data that Collector d generates and the sensor priority level parameter for this

Collector.

77

Table 9: Input variables the QoS Manager collects to employ the QoS Service Stacking.

Source Variable Description

Application
delaya Time interval between the instant the application a receives the sample

and the time it was sampled by the Collector.

jittera Time interval between two consecutive samples’ reception.

Core

cpud+1 CPU usage level of the Core instance.

memd+1 Memory usage level of the Core instance.

netd+1 Network usage level of the Core instance.

Data
Collector

cpud CPU usage level of the Collector instance d.

memd Memory usage level of the Collector instance d.

netd Network usage level of the Collector instance d.

connd Number of applications consuming data generated by the Collector in-
stance d.

prid Priority value for the sensor device from the Collector instance d.

delayd Time interval between the instant the Core receive the sample and the
time it was sampled by the Collector instance d.

jitterd Time interval between the receive of the last two consecutive samples by
the Core from the Collector instance d.

Source: elaborated by the author.

Resource management based on periodic monitoring is a common strategy for web and

cloud applications (CHIU; AGRAWAL, 2010; IMAI; CHESTNA; VARELA, 2012). Thus, the

QoS Manager collects and evaluates each variable periodically in a monitoring cycle c at a

given time interval t. At each monitoring cycle, the Manager collects all metrics from the

middleware and, for each one, computes its corresponding input variable employing the Ag-

ing concept (TANENBAUM; VAN STEEN, 2007). Except for the connd and prid variables,

the Manager applies a Simple Exponential Smoothing (SES) (HYNDMAN; ATHANASOPOU-

LOS, 2018) filter to the raw readings of the variables. This strategy aims at smoothing the values

to reduce noise that might occur in the variable samples. Peaks can lead the decision-making to

perform operations incorrectly. For instance, Figure 21 depicts a given metric, monitored over

time, and its smoothed value. Highlighted points represent situations in which aging avoids

wrong actions based on detached peaks. We employ this strategy mostly to avoid stacking

services for false-positive QoS violations that might occur due to outlier measurements.

Equation 4.2 presents how the Manager calculates SES for each variable. V (m, c) returns

the value of the variable m in the monitoring cycle c. SES is based on the Simple Exponential

Smoothing method, which assigns a higher weight for recent readings (HERBST et al., 2013).

Let SES(m, c) be the smoothed value of the metric m in the monitoring cycle c. SES(m, c)

computes the aging value for the metric m, which is one of the variable collected from the

78

Figure 21: Example of a monitored metric and its calculated aging. The figure highlights two
specific points in which the raw value of the metric exceeds a QoS limit. In these points, the
calculated aging smooths these values resulting in no violations.

metric

time

Metric raw readings Aging value from the metric

Metric
violation
limit

violation

Source: elaborated by the author.

middleware components presented in Table 9 (except for the connd and prid). Therefore, each

variable has its value processed before being used in the evaluation.

SES(m, c) =







V (m,c)
2

if c = 0

SES(m,c−1)
2

+ V (m,c)
2

if c 6= 0
(4.2)

For instance, let c = 6, to compute the variable delayd for a given Medical Data Collector

1, the Manager makes the following call: SES(delay1, 6). To compute this value, let V =

{38, 25, 22, 23, 25, 20} be the last six samples of delay1 (20 is the oldest and 38 is the newest).

SES is achieved the same as 38
2
+ 25

4
+ 22

8
+ 23

16
+ 25

32
+ 20

64
, which results 29.9. The peak in the

last observation is smoothed according to the values of the other most recent samples.

4.4.4 Dynamic QoS Service Stacking

Given all input variables, the Manager employs a Service Orchestration process to iden-

tify QoS violations and perform adaptations in the middleware. This process’s primary goal

is to select a Collector instance at each monitoring cycle and stack QoS services if there is at

least one QoS violation at the applications’ side. At first glance, it seems trivial to select the

Collector acquiring the data the application is consuming. However, in scenarios where many

applications have QoS violations, selecting a single Collector is challenging since they may

be consuming data from different Collectors. To address this issue, HealthStack proposes the

Potential of Adaptation (PA) metric to compute the probability of selecting a given Collector.

PA is modeled as an artificial neuron based on the concepts of artificial neural networks. It

employs the sigmoid neuron, which uses the sigmoid activation function to produce its out-

put (NIELSEN, 2015). The sigmoid neuron takes several input variables, X = {x1, x2, ..., xn},

weights, W = {w1, w2, ..., wn}, and a bias value, b. Its output is produced by σ (W ·X + b),

79

where σ is the logistic sigmoid function, and is defined by:

σ(x) =
1

1 + e−x
(4.3)

Figure 22 illustrates the overall QoS model process. The Manager computes PA for all

instances and verifies if there are current QoS violations. If true, it selects the Collector with

the highest PA and stacks a new QoS service for it. Also, the Core PA indicates the computing

resources load from the Core instance. A Core PA equal to one indicates a high computing

load, and, in this case, the Manager also stacks a new service for the Core, if possible. Accord-

ingly, Equation 4.4 defines PA. It takes all measurements as input variables (i0, i1, . . . , ij) and

corresponding weights (w0, w1, . . . , wj) combining them in a weighted sum
∑j

0 wjij . The

final result is achieved by applying the sigmoid activation function to the resulting value. The

Collector with the highest PA is the one with a higher probability of having its services adapted.

The main contribution of this strategy relies on the weights applied to the delay and jitter input

variables. While traditional artificial neurons have fixed weights for all input values, PA has

two weights adapted on-the-fly according to QoS values’ measurements. It allows giving higher

weights to Collectors that produce data to applications with QoS violations.

PA(d) = σ







































w0 × cpud

+ w1 × memd

+ w2 × netd

+ w3 × connd

+ w4 × pl(d)

+ w5(d) × delayd

+ w6(d) × jitterd

+ 1 × b







































(4.4)

According to Equation 4.4, PA(d) computes the PA value for the Collector instance d. In

the equation, the weights w0, w1, w2, w3, and w4 are fixed parameter values. In turn, functions

w5(d) and w6(d) compute the corresponding weights to be applied to delayd and jitterd in-

puts. Differently from all metrics multiplied by a given weight, for the input variable prid, the

function pl(d) computes a priority level based on all sensor priorities. In the equation below

(Equation 4.5), pl(d) from the Collector d is the result of dividing its priority value prid by the

sum of the priority values from all d Collectors’ sensors. This equation results in a value in the

interval (0,1]. The sum of all priority values of all Collectors is always equal to 1.

pl(d) =
prid
d
∑

i=1

prii

(4.5)

80

Figure 22: A look at the whole QoS model operation. The QoS Manager performs three
main monitoring tasks: (1) monitors applications’ metrics; (2) monitors Core, and Collector
instances; (3) computes PA for Core and Collector instances; and (4) manages service stacks
from Core and Collector instances.

Collector
d

Application
a

Core
d+1

QoS
Manager

delaya

jittera

3. Computes Potencial of
Adaption (PA) for each

Core and Collector instance.

1. Monitors metrics from
each application.

2. Monitors metrics from
Core and Collector instances.

4. Check QoS
violations

QoS
Service
Stack

netd+1

memd+1

cpud+1

PA
(d+1)w1

jitterd

delayd

connd

netd

PA
(d)

memd

cpud

prid

If a QoS if violated:

5. Select Collector with the
highest PA and deliver a
service to the Collector;

6. If PA from Core is 1, then
deliver a service to Core;

If a QoS if violated:

5. Select Collector with the
highest PA and deliver a
service to the Collector;

6. If PA from Core is 1, then
deliver a service to Core;

S1

S2

S3

S1

S2

S3

S1S1

A
p

p
lic

a
ti
o

n
 L

a
ye

r
S
e
rv

ic
e
 L

a
ye

r
C

a
p

tu
re

 L
a
ye

r

Source: elaborated by the author.

Before further explaining the mathematical expressions to compute PA(d), w5(d), and

w6(d), it is worth taking the time to define some matrix notations to be used. That is important

since some operations can be visualized as matrix operations, which may ease the understand-

ing. Let M be a generic matrix as follows:

M =













m11 m12 . . . m1c

m21 m22 . . . m2c

.

mr1 mr2 . . . mrc













Following the notation from Bernstein (2009), M[r,·] denotes the submatrix of M obtained

by retaining the row r and all columns. M[·,c] denotes the submatrix of M obtained by retaining

81

the column c and all rows. For instance, given a row r = 1, the submatrix M[r;·] considering the

total of columns c = 3, is:

M[1;·] =
[

m11 m12 m13

]

That being defined, we can now map the relations between all a applications and all d

Collector instances using matrices. Therefore, HealthStack defines five relation matrices with

equal dimensions a × d (rows × columns): MMC (Matrix of Middleware Connections);

MDV (Matrix of Delay Violations); MJV (Matrix of Jitter Violations); MQD (Matrix of

QoS Delay); and MQJ (Matrix of QoS Jitter). Respectively, a and d represent the number

of connected applications and the number of Collectors in the architecture. New application

connections and disconnections respectively increase and decrease the number of rows of the

matrices. Changes in the number of sensors increase or decrease the number of columns of the

matrices. For each matrix, Mij represents the element corresponding to the relation between

the application i and the Collector j.

The values that are stored in each matrix vary according to the matrix. MMC stores binary

elements representing if a given application i is consuming data from a given Collector j. As the

model comprises two QoS policies (delay and jitter), the matrices MQD and MQJ store delay

and jitter threshold values, respectively, for each relation between all application connections

and Collectors. Their elements are positive integer values if a threshold is defined. Otherwise,

the non-set value corresponds to 0. Additionally, MDV and MJV , likewise MMC, also store

binary elements, but in their case, they represent the application QoS violations respectively for

delay and jitter. For instance, given an element mdvij = 1, the delay QoS of the application i,

regarding data generated by Collector j, is currently being violated.

Figure 23 illustrates an example of relations between applications and Collectors and the

resulting matrices. According to the figure, applications 1 and 2 are consuming data produced

by the Collector 1, and application 3 from Collector 2. The first two applications have delay

QoS policies with threshold values 100 ms and 200 ms, respectively. Differently, application

3 has a jitter QoS policy with a threshold equal to 300 ms. While the QoS is respected for

applications 2 and 3, the same is not valid for application 1 because delay1 (150 ms) is higher

than the defined threshold (100 ms). In the figure, the setup results in the relation matrices

at the right side of the figure. According to the structure depicted, it results in MMC with

binary elements mmc11, mmc21, and mmc32 defined as 1. Considering that there is only one

QoS violation (delay for application 1 from Collector 1), only the element mdv11 is set to 1 in

MDV . Two applications define a delay QoS policy resulting in mqd11 and mqd21 from MQD

to have their values accordingly the defined thresholds. Finally, as only one application defines

a jitter QoS policy, MQJ has only the element mqj32 defined.

Now that we have defined all matrix operations and relation matrices, we can understand

how to achieve PA. Returning to the aforementioned Equation 4.4, w5(d) and w6(d) are not

fixed weights but weight functions. Equations 4.6 and 4.7 demonstrate how these functions are

82

Figure 23: Matrices from an example scenario with three applications and three Collectors. Red
boxes indicate QoS violations. The values delayth1, delayth2, and jitterth3 are the threshold
values expected by the applications. The values delay1 and delay2 are current delay measures
for applications 1 and 2, while jitter1 is the current jitter measure for application 3.

 1 0 0
 0 0 0
 0 0 0

MDV =
 1 0 0
 0 0 0
 0 0 0

MDV =

MJV =
 0 0 0
 0 0 0
 0 0 0

 0 0 0
 0 0 0
 0 0 0

MJV =
 0 0 0
 0 0 0
 0 0 0

delayth1

(100)
delayth2

(200)
jitterth3

(300)

delay1

(150)
delay2

(150)
jitter3

(250)
Current measurements

Applications thresholds

Applications

Collector instances

Application 1 with QoS violation
(delay1 > delayth1)

MMC =
 1 0 0
 1 0 0
 0 1 0

MMC =
 1 0 0
 1 0 0
 0 1 0

100 0 0
200 0 0
 0 0 0

MQD =
100 0 0
200 0 0
 0 0 0

MQD =

MQJ =
 0 0 0
 0 0 0
 0 300 0

MQJ =
 0 0 0
 0 0 0
 0 300 0

Application 1

Collector 1

Application 1

Collector 1

Application 2

Collector 2

Application 2

Collector 2

Application 3

Collector 3

Application 3

Collector 3

Source: elaborated by the author.

computed, respectively. They differ only in which matrices they operate to achieve the final

result since w5(d) uses the matrices regarding delay (MDV and MQD) and w6(d) uses the

matrices regarding jitter (MJV and MQJ). By analyzing w5(d), the equation is the product

of two parts. The left part introduces the importance unit function iu (see Equation 4.8). The

importance unit represents the percentile importance of a single time unit to a baseline value

from an input vector V . In summary, the baseline is the lowest positive value element from

a vector. In case the vector does not contain values higher than zero, the importance unit is

equal to zero. In the delay scope, iu calculates a single time unit’s load from a Collector d

regarding the lowest QoS delay active currently. For instance, let the time unit be milliseconds

and delayd = 50. With a lowest QoS delay equals to 100, each time unit corresponds to 0.01,

i.e., 1%. Thus, in this case, the load of the delay of Collector d is equal to 0.5, i.e., 50%.

That would be enough to define the weight value to delayd in PA. However, that would be the

same as considering a weight w5 = 1 to the current load of delayd, which can be achieved by
delayd

lowestQoSdelay
.

w5(d) = iu(MQD[·,d])×

(

1 + α×

a
∑

i=1

mdvid

)

(4.6)

w6(d) = iu(MQJ[·,d])×

(

1 + α×
a
∑

i=1

mjvid

)

(4.7)

83

iu(V) =







0 if
∑

vi = 0
1

minV ∗
if
∑

vi > 0 (where V ∗ = V − {0})
(4.8)

To address this, now that we have covered the left part of the function w5(d), the right part

of the equation aims at defining the increase factor to be applied in the importance unit. Instead

of directly applying the importance unit to the measure, getting the current load, HealthStack

firstly increases iu by an increase factor computed according to the number of QoS violations.

To do so, HealthStack introduces the adaptation rate parameter α (alpha greek letter), which

defines how significant w5(d) should get for each QoS violation. According to the equation, α

is added the number of delay QoS violations regarding Collector d (given by MDV[·,d]). The

more QoS violations, the higher the w5(d) result. By achieving the importance unit for a time

unit, HealthStack can increase this value according to QoS violations.

For instance, lets α = 0.1, if we have just one QoS violation for Collector d, w5(d) is

the result of iu multiplied by 1.1, resulting in the final calculus of PA the current load plus

10% (1.1 × delayd). Following the example from Figure 23, lets the measured delay1 = 150,

lower delay QoS equals to 100, w5(d) = 0.01 × 1.1 = 0.011, which results in 0.011 × 150 =

1.65. In other words 150 represents a load of 150% regarding 100, and 165% is the result of

150% plus 10% (α = 0.1). As the final result of w5(d) is multiplied by the delayd measure,

HealthStack can enhance its value in the final calculus of PA in case we have QoS violations.

Otherwise, HealthStack applies only the iu value as the right part of the function returns 1.

Lastly, HealthStack also has to consider scenarios in which any applications consume data

produced by Collector d. In this case, delayd is not considered in PA since iu will be 0 and,

consequently, w5(d) will return 0 due to MQD[·,d] being filled with zeros.

The expression α×
∑a

i=1 mdvid in Equation 4.6 can be represented as a matrix multiplica-

tion of MDV[·,d] by a matrix of one row and a columns populated by α in all elements, which

results in a single value:

[

α . . . α

]

×







mdv1d

. . .

mdvad






=
[

α×mdv1d + · · ·+ α×mdvad

]

The same is valid for the expression α ×
∑a

i=1 mjvid in Equation 4.7, but in its case using

MJV[·,d]:

[

α . . . α

]

×







mjv1d

. . .

mjvad






=
[

α×mjv1d + · · ·+ α×mjvad

]

Finally, we can now represent PA as a vector (one-dimensional matrix) multiplication of

a single-row weight matrix by a single-column variable matrix, as presented in Equation 4.9.

The first matrix contains all weights and weight function results distributed in one row and c

84

columns. On the other hand, the second matrix contains all input variables organized in r rows

and one column to match the corresponding weights in the multiplication. It is important to

note that the number of columns of the first matrix matches the second matrix’s rows (c = r).

PA(d) = σ

































[

w0 w1 w2 w3 w4 w5(d) w6(d) 1
]

×

































cpud

memd

netd

connd

pl(prid)

delayd

jitterd

b

































































(4.9)

Simplifying, considering W as the matrix of weights and I the matrix of input variables, we

get:

PA(d) = σ (W · I + b)

4.5 Summary

HealthStack is a QoS-aware real-time middleware that focuses on hospital facilities. The

middleware collects data from sensors, stores it in a database, and delivers it to user applica-

tions meeting QoS requirements. Its main characteristic is its ability to provide QoS for both

user applications and sensors according to the system load. To connect sensors with user ap-

plications, HealthStack introduces four distributed components that have specific roles in the

middleware: (i) Data Core Service (Core); (ii) Medical Data Collector (Collector); (iii) Data

Access Wrapper; and (iv) QoS Manager. These components can exchange three different mes-

sages: (i) configuration data; (ii) metrics measurements; and (iii) sensor data. The middleware

requires that all messages arrive at their destination without errors. Therefore, HealthStack em-

ploys the TCP/IP protocol for all network transmissions. The Data Access Wrapper plays an

essential role in the middleware’s communication process on the applications side. It works as a

wrapper of the publish-subscribe communication protocol allowing the programmer to use the

traditional calls without changing the application. Because of the Wrapper, the application does

not need to connect to the sensor data sources directly. Instead, it only needs to access the Core

through the Wrapper to consume data from many sensors in a standard data format.

The Core is the central component that processes incoming data from sensors and dispatches

them to both the database and the PubSub Broker. The middleware comprises d Collectors

corresponding to the number of sensor data sources. Two parameters define each Collector’s

behavior: prid, the priority value of the attached sensor, and fps, the number of data samples

85

per second to extract from the sensor. On top of all components, the QoS Manager monitors

several metrics and performs the QoS Service Stacking process. Its main goal is to address QoS

violations by stacking QoS services for the middleware components. The QoS Manager imple-

ments a closed feedback-loop architecture, and it has access to each HealthStack component

instance regardless of their locations among servers or clusters. The QoS Manager presents

three primary functions that characterize control systems: a sensor to acquire monitoring data,

a controller to evaluate measurements, and an actuator to provide modifications and services.

The Manager monitors several middleware metrics and applications and delivers different ser-

vices for each component by performing the QoS Service Stacking strategy. In particular, the

HealthStack components have individual dynamic service stacks that might change over time,

according to the QoS Manager decisions. At each cycle, the QoS Manager decides the services

that should be available for each component. The stack can receive four different QoS ser-

vices: (i) Data Prioritization; (i) Data Frequency Rate; (i) Data Compression; and (i) Resource

Elasticity.

The QoS Service Stacking strategy works on several monitoring metrics. At the applica-

tion’s side, the two variables delaya and jittera measure the current values for delay and jitter

that the middleware delivers for application a. In the Core scope, three variables measure the

usage load of CPU, memory, and network resources: cpud+1, memd+1, and netd+1. Finally,

Collectors have seven different variables since they are responsible for acquiring and packing

samples from sensors. As for the Core, the first three variables regard computational resources:

cpud, memd, and netd. Next, delayd and jitterd correspond to Collector instance d regarding

the arrival of its samples at the Core. The remaining two variables, connd and prid, define how

many applications consume data that Collector d generates and the sensor priority level param-

eter for this Collector. Thus, the QoS Manager collects and evaluates each variable periodically

in a monitoring cycle c at a given time interval t. Except for the connd and prid variables, the

Manager applies an SES filter to the variables’ raw readings.

Given all input variables, the Manager employs the QoS Service Stacking strategy to iden-

tify QoS violations and perform the middleware adaptations. This process’s primary goal is to

select a Collector instance at each monitoring cycle and stack services if there is at least one

QoS violation at the applications’ side. However, in scenarios where many applications have

QoS violations, selecting a single Collector is challenging since they may be consuming data

from different Collectors. To address this issue, HealthStack proposes the Potential of Adap-

tation (PA) metric to compute the probability of selecting a given Collector. It employs the

sigmoid neuron, which uses the sigmoid activation function to produce its output (NIELSEN,

2015). Based on all input variables, QoS services are stacked only when QoS violations occur,

and the higher PA indicates which Collector should be treated first.

86

87

5 EVALUATION METHODOLOGY

This chapter presents implementation details and the environment setup employed to ex-

ecute experiments. Moreover, it also describes the evaluation scenarios modeled to test the

architecture and its features. Hospital 4.0 and IoHT are new areas of study (ACETO; PER-

SICO; PESCAPé, 2020; COSTA et al., 2018), and, for that reason, it is not possible to compare

the current proposal quantitatively against other solutions. However, the experiments consider

well-known metrics and QoS requirements commons in health solutions, such as delay and jit-

ter. This research defines different application workloads to cover several scenarios in which

applications differ in their QoS requirements.

The next sections detail the evaluation methodology as follows. Section 5.1 presents the

details of the implementation and design of the HealthStack prototype. It describes all technical

details employed in the development of the solution. Next, Section 5.2 shows the infrastructure

in which the middleware is deployed. It also gives details on the hardware installed to perform

experiments. In turn, Section 5.3 defines the user application, experimental workloads, and

evaluation scenarios. Section 5.4 describes all parameter values in the experiments. Finally,

Section 5.5 summarizes the concepts present in this chapter.

5.1 Prototype Implementation

A complete prototype of HealthStack was developed in C++, covering all components:

Core, Collector, Manager, and Application. Figure 24 depicts the modules developed to cover

HealthStack architecture. The figure illustrates all technologies the prototype employs for each

module. In particular, the prototype supports Microsoft Kinect’s API1, and Sewio RTLS solu-

tion2. The Collector components use these APIs to extract data from the sensors. The develop-

ment included third party libraries and software for different purposes, as listed in Table 10. In

particular, Flatbuffers provides easy to use data serialization model for data transmission over

the network. A publish-subscribe strategy is implemented directly in the Core Client Manager

using the communication protocol developed for the Core and Collector instances in the appli-

cation scope. The protocol is essential for communication between components, and it follows

the publish-subscribe paradigm. Therefore, this is extended to the applications, also including

the QoS model services.

The Collector prototype implements a data compression strategy to offer the Data Com-

pression service through the Bzip2 library. It uses the Huffman coding (MILLER; VANDOME;

MCBREWSTER, 2009) lossless strategy that allows compression of data without losing data.

Regarding the Data Information Service, the MongoDB stores configurations and sensor data

samples in JSON format. Finally, the source code from the prototype is hosted in a private

1https://developer.microsoft.com/pt-br/windows/kinect
2https://www.sewio.net/

88

Figure 24: HealthStack prototype modules and their corresponding technologies.

Data Core Service.exeData

Information

Service

QoS Manager.exe

Application.exe
Application

Layer

S
er

vi
ce

 L
a
ye

r
C

a
p
tu

re
 L

a
ye

r

Middleware

Medical Data Collector.exe

 Service.exe

Service

 Data Access Wrapper Data Access Wrapper Data Access Wrapper

Source: elaborated by the author.

account on GitLab platform3. This account is private since the prototype composes a Unisinos

project protected by a confidentiality agreement. However, it is possible to make available the

QoS model’s code at Github4. The repository contains the C++ classes implementing the PA

strategy presented in the previous section.

5.2 Infrastructure Setup

Besides having a prototype running at the project’s clinical partner, the HealthStack ar-

chitecture is also deployed in a simulated hybrid operating room in the Software Innovation

Laboratory – SOFTWARELAB, at UNISINOS. The room is equipped with advanced imaging

instruments, including a Siemens SIREMOBIL Compact L C-Arm5. In this laboratory, it is

possible to perform several experiments before deploying the software in production at the hos-

pital. The environment is composed of an isolated network to avoid network interference and

guarantee high performance. The network equipment is based on a TCP/IP Gigabit Ethernet.

Figure 25 depicts the organization of the infrastructure and the distribution of the middleware

components. Regarding the hardware, Table 11 lists all equipment employed in the SOFT-

WARELAB operating room. All equipment are interconnected by the same Gigabit switch to

avoid network hops and improve performance. Besides, a server at the university datacenter

3https://gitlab.com/
4https://github.com/viniciusfacco/healthstack
5https://www.healthcare.siemens.com.br/surgical-c-arms-and-navigation/mobile-c-arms/siremobil-compact-l

89

Table 10: Libraries and software used in the prototype development.

Item Version Description URL

CMake 3.11.0 CMake to build the Visual Stu-
dio project.

https://cmake.org/download

Boost 1.66.0 Set of libraries and utilities for
C++.

https://sourceforge.net/projects/

boost/files/boost

Bzip2 1.0.6 Data compression library. http://www.bzip.org/

OpenCV 3.4.1 Computer vision libraries. https://sourceforge.net/projects/

opencvlibrary

Qt 5.9.1 Cross-platform framework for
developing UI in C++.

https://www.qt.io/download

GLM 0.9.8.5 Header only C++ library for
graphics software.

https://github.com/g-truc/glm/

tags

Doxygen 1.8.14 Software to generate the docu-
mentation.

http://www.stack.nl/~dimitri/

doxygen/download.html

Kinect v2 2.0 - 1409 Kinect v2 API. https://www.microsoft.com/en-us/

download/details.aspx?id=44561

Flatbuffers 1.9.0 Library for data serialization. https://github.com/google/

flatbuffers

MongoDB 4.0.5 NoSQL database integration. https://www.mongodb.com/

Source: elaborated by the author.

dispatches applications to connect the middleware.

Considering the architecture’s components, one Core instance and the MongoDB are de-

ployed in the node2 computer. Also, node2 as Docker6 installed and MongoDB database is

deployed in a container. Additionally, two Collector instances are deployed in two different

computers, each one collecting one type of data. On the one hand, in the node0, a Microsoft

Kinect version 2 provides depth image data. On the other hand, in the node1, the Sewio RTLS

server tracks several UWB tags in the environment. Sewio is an indoor RTLS solution that em-

ploys UWB technology to track subjects in real-time. The solution consists of several anchors

and tags installed in the room. The anchors are connected via a wired network, and the Sewio

server is running on node1 accesses them to compute the tag positions. In node1, a Collector

instance accesses the Sewio server through its API to acquire the tag positions. Moreover, al-

though independent from the node of execution, the QoS Manager also runs in node1. It only

requires network access to all nodes running the middleware components.

Regarding the deployment of the sensors, Figure 26 depicts the experimental environment

in which is installed the Sewio solution and the Kinects’ setup. The figure shows two Kinect

devices positioned over tripods at the left and right parts of the figure. At the figure’s top left

and right, two Sewio anchors are attached to the ceiling. Anchors must be positioned at higher

positions of the room to improve the RTLS solution accuracy. Finally, Table 12 summarizes all

6https://www.docker.com/

90

Figure 25: Deployment overview of the hardware, middleware, and software components
among the evaluation infrastructure.

Core

Collector 2

anchors

tags

Collector 1

Data Information
Service

QoS
Manager

Application 0AppApplication 0AppApplication 0AppApplication 0AppApplication 0AppApplication 0

Microsoft Kinect v2

node0

Application Server

node2

node1

Sensor Layer

Capture Layer

Service Layer

Application Layer

Source: elaborated by the author.

Table 11: Equipment installed in the environment.

Node Model CPU RAM Network Software and Components

node0 Dell Optiplex 3050 Mini i7-6560U 2.20 GHz 8GB 1 Gbps • Microsoft Kinect
• Depth Collector
• QoS Manager

node1 Dell XPS 13 9350 i5-7500T 2.70 GHz 8GB 1 Gbps • Sewio API
• Position Collector

node2 Dell Precision i7-7820X 3.60GHz 32GB 1 Gbps • Core
• Docker
• MongoDB

Source: elaborated by the author.

devices and sensors available for experiments with further technical details.

5.3 Workload Model and Evaluation Scenarios

There is no workload characterization for applications focused on consuming data from

medical middlewares in the literature to the best of our knowledge. Therefore, to evaluate

HealthStack, it was needed to develop an application to serve as a user application that connects

91

Figure 26: Experiment laboratory setup in which Sewio RTLS system and Microsoft Kinects
are deployed. The laboratory also contains a Siemens SIREMOBIL Compact L C-Arm.

Kinect v2
Kinect v2

Sewio Anchor

Sewio Anchor

C-Arm Monitor

Source: elaborated by the author.

the middleware and requests data. Several instances of this application can start simultaneously

anywhere, simulating many users requesting data. To simulate different circumstances, the

application has the following parameters:

(i) Data type: the type of data the application consumes from the middleware;

(ii) QoS type: the target QoS metric the user requires;

(iii) QoS threshold: the limit value to be respected for the QoS metric.

The first two parameters have limited options for applications according to what the mid-

dleware offers. Therefore, considering that the middleware deployment covers an RTLS system

and image cameras, the data type has two alternatives: (i) depth image data; and (ii) position

data. In turn, the QoS type offers two metrics: (i) delay; and (ii) jitter. Thus, each new appli-

cation instance provides one of these alternatives for these parameters. The third parameter, the

QoS threshold, does not have limited options since this is a user’s decision. Each user applica-

tion can have particular QoS requirements, and they can differ from each other. In particular,

this last parameter refers to the limit for delay or jitter the user requires, depending on the

second parameter’s choice.

Given the three parameters, by starting several application instances with different values, it

is possible to create specific workloads. With that in mind, this study modeled several different

92

Table 12: Technical details from the sensors installed in the simulated operating room.

Hardware Description

RTLS Anchors

Compliant with UWB PHY IEEE 802.15.4a
Decawave UWB Radio, 6 channels 3-7GHz
Dimensions: 70 x 74 x 25 mm
Driven by MCU ARM Cortex M4
Configurable via web RTLS Manager
Anchor’s wireless sync via UWB
Ethernet used as a backhaul
Firmware upgrade via Ethernet
Native web interface
For Indoor Use

Li-ion Tags

Compliant with UWB PHY IEEE 802.15.4a
Decawave UWB Radio, 6 channels, 3-7GHz
Dimensions: 70 x 50 x 21 mm
Driven by Ultra Low Power ARM EFM32G M3
Battery included, Li-ion 600mA
Configuration via RTLS Manager
Firmware upgrade and Charging via USB
User LED and Charging LED indication
Unique 6 bytes ID

Piccolino Tag

Compliant with UWB PHY IEEE 802.15.4a
DecaWave UWB Radio, 6 channels, 3-7GHz
Dimensions: 29x37x11 mm
Driven by Ultra Low Power ARM EFM32G M3
Coin Battery CR 2450 600mA
Configuration Wirelessly via RTLS Manager
User LED indication
Unique 6 bytes ID

Kinect v2

Depth Estimation Strategy: Time-of-Flight
Resolution (width x height): 512 x 424
Field-of-View (horizontal x vertical): 0.50 - 4.5 m
Range: 70◦ x 60◦

Frames per second: 30

Source: elaborated by the author.

scenarios with varying workload changes to cover a broad set of applications. Eight workload

scenarios composed of 32 applications were modeled: S1, S2, S3, S4, S5, S6, S7, and S8.

The experiments comprise the execution of each 32-application scenario with and without QoS

support to compare the results. The different scenarios intend to simulate distinct situations

and, therefore, cover different application setups.

For simplicity, in the results, executions in which QoS support is enabled are referred to as

S1’, S2’, S3’, S4’, S5’, S6’, S7’, and S8’. For all scenarios, each application instance connects

the middleware in different instants and starts requesting data at a given rate. The 32 appli-

cations connect to the middleware sequentially, with an interval of 60 seconds between each

new connection. Once connected, they remain consuming data until the end of the experiment.

Figure 27 depicts eight different workload scenarios and their parameters. The figure presents

an application index that refers to the sequence that the application connects to the middleware.

As each application connects every 60 seconds, the index also represents the minute it connects.

In all scenarios, the choices of QoS type and data type follow the same sequence. As

the figure shows, application 1 defines the data type to depth image data, and application 2

93

Figure 27: The sequence of application connections in the eight workload scenarios. One
application connects at each minute, requesting a Data type, a QoS type, and a QoS threshold.
The application index refers to the sequence of the application connection to the middleware.

S1

S2

S3

S4

S5

S6

S7

S8

Time

S
ce

n
a
ri
o

s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1817 2019 2221 2423 2625 2827 3029 3231

Application index

pi i p pi i p pi i p pi i p pi i p pi i p pi i p pi i ppi i p pi i p pi i p pi i p pi i p pi i p pi i p pi i p

dd j j dd j j dd j j dd j j dd j j dd j j dd j j dd j jdd j j dd j j dd j j dd j j dd j j dd j j dd j j dd j jQoS type

Data type

d

j p

iDelay threshold

Jitter threshold

Depth image data

Position data

Hard threshold

Soft threshold

d

j p

iDelay threshold

Jitter threshold

Depth image data

Position data

Hard threshold

Soft threshold
Caption

Source: elaborated by the author.

defines it to position data. This sequence keeps repeating until the last application. The same

occurs for the parameter QoS type. However, in this case, the parameter varies in pairs of two.

Applications 1 and 2 define the QoS type do delay, while applications 3 and 4 define it as jitter.

The following applications follow the same pattern.

Finally, the third parameter is primarily essential to create different workloads. The QoS

Manager considers this value in its decision-making process. Therefore, lower thresholds rep-

resent more necessity for QoS and, consequently, higher workloads. For that reason, for each

QoS metric, two values represent high and low requirements. Here, the lower value is indi-

cated as “Hard threshold,” while the higher is indicated as “Soft threshold.” The definition of

the applications QoS values is based on the literature and which QoS values other authors use

for applications in the healthcare scope (MUKHOPADHYAY, 2017; NANDA; FERNANDES,

2007; MALINDI; KAHN, 2008; LEE et al., 2011). Considering the values employed by the lit-

erature, the two threshold values for each QoS type are: (i) for delay, 100 ms (hard) and 300 ms

(soft); and (ii) for jitter, 25 ms (hard) and 50 ms (soft).

As the QoS threshold has such importance in the workload definition, it is essential to un-

derstand the different scenarios with them in mind. For that reason, Figure 28 depicts the eight

scenarios showing the number of connected applications with each QoS threshold over time. All

scenarios present an ascending number of applications. However, some scenarios have more ap-

94

plications with Hard threshold requirements than others. For example, in S1, S2, S3, and S4,

by the end, the total number of applications with Hard and Soft threshold is equal to 16. On the

other hand, in S5, S6, S7, and S8, in the end, the total of applications with Soft threshold is 24,

and Hard threshold is 8. It is important to analyze this particular figure together with Figure 27.

Although S5, S6, S7, and S8 present similar graphs, they shift in which applications define their

QoS threshold to Hard and Soft.

5.4 Parameters

Some technical decisions are imposed on the implementation of the model prototype. Ta-

ble 13 presents the values used for each parameter in all experiments. The “Collection interval”

is the time interval for the Manager to collect variables from applications and middleware com-

ponents. The Collection interval is set at one second to ensure that the Manager receives a

significant number of samples to use in the QoS Service Stacking process. Combined with this

parameter, the “Monitoring interval” is the time interval for the Manager to execute the mid-

dleware status evaluation and QoS Service Stacking. A fine-grained monitoring interval can

reduce the SLA violation rate in large scale infrastructures (TAN; VENKATESH; GU, 2013).

That is why the “Collection interval” is defined as the lowest value possible. As the Manager

employs SES to all measures, the Monitoring interval is set to six seconds, which means that

during this interval, there are six new samples of each variable available. With a monitoring

window of six observations, the last six values represent 98.4% in the final calculus of SES

when the Manager wakes up. In turn, the choice for a cool-down period of 60 seconds consid-

ers ten monitoring interval windows. Besides, three QoS services are implemented and they are

stacked in the following sequence: (i) Data Frequency Rate; (ii) Data Compression; and (iii)

Data Prioritization.

In the QoS Service Stacking strategy, several weights should be defined. Such parameters

represent the level of importance of the metrics to which they are applied. A weight equal to

1.0 means that the measurement which multiplies this weight is fully considered. On the other

hand, a 0.5 weight considers only 50% of the measurement it multiplies. For instance, let cpud

of a given Collector d be 0.8, and w0 be 0.5, when computing PA it adds 0.4 (w0 × cpud)

to the final calculus. Defining all five weights could be challenging; however, it depends on

which value should receive more importance in the final calculus of PA. In the experiments,

the weights were defined as follows:

(i) 1 divided among the weights applied to the three resources input variables (w0, w1, and

w2). Which means that the values of resources are converted to 33% of the measurement;

(ii) a tenth for the weight applied to the number of connections (w4), which means that each

new connection adds 0.1;

(iii) a full unit (1.0) for the weight applied to the priority, therefore, the priority is used as a

95

Figure 28: Workload scenarios based on the QoS threshold and the number of connected appli-
cations over time.

0
4
8

12
16
20
24
28
32

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

C
o

n
n
e
ct

e
d

 a
p

p
lic

a
ti
o

n
s

Time (minutes)

Total applications
Hard threshold
Soft threshold

(a) S1

0
4
8

12
16
20
24
28
32

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

C
o

n
n
e
ct

e
d

 a
p

p
lic

a
ti
o

n
s

Time (minutes)

Total applications
Hard threshold
Soft threshold

(b) S2

0
4
8

12
16
20
24
28
32

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

C
o

n
n
e
ct

e
d

 a
p

p
lic

a
ti
o

n
s

Time (minutes)

Total applications
Hard threshold
Soft threshold

(c) S3

0
4
8

12
16
20
24
28
32

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

C
o

n
n
e
ct

e
d

 a
p

p
lic

a
ti
o

n
s

Time (minutes)

Total applications
Hard threshold
Soft threshold

(d) S4

0
4
8

12
16
20
24
28
32

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

C
o

n
n
e
ct

e
d

 a
p

p
lic

a
ti
o

n
s

Time (minutes)

Total applications
Hard threshold
Soft threshold

(e) S5

0
4
8

12
16
20
24
28
32

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

C
o

n
n
e
ct

e
d

 a
p

p
lic

a
ti
o

n
s

Time (minutes)

Total applications
Hard threshold
Soft threshold

(f) S6

0
4
8

12
16
20
24
28
32

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

C
o

n
n
e
ct

e
d

 a
p

p
lic

a
ti
o

n
s

Time (minutes)

Total applications
Hard threshold
Soft threshold

(g) S7

0
4
8

12
16
20
24
28
32

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

C
o

n
n
e
ct

e
d

 a
p

p
lic

a
ti
o

n
s

Time (minutes)

Total applications
Hard threshold
Soft threshold

(h) S8

Source: elaborated by the author.

whole (100%) in the calculus of PA;

(iv) half of a unit (0.5) for the adaptation rate in order to produce a considerable increase in

the weights w5() and w6().

96

Table 13: Prototype parameters.

Group Parameter Value

Monitoring

Collection interval 1 s

Monitoring interval 6 s

Cool-down interval 60 s

Service Orchestration

w0 0.33

w1 0.33

w2 0.33

w3 0.1

w4 1.0

α 0.5
Source: elaborated by the author.

5.5 Summary

This section presented all details related to the development and deployment of HealthStack.

Also, it describes the evaluation modeling and the scenarios proposed to test the prototype.

In particular, a complete prototype of the model was developed in C++. The deployment of

the infrastructure was performed on two different sites. First, a production deployment was

performed at a clinical partner that provided access to an actual hybrid operating room. Second,

an experimental deployment was performed at a simulated operating room at the university. In

the last case, three computer nodes were distributed in the environment interconnected by a

Gigabit switch. One of the nodes run the database, the Core, and the publish-subscribe node.

The other two run a Collector instance each to acquire data from an RTLS and an image sensor.

In the scope of workloads for evaluation, there is no workload characterization for appli-

cations focused on consuming data from medical middlewares in the literature to the best of

our knowledge. Therefore, a synthetic application was developed to connect HealthStack and

request data providing QoS parameters. Several evaluation scenarios were modeled by defining

different scripts to run various application instances with different requirements. Additionally,

some technical decisions are imposed on the implementation of the model prototype. That

includes the definition of the middleware’s parameters. This chapter also defined which param-

eters were employed in the experiments.

97

6 RESULTS

This chapter presents the evaluation of all scenarios previously described. Here, all the ex-

periments comprise a 35-minute window of execution to encompass all 32 applications from

the evaluation scenarios. To execute each scenario, the middleware components start at time

zero, and, at the same time, the Manager starts to record metrics for evaluation. The recording

ends when the execution time reaches minute 35. In the experimental scenarios’ execution, the

first application connection arrives after 60 s. Therefore, the first minute has no applications

connected to the middleware. The goal is to analyze the effect in the measurements of the com-

ponents at each new application connection. As there is one minute between new application

arrivals, the total time involved in calculating the final results for each application is different.

For instance, for application 1, this time is equal to 34 minutes and, for application 32, three

minutes.

The following sections present the results from different points of view. Section 6.1 focuses

on the results of the applications.. This section demonstrates the results of the QoS metrics for

applications in each scenario. Following, Section 6.2 analyzes the middleware components’

resource consumption for each scenario. This section shows the difference in resource require-

ments for each evaluation scenario. Next, Section 6.3 presents a timeline analysis of metrics

from individual applications. Its main goal is to demonstrate the QoS Service Staking strategy’s

impact on the application’s measurements. Based on the insights acquired by analyzing the

results, Section 6.4 introduces a second phase of experiments with some modifications. Then,

Section 6.5 discusses the main findings of the experiments. Finally, Section 6.6 summarizes the

concepts from the current chapter.

6.1 Applications’ Delay and Jitter

This first section focuses on presenting the results from the application’s perspective. In

this context, the most important metrics are the delay and jitter experienced by the applications

throughout their execution time. Note that their values are time units, more specifically millisec-

onds, and the lower these values are, the better. In order to summarize the results compactly,

Figures 29 and 30 present box plots considering, respectively, the delay and jitter measurements

of all observations for each application in each scenario. The data was first segmented by the

type of sensor to verify differences in the results to produce the figure. Each box plot comprises

16 applications because the experiments include 16 applications requesting depth data and 16

requesting position data.

In the delay scope, Figure 29 shows that scenarios with QoS Service Stacking enabled

achieved higher values than the scenarios without it for both data types. More specifically,

considering depth data, the mean delay of applications is 86.6 ms for scenarios with QoS Ser-

vice Stacking enabled, and 69.4 ms for scenarios with it enabled, representing an increase of

98

24.78%. In turn, considering position data, the mean delay of applications is 61.8 ms for scenar-

ios with QoS Service Stacking enabled, and 40.8 ms for scenarios with it disabled, representing

an increase of 51.47%. Even though the results are higher for QoS Service Stacking enabled

scenarios, the delay level is still lower than the lower defined threshold of 100 ms, not impacting

the application requirements. The diagrams (a) and (b) also show that position data achieves

lower delay levels than depth data. That happens because depth data is considerably larger than

position data, imposing more complexity to acquire, compress, and transmit.

Figure 29: Delay results considering the two different sensor types: (a) depth and (b) position.
Each bar is calculated with the mean delay of each application.

(a) Depth Data (b) Position Data

Source: elaborated by the author.

On the other hand, Figure 30 illustrates the measurements for jitter during data transmission.

Each box plot is calculated in the same manner as for the delay metric. The figure leads to

different conclusions than the previous one because now the data type has an impact. On the one

hand, most scenarios in Figure 30a achieved lower values with QoS Service Stacking disabled.

The only exception is the scenario S8’. By further analyzing data logs, in scenario S8’ the

Collector 1 (node0) received only the Data Frequency Rate service, differently from all other

scenarios with QoS Service Stacking enabled. It means that for all other scenarios, Collector

1 received the Data Compression service. This QoS service brought the drawback of inserting

overhead in the data processing, which increased the time to deliver it. Averaging the results

from applications that request depth data, the mean delay of applications is 26.3 ms with QoS

Service Stacking enabled versus 7.5 ms with it disabled, representing an increase of 250%.

On the other hand, considering position data, in Figure 30b, all scenarios with QoS Service

Stacking enabled achieved lower results than scenarios with QoS Service Stacking disabled.

The improvement is considerably expressive since it represents an improvement of 92.3%. More

99

specifically, the mean of jitter from scenarios with QoS Service Stacking disabled is 28.5 ms,

while scenarios with QoS Service Stacking enabled it is 2.2 ms. The main reason is that the

Sewio solution does not provide jitter guarantees, and it produces data in a non-steady way.

Such improvement is possible due to the Data Frequency Rate service, which, when stacked,

stabilizes the frequency of data arrivals at the applications side.

Figure 30: Jitter results considering the two different sensor types: (a) depth and (b) position.
Each bar is calculated with the mean jitter of each application.

(a) Depth Data (b) Position Data

Source: elaborated by the author.

Besides delay and jitter themselves, it is also valuable to look at the applications’ QoS vio-

lations over time. Therefore, the metric violation_time counts the number of monitoring ob-

servations for each application in which the application had its QoS violated. Then, it computes

the violation_proportion against all monitoring observations. For instance, if a given applica-

tion had its QoS violated in 25 observations of 100 total observations, its violation_proportion

is 25%. Figure 31 depicts the box plots of this proportion from all applications and scenarios,

separating them into the two types of data. It is important to remember that, as each application

connects at different times, the total number of observations is different. According to Fig-

ure 31a, the first four scenarios presented higher discrepancies than the last four. Besides, most

scenarios with QoS Service Stacking enabled have their final results higher than scenarios with

QoS Service Stacking disabled. The only exception is scenario S8, which achieved the same

result, by 0.2%, as scenario S8. As said before, this is the only scenario in which the Manager

did not stack the Data Compression service for Collector 1.

In contrast, Figure 31b shows that most scenarios with QoS Service Stacking enabled

achieved lower violation levels, except for scenario S3’. Averaging the results, in 14% of the

time, applications from scenarios with QoS Service Stacking enabled have their QoS violated.

100

On the other hand, in scenarios with QoS Service Stacking enabled, the applications had QoS

violations 3.9% of the time, representing an improvement of 72.1%. The different data types’

conflicting results demonstrate that the solution performs better for smaller size data types. A

higher volume of data requires more computing and network resources, and, mainly, the Data

Compression service introduces processing overhead leading to higher delay and jitter values.

The next section will provide another point of view in which this particular QoS service may

bring advantages.

Figure 31: Proportion of the number of monitoring observations in which the applications QoS
was violated. At each observation, for each application, the violation_time increments, and
at the last observation, violation_proportion divide results from dividing the violation_time

by the total number of observations. The bars represent this proportion of all 32 applications in
each scenario.

(a) Depth Data (b) Position Data

Source: elaborated by the author.

6.2 Resource Consumption

This section analyzes the results from the HealthStack components’ perspective. As de-

scribed in the methodology, the experiments comprise three computers which hosted three main

component instances: (i) the Depth Collector instance 1 (node0); (ii) the Position Collector in-

stance 2 (node1); and (i) the Core instance (node2). Here, the analysis first examines the re-

source consumption profile of each host for different scenarios. Then, it analyzes the outcomes

regarding the delay and jitter metrics specifically for each Collector instance. Starting with

the Core, Figure 32 shows the mean of resource consumption of the node2 for each scenario.

Considering both CPU and network, the consumption is lower in scenarios with QoS Service

101

Stacking enabled. Averaging all scenarios’ results, the CPU and network consumption are 8.3%

and 55.5% lower when employing the QoS model strategy. The same is not valid for memory

consumption. In this case, on average, the consumption was 25% higher in scenarios with QoS

support enabled. By adjusting the amount of data through the Data Frequency Rate service

and resizing the data with the Data Compression service, it is possible to decrease the amount

of data transmitted and the CPU cycles needed. However, it comes with the cost of increased

memory consumption. From all scenarios, the network consumption of scenarios S1’ and S5’

may draw the reader’s attention since they are visibly lower than the other scenarios. That was

possible because the Data Frequency Rate service was stacked to the Collector instance 1 at

minute three for scenario S1’ and minute one for scenario S5’. In contrast, for the remaining

scenarios, the service was stacked after minute ten. As the Collector instance 1 produces depth

data, which is larger than the position, when the Data Frequency Rate is adjusted, it decreases

the amount of data transmitted over the network.

Figure 32: Resource consumption of the node2 for all workload scenarios. The values corre-
spond to the mean of all samples from the monitoring observations.

(a) CPU (b) Memory (c) Network

Source: elaborated by the author.

Regarding the Collector instances, Figures 33 and 34 depict the same information than Fig-

ure 32, but from the node0 and node1, respectively. Conclusions for the resource consumption

of node0 are very similar to those from node2. The differences rely on the CPU consump-

tion of S1’ > S1, and the memory consumption of S5’ < S5 and S6’ < S6. Averaging the

results, the variation of consumption from scenarios with QoS Service Stacking enabled related

to QoS Service Stacking disabled is -3.2% for CPU, +0.8% for memory, and -61.8% for net-

work. Regarding node1, the measurements are more uniform in comparison to the node2 and

node0, though they still resulted in lower CPU (-1.9%) and network (-30.6%) consumption,

and higher memory consumption (+2.3%). The only significant difference between node0 and

102

node1 resource consumption is the network volume, which is explained by the type of data they

transmit. The node0 hosts the Collector instance 1 that transmits much higher volumes of data

than Collector instance 2, hosted in node1. Note that in the Figures 33 and 34, the ”Network

Consumption“ axes have very different scales.

Figure 33: Resource consumption of the node0, in which Collector instances 0 runs.

(a) CPU (b) Memory (c) Network

Source: elaborated by the author.

Figure 34: Resource consumption of the node1, in which Collector instances 1 runs.

(a) CPU (b) Memory (c) Network

Source: elaborated by the author.

Finally, Figure 35 depicts the mean delay and jitter measurements from all monitoring ob-

servations of the Collector instances. The figures can be directly related to the results presented

in the previous section. Although the results from scenarios with QoS Service Stacking enabled

103

resulted in higher values in Figures 35a, 35b, and 35c, they still fall below the hard thresholds,

with exception of the jitter of scenario S5 from Collector 1 (Figure 35b) that falls between the

soft and hard thresholds. In the case of the jitter of Collector 2 (Figure 35d), the results are

even better since all scenarios with QoS Service Stacking enabled obtained lower values than

scenarios with QoS Service Stacking disabled. Combined with the previous section results,

these results demonstrate that the Collector instances performance dramatically influences the

applications’ final results. Although the node2 centralizes the experiments’ data acquisition,

it is enough for deployments with few Collector instances. The current section results’ also

show that it is possible to improve resource consumption by employing different QoS services,

resulting in energy consumption and cost savings.

Figure 35: Delay and Jitter means of all observations from Collector instances 1 and 2.

(a) Delay - Collector 1 (b) Jitter - Collector 1

(c) Delay - Collector 2 (d) Jitter - Collector 2

Source: elaborated by the author.

104

6.3 Applications’ Delay and Jitter Time Series

The experiments consisted of eight 32-application scenarios with QoS Service Stacking en-

abled plus the same eight 32-application scenarios, with QoS Service Stacking disabled. It

represents 512 (32× 8× 2) unique application datasets containing each application’s measure-

ments in each monitoring observation. That is much information that is not feasible to visualize

together in a time series analysis. Additionally, the Core and Collectors’ measurements 1 and

2 represent a total of 48 (3 × 8 × 2) unique datasets with many variables and resource mea-

surements, which increases, even more, the complexity of showing them. Summing them up,

it results in 560 different time-series to visualize the state of variables in each monitoring ob-

servation. To help the analysis, this section presents just a few time-series datasets to give a

glimpse of the model’s behavior.

Figure 36 depicts a temporal series of the variables extracted from eight applications of sce-

narios S1 and S1’ to make the comparison. The left diagram in each graph represents scenario

S1, while the right scenario S1’. The graphs represent the variables delay, jitter, and the thresh-

old over time from the first four applications. As demonstrated in Figure 27 from the evaluation

methodology, the first and the third applications request depth data, while the second and fourth

request position data. Comparing diagrams from the same scenario and applications that request

the same data type are very similar since they require the same data type. For instance, the left

column graphs (S1) demonstrate that the behavior on (a) and (b) are similar to the ones in (c)

and (d), respectively. The diagrams demonstrate an increasing delay trend on applications that

consume depth data, which is not present on applications that consume position data. This trend

follows the increasing number of applications that connect the system every 60 s. The results

show that this affects more time to deliver depth data than position data. It occurs because each

new application that requests depth data requires the Core to send each frame to a new connec-

tion, and this imposes overhead on dispatching data for different applications. Also, it imposes

the Core to increase its network consumption each time a new application arrives.

Let us look at the diagrams in the right column of the figure (S1’). Comparing the appli-

cations from S1’ with their corresponding in S1, it is possible to note the differences resulting

from QoS services’ inclusion in the Collectors’ stacks. In particular, graph (a) shows that the

jitter stabilizes near zero right at the beginning, specifically at minute three (180 s). Neverthe-

less, after minute 15 (900 s), it increases and remains unstable until the end. Not only that, but

also the delay variability is higher since minute three. The same occurs to the other applica-

tions; however, as applications 3 and 4 arrive after minute three, they were not connected when

that early behavior occurred for applications 1 and 2. Looking specifically at applications 2

and 4, the graphs demonstrate that jitter stays near zero during the whole execution time, which

explains the jitter results presented in Sections 6.1 and 6.2. For all cases, these changes in the

measurement’s behavior occur due to the stacking of services by HealthStack. The diagrams

demonstrate different effects depending on the data type and service stacked. To better under-

105

Figure 36: Measures of delay and jitter over time for applications 1, 2, 3, and 4 from scenarios
S1 and S1’.

(a) Application 1 (Depth Data)

(b) Application 2 (Position Data)

(c) Application 3 (Depth Data)

(d) Application 4 (Position Data)

Source: elaborated by the author.

106

stand what caused such behavior in the applications, let us further explore the variables and

QoS services when running these specific scenarios.

Figure 37 depicts the resource consumption and QoS services from the components in sce-

narios S1 and S1’. The left column presents the data from scenario S1, which do not demon-

strate considerably visible variations. The only one is a slight increase in the Core CPU con-

sumption due to the increasing number of applications. However, the right column illustrates

interesting traces of the variables. The most crucial thing they expose is each QoS service’s

effect and when the Manager included them in the components QoS service stacks. Graph 37d

shows the first QoS service stacking (Data Frequency Rate) for Collector 1 right after minute

three (180 s). At this very moment, the network load dropped from 3.5% to 0.5%. This moment

is the one during which the previous Figure 36a (right) shows a change in jitter behavior. The

same occurs in Figure 37f but, in this case, right before minute five (300 s), which coincides

with the jitter change in the previous Figure 36b (right).

Another visible effect of the Data Frequency Rate QoS service is the decreasing network

load for both Core and Collector 1, illustrated in Figures 37b and 37d. That happens because

the sampling rate of the Collector instance 1 reduces directly affecting the amount of data trans-

mitted from it to the Core. Following the analysis, let us jump to the instant in which the

Manager stacked the second QoS service (Data Compression). In Figure 37d this instant is

close to the minute 15 (900 s). The network load dropped from 0.5% to 0.1%; the memory

load increased from 30.6% to 33.1% and the mean of CPU from 9.7% to 11.4%. The stacking

of compression explains the increase in jitter and delay that can be seen in the previous Fig-

ures 36a (right) and 36c (right). The compression of data causes the system to delay the data

transmission process and imposes more jitter variations. Accordingly, the same is experienced

by the Collector instance 2 and applications 2 and 4 after minute five (300 s) as can be seen in

Figure 37f, and the right graph of Figures 36b and 36d. In the third QoS service (Data Priori-

tization), as only one Collector instance can have this service, it was stacked only to Collector

instance 2. However, the results visually do not change due to the inclusion of this service. The

next figure (Figure 38) explains why this particular Collector received this last service, along

with the details of the Service Orchestration process.

Finally, Figure 38 depicts the variables involved in the Manager decision-making process.

More precisely, it presents the values for the weights w5() and w6(), and also the PA for each

Collector instance. Together with the previous two, this figure allows the complete process

behavior’s perception during the execution. The figure demonstrates the weights increasing

over time due to the number of connections. Also, it illustrates the variability of delay and jitter

measurements from the applications. The first violation occurs in the jitter of application 3 at

minute three (180 s), which consumes data from the Collector instance 1. That increased w6(),

and at this moment, also considering the other variables, PA was higher for Collector instance

1. Thus, the algorithm selected the Collector instance 1 to stack the first QoS service. With

new applications arriving and new violations, the algorithm followed computing PA, which

107

Figure 37: Resource consumption over time of Core and Collector instances from scenarios S1
and S1’.

(a) S1 - Resources Core (b) S1’ - Resources Core

(c) S1 - Resources Collector 1 (d) S1’ - Resources Collector 1

(e) S1 - Resources Collector 2 (f) S1’ - Resources Collector 2

Source: elaborated by the author.

presents a high variability in its value similar to the applications’ measurements consuming

data from each Collector. Figure 38b shows that after minute five (300 s), the QoS service

stack increased to the maximum until minute seven (420 s). This situation occurred because the

QoS violations from applications consuming data from Collector instance 2 were higher than

those from applications consuming data from Collector instance 1. For instance, Figure 36b

(right) and 36d (right) are examples when compared to Figures 36a (right) and 36c (right).

108

However, more than these four applications impact the computing of PA for each Collector

instance. Lastly, Figure 38 also demonstrates that after minute 15 (900 s), the PA from the

Collector instance 1 was higher than instance 2; however, its QoS service stack remained with

two services. That is because the last QoS service (Data Prioritization) was already stacked to

Collector instance 2.

Figure 38: Looking at the Service Orchestration details. Weights w5() and w6(), Potential of
Adaptation PA(), and number of QoS services enabled over time of Collector instances 1 and
2 from scenarios S1 and S1’. The figures show the weights’ variation, and the instant QoS
services are stacked for each Collector instance. The QoS service sequence occurs as follow:
1st Data Frequency Rata, 2nd Data Compression, and 3rd Data Prioritization.

(a) S1 - Weights Collector 1 (b) S1 - Weights Collector 2

Source: elaborated by the author.

6.4 Enhancing the Experiments

The previous results demonstrate that the middleware can reduce resource consumption,

slightly penalizing the applications’ metrics in the majority of the cases. Although causing an

increase in the measurements, the values remained above the QoS thresholds of the applica-

tions. This section further evaluates the middleware. It presents additional experiments only

employing the Data Prioritization and the Data Frequency Rate QoS services. That is, here,

HealthStack does not employ the Data Compression QoS service. The main reason for that is

that the last sections demonstrated that this particular service imposes a significant overhead on

the system causing metrics to increase. Therefore, this second phase of experiments investigates

the effect of not using this particular QoS service.

The evaluation methodology remained the same in terms of the prototype, infrastructure,

109

and parameters. The only change regards the evaluation scenario. Figure 39 depicts the new

evaluation scenario in detail. Now, instead of 32 applications, the evaluation consists of 48 ap-

plications. The QoS type and data type sequence follow the same as in the previous scenarios.

Each new application connection requests a different data type than the previous one. Specifi-

cally, Application 1 requests depth data, Application 2 position data, Application 3 depth data,

and so on. Although the QoS type sequence is the same as before, the only difference is the

threshold values. The applications define their target QoS threshold in a round-robin fashion:

delay 50 ms, delay 50 ms, jitter 25 ms, and jitter 25 ms. In other words, Applications 1 and 2

define delay to 50 ms, Applications 3 and 4 determine jitter to 25 ms, and the sequence repeats

for the next applications. The definition of these new values follows some studies on health-

care (MUKHOPADHYAY, 2017; NANDA; FERNANDES, 2007; MALINDI; KAHN, 2008;

LEE et al., 2011).

The evaluation consisted of observing the execution of the middleware and the applications

in ten minutes. The time zero represents the instant the HealthStack starts running. The mid-

dleware and the script to run the applications start at the same time. This particular script starts

each application respecting the interval described above (one at every six seconds). In the be-

ginning, the script sleeps for six seconds and then starts the first application at the time 00:06

(mm:ss). Consequently, the last application connects at the time 4:42 (m:ss). The applications

and HealthStack keep running until minute ten to visualize more data when all applications are

connected. As in the previous experiments, this application scenario executes under two differ-

ent configurations to provide a vision of the benefits of employing the QoS Service Stacking

strategy: (i) QoS Service Stacking enabled; and (ii) QoS Service Stacking disabled. The next

subsections present the results.

Figure 39: The sequence of application connections in the new workload scenario. One appli-
cation connects every six seconds requesting a Data type, a QoS type, and a QoS threshold. The
application index refers to the sequence of the application connection to the middleware.

50 50 25 25 50 50 25 25 50 50 25 255050 2525 5050 2525 5050 2525

Time

Scenario S9

1 2 3 4 5 6 7 8 9 10 11 12 3837 4039 4241 4443 4645 4847

Application index

pi i p pi i p pi i p pi i p pi i p pi i ppi i p pi i p pi i p pi i p pi i p pi i p

dd j j dd j j dd j j dd j j dd j j dd j jdd j j dd j j dd j j dd j j dd j j dd j jQoS type

Data type

d

j p

i

25

50Delay threshold

Jitter threshold

Depth image data

Position data

50 milliseconds

25 milliseconds

d

j p

i

25

50Delay threshold

Jitter threshold

Depth image data

Position data

50 milliseconds

25 milliseconds
Caption

Q
o

S
 t

yp
e

D
a
ta

 t
y
p

e

Q
o

S

T
h

re
sh

o
ld

s

Source: elaborated by the author.

110

6.4.1 Applications’ Average Delay and Jitter

This subsection presents the results for each application regarding the two target metrics:

delay and jitter. With this evaluation, the reader looks at the delay and jitter of different appli-

cations brought by the QoS Service Stacking. First, let us focus on the delay metric. Figure 40

illustrates the distribution of the mean delay for each application considering the QoS Service

Stacking enabled and disabled. As application request different data types, the figure segments

the results according to the data type to show their relevance to the results.

Figure 40: Delay results for the new evaluation scenario considering the two different sensor
types: depth and position. Each bar is calculated with the mean delay of each application.

Source: elaborated by the author.

Most of the applications that consume depth data experienced improvements, but not all

of them. From a total of 24, 18 applications (75%) presented improvements in their average

delay. Computing the mean of the average delay of each of the 24 applications (that consume

depth data) results in 84.2 ms when QoS Service Stacking is disabled and 84 ms (-0.23%) when

enabled. On the other hand, applications that consume position data achieved more meaningful

results (pay attention to the scale). Only one out of 24 applications achieved a higher average

delay when enabling the QoS Service Stacking. The mean of the average delay for these ap-

plications when QoS Service Stacking is disabled results in 5 ms against 3.6 ms (-28%) of QoS

Service Stacking enabled. Comparing both diagrams, the data size transmitted to applications

from depth data is considerably higher than position data. Depth data requires more processing

and transmission time; therefore, the changes represent a smaller percentile than the second

set’s improvements. Still, enabling the QoS Service Stacking strategy improves the results in

most of the cases.

Now, let us change the focus to the jitter metric. Figure 41 depicts the distribution of the

111

mean jitter for each application considering the QoS Service Stacking enabled and disabled.

Here, the variations are more expressive than the ones for the delay. However, different data

types resulted in contrasting results. On the one hand, the left diagram demonstrates the results

for applications that consume depth data. Only five from 24 applications had improvements in

their jitter. Considering all 24 applications, the mean of their average jitter results in 2.6 ms with

QoS Service Stacking disabled versus 3.3 ms (+26.9%) with QoS Service Stacking enabled.

Although not demonstrating improvements, the resulting jitter is still low. It demonstrates that

enabling the QoS Service Stacking results in better delay, not imposing higher jitter penalties,

as a jitter lower than 25 ms is acceptable (NANDA; FERNANDES, 2007).

Figure 41: Jitter results for the new evaluation scenario considering the two different sensor
types: depth and position. Each bar is calculated with the mean jitter of each application.

Source: elaborated by the author.

On the other hand, the right diagram shows that all applications that consume position data

had considerable high improvements. Examining the individual results of all 24 applications

that compose each box of this diagram, the mean of their average jitter results in 21.7 ms when

disabling QoS Service Stacking versus 2.1 ms when enabling it. It represents a substantial de-

crease of 90.3%. The main reason for that is that the RTLS system does not provide tag position

samples at a stable rate. It impacts directly on jitter. In this scenario, the Data Frequency Rate

service plays an essential role because it stabilizes the frame rate to a lower value. It also sta-

bilizes jitter since the Collector acquires samples at a lower rate. Comparing both Figures 40

and 41, it is possible to note that the data type turns to make difference in the results. Although

the results demonstrate significant advantages for small-sized data types, they also demonstrate

excellent results for large size data types. That is important in healthcare since much critical

information is small size data types. For example, we have body temperature, ECG, and oxygen

saturation level.

112

6.4.2 Resource Consumption

This subsection focuses on analyzing all three nodes’ resource consumption from the in-

frastructure when running the new scenario. Table 14 organizes all results of CPU, memory,

and network consumption for all nodes. The table presents the variation for each result when

comparing the QoS Service Stacking enabled and disabled. Results demonstrate that the QoS

Service Stacking decreases the needed resources to execute the application scenario for most

of the cases. The only exceptions are the CPU consumption of node0, memory consumption of

node1. For the remaining cases, the results are expressive. For instance, network consumption

is dramatically lower when the QoS Service Stacking strategy is enabled. What causes that is

the Data Frequency Rate QoS service because both Collector 1 (node0) and Collector 2 (node1)

received this service during the execution. This QoS service decreases data transmission from

both nodes to the node2, causing a decrease for all nodes.

Table 14: Average resource consumption of each node CPU, memory, and network. Addition-
ally, the last column represents the variation in resource consumption when enabling the QoS
Service Stacking strategy.

Resource Node
QoS Service Stacking

Variation
Disabled Enabled

CPU

node0 9.64% 10.21% +5.91%

node1 2.03% 1.05% -48.28%

node2 9.7% 6.92% -28.66%

MEM

node0 30.64% 29.09% -5.06%

node1 19.93% 22.58% +13.30%

node2 4.35% 4.35% -0.02%

NET

node0 3.53% 1.18% -66.57%

node1 0.17% 0.15% -11.76%

node2 3.66% 1.23% -66.39%
Source: elaborated by the author.

The CPU results also demonstrate lower consumption with QoS Service Stacking enabled

for node1 and node2 due to the Data Frequency Rate QoS service. The TCP/IP protocol requires

extra processing cycles for each data transmission, directly impacting CPU consumption. With

fewer data samples to transmit, the node spares cycles resulting in lower CPU consumption

rates. Although the results for node0 represent a higher consumption when the QoS Service

Stacking is enabled, this represents an addition of only 0.57%. The results do not demonstrate

significant improvements regarding memory consumption, but they still resulted in less memory

consumption for two of three nodes. For node1, the QoS Service Stacking resulted in more

113

memory consumption. However, it is not trivial to define the main reason for that. To better

understand the profiles of resource consumption, the next figure is more helpful.

Figure 42 depicts each node’s resource consumption over time in both scenarios with QoS

Service Stacking enabled and disabled. The first three rows of the figure bring results from

CPU, memory, and network consumption, in that order. To understand the variations in re-

source consumption that occur over time, the last two rows of the figure illustrate additional

information on the number of connected applications and the distribution of services in the Col-

lectors’ stacks. It is important to note that, for node0 and node1, the fourth row demonstrates

only how many user applications request their data to the Core, which runs in node2. Besides,

the last row demonstrates the services active for each node in a binary form. A value equal to

zero in this particular diagram represents that the service is not enabled, while a value equal to

one means that the service is enabled.

The first row is straightforward for nodes1 and node2 that results with the QoS Service

Stacking enabled achieve lower values. The enabling of the Data Frequency Rate service stabi-

lized the CPU consumption for both of them. On the other hand, the same is not valid for node0.

The CPU traces remain unstable all the time. This particular node runs the Microsoft Kinect

API, which implements several computer vision techniques to extract depth information from

the Kinect. This process produces too much overhead making the impact of the Data Frequency

Rate negligible. The main reason for that is because this particular service works at the network

level of the node. It only decreases network transmission by decreasing the Collector instance’s

network frame rate when it is enabled. It does not impact the Kinect device’s primary depth

data extraction process, which remains generating local information at its rate.

Network consumption has different behaviors for each node. First, node0 demonstrates an

increase in 1% of network consumption at 318 s. Second, node1 shows very different results

at the beginning and a decreasing trend when the QoS Service Stacking is enabled. When

running the experiments, for both situations with QoS Service Stacking enabled and disabled,

the same processes were running in each computer node. Thus, the starting point of network

consumption should be the same. As that did not occur, some internal processes running in the

operating system were consuming different amounts of memory in each execution. However,

the results do not demonstrate a direct impact of HealthStack because it was running in both

cases. The only difference is that when QoS Service Stacking is enabled, HealthStack stacks

services to the Collector instance. Otherwise, it only monitors all parameters and does nothing

when violations occur.

Finally, the most visible alteration in resource consumption regards the network in the third

row. For both node0 and node2, there is a considerable drop in network consumption. That

occurred because of the Data Frequency Rate QoS service stacked for Collector 1 (node0) at

138 s of execution. This caused a decrease in the data transmission of node0, which directly

impacts the data reception of node2 running the Core. For node1, there is no visual alteration

even though the same service is also stacked. That is because position data does not require

114

Figure 42: All nodes’ resource consumption over time, including the number of connected
applications in the middleware, and the services delivered for each node. In the last row, the
y-axis represents whether a service is active (zero) or not (one).

Source: elaborated by the author.

higher data transmission, and variations in the amount of its data are not significant.

115

6.4.3 Applications’ Measurements Time Series

This analysis selects data from one of the 48 applications to show the behavior of measure-

ments over time and the QoS Service Stacking impact. Figure 43 depicts the measurements of

delay and jitter over time for application 4. This application consumes position information and

informs a jitter threshold of 25 ms. This figure of one particular application’s behavior facili-

tates the understanding since plotting all data would confuse the reader. The figure shows the

difference in performance for the application when enabling the QoS Service Stacking. Dia-

gram (a) demonstrates that the application’s jitter violates the application’s threshold at several

moments. These violations keep occurring during the whole execution.

Figure 43: Application ID 4 delay and jitter measurements over time with QoS Service Stack-
ing disabled versus enabled. The goal is to visualize the impact on measurements when QoS
services are enabled.

(a) QoS Service Stacking Disabled

Data Frequency

Rate Service

Stacked

Data Frequency

Rate Service

Stacked

(b) QoS Service Stacking Enabled

Source: elaborated by the author.

On the other hand, diagram (b) demonstrates a different performance. That is possible

because, at time 68 s, HealthStack stacks the Data Frequency Rate service. Right after this

moment, both metrics delay and jitter drop and keep stable until the execution. Looking specif-

ically at the Jitter line, after violating the threshold in the first 60 s, the service activation solved

the problem, and no more violations occurred. That demonstrates the power of the QoS Service

Stacking strategy. Another important thing to keep in mind is that the system only starts to

stack services after 60 s due to the cool-down period. HealthStack always starts in cool-down

116

to avoid taking premature actions.

6.5 Discussion

The evaluation of the model included three QoS services and several applications with dif-

ferent QoS requirements. The experiments demonstrate that each QoS service brings individual

advantages and drawbacks. Therefore, the QoS services must be chosen wisely according to

the main objective of the solution. For instance, adjusting the sampling rate of sensor nodes

helps stabilize the jitter and reduce resource consumption. On the other hand, compressing data

has distinct effects on the final results of applications and resource consumption because it in-

troduces computation overhead at the sensor nodes. Thus, increasing the time to dispatch data

over the network and simultaneously decreasing the amount of data to be transmitted.

Experiments demonstrate that, although the mean of all scenarios with service support in-

creased by 34.7% in delay, the mean delay was 74.2 ms, which is lower than a hard QoS thresh-

old of 100 ms. On the bright side, this can be useful in scenarios with network limitations

despite the penalty delay. Besides the effects of the services, the experiments demonstrate that

HealthStack can automatically perform the adjustments without any user actions. HealthStack

Orchestration Service demonstrates to choose the right components to stack QoS services when

QoS violations occur, resulting in improved resource consumption. All operations are transpar-

ent to the user, which may or may not define the application’s QoS requirements. If the user

does not inform QoS properties, HealthStack automatically assumes specific default values for

each data type. Therefore, even if the user is not aware of the QoS model, the services will be

available and running.

Comparing HealthStack with related work in the area, HealthStack demonstrates its strengths

in the multi-service on-the-fly ability. That is, HealthStack employs multiple QoS strategies,

and it activates them according to QoS violations. Therefore, HealthStack provides data to ap-

plications aware of their requirements. Only in case of applications have their QoS violated,

HealthStack takes action to tackle the problems. Current strategies mostly employ specific QoS

strategies directly to sensor data transmissions. They are tailored to specific environments, such

as WBAN. Differently, HealthStack is agnostic of the type of sensor, allowing the integration

of a wide variety of sensors.

6.5.1 Main Results

The first conclusions about HealthStack experiments led to an important question: consid-

ering the data types employed in the evaluation, do the experiments need to employ the Data

Compression service? With this in mind, a new set of experiments was performed, not includ-

ing this particular service. That demonstrated to be positive in the evaluation since the overhead

this service imposes is significant for the data types and network setup where the experiments

117

were carried on. This second phase of experiments demonstrates, with more emphasis, the

benefits of HealthStack. The QoS Service Stacking strategy demonstrated promising results,

improving both delay and jitter from applications while decreasing computational resources’

requirement to achieve that. In summary, HealthStack brings expressive improvements for low

size data types, such as position data. Tables 15 and 16 highlight the main results from the two

experiment phases side by side.

First, Table 15 shows that the QoS Service Stacking brought more improvements in average

delay and jitter in the second phase. This phase does not include the Data Compression service,

which did not bring good results in the first phase. Although each phase’s scenarios are differ-

ent, the table shows that the second phase achieved much better results. Unlike the first phase,

three out of four values represent improvements from the application’s perspective. From the

resource consumption perspective, Table 16 shows that, in general, the second phase of exper-

iments achieved much better results. Seven out of nine values represent improvements in the

second phase, compared to six in the first, which is also positive. These results demonstrate that

HealthStack can improve resource consumption in most cases.

Table 15: Variation in average delay and jitter of all applications when enabling the QoS Service
Stacking. Improvements are highlighted in blue boxes.

P
ha

se Delay Jitter

Depth Position Depth Position

1st 24.78% 51.47% 250% -92.3%

2nd -0.23% -28% 26.9% -90.3%
Source: elaborated by the author.

Table 16: Variation in resource consumption of all applications when enabling the QoS Service
Stacking. Improvements are highlighted in blue boxes.

P
ha

se node_0 (Depth) node_1 (Position) node_2 (Core)

CPU MEM NET CPU MEM NET CPU MEM NET

1
st -3.2% 0.8% -61.8% -1.9% 2.3% -30.6% -8.3% 25% -56%

2
nd 5.91% -5.06% -66.57% -48.28% 13.30% -11.76% -28.66% -0.02% -66.39%

Source: elaborated by the author.

HealthStack achieved mixed results when looking at the colors of the values. As aforemen-

tioned, the first phase of experiments included the Data Compression service, which imposed

extra time to process data. That directly impacted the applications’ delay and jitter. The only

exception was the jitter for position data that was improved even with this particular service.

The RTLS system employed in the experiments does not generate position data at a steady

frequency. When employing the Data Frequency service, HealthStack decreases the Position

118

Collector’s FPS to 1 Hz, which allows the RTLS system to produce at least one new informa-

tion at each second. That stabilizes the jitter resulting in the observed improvement. A similar

jitter result is observed in the second phase of experiments for the same reason. On the other

hand, this phase, now not employing the Data Compression service, achieved better results than

the first one. Without the overhead of this particular service, HealthStack decreased both delay

and jitter for applications. The only exception is jitter for depth data, which is still higher on

average but much lower than the first phase.

6.5.2 Limitations

Looking at the HealthStack’s limitations, the evaluation considered only two types of sen-

sors. The experiments only employ position data and depth information. These sensors can

represent a short range of sensor types, specifically sensors that generate just a few bytes or

hundreds of kilobytes. It is essential to experiment HealthStack employing sensors that gen-

erate data with different patterns and much higher data volumes. In the latter case, the Data

Compression service can be beneficial.

Besides the data types limitation, HealthStack considers many variables to be configured.

The experiments did not focus on testing different parameters to assess their effect on the so-

lution. The evaluation methodology defined a set of parameters that were fixed among all

experiments and phases. Those parameters can change the behavior of the system and in which

instant QoS services are stacked. Therefore, setting them is challenging and requires technical

awareness from the technical team that is deploying HealthStack. An evaluation of different

sets of parameters and their effects could make it easy to define them.

Also, from the four QoS services proposed, the evaluation did not cover the Resource Elas-

ticity. As the middleware Core runs in a dedicated and robust server, it has plenty of compu-

tational resources to address the proposed evaluation scenarios. Although the Core centralized

the data in our evaluation, it did not show high enough resource consumption to interfere with

the results. The results demonstrate that the Core resources never achieved their limits, which

would trigger the Service Orchestration to deploy the Resource Elasticity service. Besides run-

ning the Core in a robust server, the evaluation methodology employed two Collector instances,

which is another limitation.

Hospital deployments can employ a large number of sensors, which would require more

Collector instances. Therefore, experimenting HealthStack in a large-scale deployment could

provide better insights for such environments. The HealthStack model comprises multiple in-

stances of the Core, which can be configured to collect data from different Collector instances.

However, the experiments only employed a single Core instance given the small scale of the

environment. A large scale environment would also require more than one Core instance to

balance the load from several Collector instances.

119

6.6 Summary

This section presented the results of the experimental tests of the model from different points

of view: (i) average delay and jitter of applications; (ii) resource consumption; and (iii) time se-

ries analysis of the applications’ measurements. Based on some conclusions obtained from the

analysis of results, the second set of experiments was conducted with some changes compared

to the first one. The first set of experiments demonstrated that the mean delay of all scenarios

and data types with QoS Service Stacking enabled achieved higher results. More specifically,

considering depth data, the mean delay of applications is 69.4 ms for scenarios with QoS Ser-

vice Stacking disabled, and 86.6 ms for scenarios with it enabled, representing an increase of

24.78% when enabling the QoS Service Stacking. In turn, considering position data, the mean

delay of applications is 40.8 ms for scenarios with QoS Service Stacking disabled, and 61.8 ms

for scenarios with it enabled, representing an increase of 51.47%. Although the increase, the

mean is still lower than the hard threshold for the delay, which is 100 ms.

On the jitter scope, averaging the results from applications that request depth data, the mean

delay of applications is 26.3 ms with QoS Service Stacking enabled versus 7.5 ms with it dis-

abled, representing an increase of 250%. Considering applications that request position data,

the mean of scenarios with QoS Service Stacking disabled is 28.5 ms. In contrast, scenarios

with QoS Service Stacking enabled it is 2.2 ms, demonstrating an improvement of 92.3%. The

values demonstrate contrasting results depending on the data type. HealthStack demonstrates

results in better performance for low size data types.

Regarding resource consumption, each node employed in the experiments has particular re-

sults. First, for node0, QoS Service Stacking resulted in improvements of 3.2% in CPU, 61.8%

in network, and overhead of 0.8% in memory consumption. Second, for node1, QoS Service

Stacking resulted in improvements of 1.9% in CPU, 30.6% in network, and overhead of 2.3%

in memory consumption. Last, for node2, QoS Service Stacking resulted in improvements of

8.3% in CPU, 55.5% in network, and overhead of 25% in memory consumption. These results

demonstrate that HealthStack can improve resource consumption in the majority of cases. By

further analyzing the first set of experiments, it was identified that the Data Compression service

could avoid more expressive improvements. This particular service imposes overhead on pro-

cessing data by the Collector instances. Thus, an additional set of experiments was performed

with some changes, including removing the Data Compression service.

The second set of experiments changed the number of applications from 32 to 48 and the

arrival interval from 60 s to 6 s. For this new scenario, the evaluation time changed from 35

minutes to ten minutes. The evaluation considered the same three points of view as the first set

of experiments. Computing the mean of delay of each application that consumes depth data, it

results in 84 ms when QoS Service Stacking is enabled and 84.2 ms when disabled, representing

a decrease of 0.2%. Doing the same, but for applications that consume position data, it results

in 3.6 ms when enabling QoS Service Stacking against 5 ms of QoS Service Stacking disabled,

120

demonstrating an improvement of 28%. Unlike the first set of experiments that employed the

Data Compression service, now the QoS Service Stacking results in better delay performance

for both data types.

Regarding the jitter metric, for applications that consume depth data, the mean of their jitter

results in 3.3 ms with QoS Service Stacking enabled versus 2.6 ms with QoS Service Stacking

disabled, representing an increase of 29.9%. For applications that consume position data, QoS

Service Stacking enabled results in 2.1 ms versus 21.7 ms of QoS Service Stacking disabled,

representing 90.3% of improvement. The results demonstrate that HealthStack provides con-

siderable performance gains and does not impose high penalties in depth data since the mean

jitter remains above the hard threshold of 25 ms.

Finally, analyzing the resource consumption results, each node has different results. First,

for node0, QoS Service Stacking resulted in improvements of 66.57% in network, 5.06% in

memory, and overhead of 5.91% in CPU. Second, for node1, QoS Service Stacking resulted

in improvements of 48.28% in CPU, 11.76% in network, and overhead of 13.30% in memory

consumption. Last, for node2, QoS Service Stacking resulted in improvements of 28.66% in

CPU, 66.39% in network, and 0.02% in memory consumption.

The experiments of the model comprised a roadmap that included two phases of experi-

ments. The first phase included the Data Compression service. The results identified that this

service imposed too much overhead in the data processing flow, not improving the results. Then,

the second set of experiments without using this particular service demonstrated its impact on

results. In particular, results from the second set of experiments were even better than the first

set of results.

121

7 CONCLUSION

Modern hospitals advance towards the future in the path of the technological advances

brought by IoT technology. Sensors will generate massive amounts of information regarding

medical processes, patients, and medical staff. Nowadays, medical processes rely on reactive

actions. Nurses and physicians act according to data from equipment that monitors patients.

In the future, global analysis of many centralized data will allow the employment of artificial

intelligence technology. Therefore, the correlation of data from different sources will favor the

medical processes in a way never seen before. Data predictions will enable the medical staff to

act more proactively through data analysis. More specifically, they will coordinate their actions

according to forecasts of such systems.

However, this future relies on a distributed system with centralized data processing, which

brings scalability problems. If the system loses performance due to too many sensors and appli-

cations, the medical processes’ proactiveness would be compromised. Nowadays, many solu-

tions focus on the QoS problems of systems in healthcare. Notwithstanding their contributions,

they lack focus on the real-time property for high critical data in hospital environments and

a more general system capable of acquiring data from multiple sensors. More precisely, they

do not focus on proposing a system that connects many sensors to many users with a simple

interface while offering QoS strategies according to the system load.

Given the background, Section 1.2 presented the following research question: Which self-

adaptative strategies a healthcare middleware, with dynamic sensor and application connec-

tions, needs to efficiently provide timed data for applications? To answer that, this study pro-

posed HealthStack, a QoS-aware middleware model for hospital settings that aims at delivering

multiple sensor data for applications. The middleware monitors the delay and jitter of applica-

tions and takes actions in case thresholds are violated. HealthStack defines several components

organized in a distributed system among several nodes. Besides the base components, the model

comprises a QoS Manager module that enables automatic monitoring and QoS Service Stacking

through a QoS model. The QoS Service Stacking strategy is a novel concept that decides when

to enable QoS services for each system component based on measurements of the system and

user requirements. The Manager monitors performance metrics periodically from both com-

ponents and applications. The decision-making process analyzes all this information to decide

which component is overloaded to activate QoS services to tackle the problem. Considering

the proposed middleware and results achieved by this study, the following hypothesis presented

in Section 1.2 could be verified: An adapting-driven middleware for sensor-based healthcare

environments, with dynamic sensors and applications connected to the system, can efficiently

provide an acceptable quality of service for end-user applications.

The current research development was part of a research project in partnership with a hos-

pital in Brazil. It allowed the deployment of the prototype in an actual hybrid operating room

from the hospital surgical block. Access to a critical environment, such as operating rooms,

122

bring valuable contributions to research development. The experience in such an environment

enriches the study by providing real issues and concerns to the research development. Among

them, focus on patient well-being is crucial when deploying any technology inside an operating

room. Besides, installing equipment in the hospital requires the operating room to be unavail-

able for a while. That affects the operating room schedule, and for that reason, the deployment

process should be as efficient as possible.

7.1 Lessons Learned

This research’s scientific roadmap included designing and implementing the middleware in a

real hybrid operating room. The development and installation were demonstrated to be complex

but possible to achieve. This section discusses the aspects of the experience in accomplishing

the study in a real hospital. It brings to discuss some lessons learned in many aspects, from

building the partnership to performing experiments.

7.1.1 Lesson 1: Build a Strong Partnership

Bringing scientific research to real deployments in the healthcare scenario is, at the same

time, challenging and essential. As a first step, establishing a partnership requires many meet-

ings, including both hospital and university staff, to clarify the project’s aspects. Once the

project is approved, technical details should be well discussed between the hospital’s technical

team and the scientific team. That is important since different sectors of technology and en-

gineering management the whole hospital infrastructure. Thanks to that, deploying hardware

and software within the hospital settings must be previously discussed with both sectors. That

spotlights the necessity of negotiating the best solutions to install equipment without causing

problems to the current systems running in the hospital.

With all details solved, the installation process also requires people of different hospital

sectors and even the scientific team to coordinate. The whole process demonstrates that forming

a partnership and making it happen requires both commitment and proper communication of

several persons. Although complicated, the process results in a partnership with outstanding

outcomes for both sides. The ideas developed for the hospital can improve their services for

patients, which also benefits from it. It is an excellent opportunity for researchers to grow and

evolve new ideas with constant feedback from real settings.

7.1.2 Lesson 2: Consider the Complexity of the Environment in the System Design

Medical settings are highly critical environments that encompass complex processes. Such

complexity includes a variety of equipment and medical roles performed by several persons at

the same time. On top of that, the patients are the process’s focus, and their well being is the

123

process’ ultimate goal. Thanks to all that complexity, implementing new techniques requires

awareness of multiple aspects. On the one hand, depending on the technology, it is crucial not

to cause adverse effects on the current technologies already used in the hospitals. On the other

hand, as medical processes involve legal issues, privacy concerns should also be considered.

Thus, there is a limitation in what the researchers can do or not in the hospital facilities.

Considering all of that, this research study was as carefully as possible in deploying the

infrastructure at the hospital. Hence, we opted to install our private network infrastructure with

the hospital’s biomedical engineering sector’s help. This choice is due to two main reasons.

First, as some sensors generate a considerable amount of data, this could impact the network

and, consequently, other services already running in the hospital. Second, a private network

only for the middleware data exchange prevents the transmission of raw data through the hos-

pital network due to several privacy concerns. Besides, this also prevents network sniffers from

capturing the middleware packets and corrupting them. As a bonus, it increases the experimen-

tal environment’s control, enabling customization and improving the experiments’ reliability.

7.1.3 Lesson 3: Tailor the Technology to the Target Environment

This topic defines what is necessary to bring such technology to modern hospitals. Two

main steps compose it: deploy the architecture and design the applications. For the first step,

as mentioned before, it is required the installation of some equipment dedicated to run the mid-

dleware architecture. The hardware capacity will depend on the type of sensors. More robust

sensors, such as Microsoft Kinect v2, impose specific Collector nodes’ specific requirements.

In particular, it requires USB 3.0 interfaces and the Microsoft Kinect API so that the Collector

can extract image frames from the Kinect. In this case, nodes must be compatible with the

demands of computer vision techniques.

On the other hand, as Sewio RTLS, some lightweight sensors only require the node to run

its VM or a single application. Some sensors even only require the compatibility of the node

with some specific language to run their APIs. Besides the nodes, the network must be private.

The technology and performance should suit the amount of data to be transmitted. All nodes

running the Collector instances and the server that runs the Core should connect to this private

network. The server requires at least two network interfaces: one for the private network and

another to connect to the hospital network. Therefore, hospital applications can process data

streams from the server in any hospital area, including remote locations.

Concerning the application’s design, nowadays, there are already many well-known publish-

subscribe platforms that provide easy to use API’s for real-time data. Our middleware is de-

signed to be compatible with such technologies. Thus, applications are only required to use our

middleware wrapper, which adds QoS arguments to the subscription calls. The applications do

not need to implement any additional code but only add their parameters. As the middleware

has default delay and jitter limits, they will still be compatible if they do not inform them.

124

7.1.4 Lesson 4: Critically Analyze the Results to Find Solutions

One of the main problems when running a distributed system is known as a bottleneck. This

problem occurs when a system provides its services for many clients through the same node or

module. As the number of clients increases, the amount of work this particular node must per-

form also increases. However, due to hardware limitations, this node can experience overload

situations. That is, the node cannot handle the amount of work, which affects its performance

directly. By dividing the amount of work among several Collector instances, HealthStack re-

moves this problem from the sensors. Each Collector serves only one client connection from the

Core. Also, the QoS Service Stacking strategy brings benefits directly to the sensors, improving

data collection performance.

Looking at the study’s evaluation, HealthStack can still suffer from a bottleneck at the Core

level. As the experiments comprised the middleware with only one core instance, they demon-

strate the increase of delay according to client applications’ growth. On the bright side, the

services stacked at the sensors level helped to improve the results, even when the ascending de-

lay occurred. Besides, HealthStack also comprises resource elasticity, although the experiments

did not include it. The inclusion of an additional QoS service can deal directly with the increas-

ing effect: admission control. This strategy is common in network QoS solutions. Its main

benefit is to prevent too many connections in the system. Instead of accepting all connections,

client applications can only connect while the system supports them. Therefore, the system can

deliver a stable performance for applications that are already connected.

As a final point, the analysis of results must consider the medical point of view. Presenting

results to the medical team is an important step. They can provide a different vision of the

research team’s kind of information from the results. Workshops and meetings with the medical

partner are part of this process. In such moments, discussion raise possible customization to

guide the next steps. It highlights the main aspects that the research team should address to

achieve different outcomes.

7.2 Main Contributions

Envisioning the hospitals of the future, HealthStack provides strategies to guarantee per-

formance for real-time applications that process data from medical processes and hardware

optimization. More importantly, future real-time applications will require reliability in data

flows from hospital processes to perform correctly. Many actuators will support it according to

real-time data processing. Thus, the importance of guaranteeing the performance of these data

flows will directly impact the quality of the services delivered to patients. This study’s scope

presented contributions to scientific, technical, and society on behalf of hospital services. The

main contributions this study introduces are listed as follows:

(i) A middleware model for healthcare environments with automatic QoS support for real-

125

time data transmission;

(ii) QoS strategy based on artificial neurons to select middleware components with poor per-

formance.

The experiments demonstrate that the strategy can improve the applications’ experienced

jitter mean by 92.3% and delay mean by 28% for position data samples. Also, it resulted in

a reduction of network, memory, and CPU consumption by up to 66.4%, 5.06%, and 48.3%,

respectively. The results are encouraging and demonstrate the importance of HealthStack. Be-

sides the technical contributions, the solution offers a new level of reliability to time-critical

applications directly impacting the patients’ health. This research provides the improvement

of medical services for patients. That also contributes to the hospital administration processes

because they can access real-time data with QoS guarantees. The main challenges in the re-

search roadmap were how to deploy such a system in a private hospital without impacting

existing technologies. For that reason, the best option was to deploy a private communica-

tion network to avoid concurrence with hospital systems traffic. In a production environment,

HealthStack requires the configuration of components individually. Once running, it is possi-

ble to change configurations remotely through the central core component that should run in a

dedicated server, preferably.

7.3 Publications

This section lists all articles published and submitted to evaluation during the whole research

period. These articles comprise results from this current research, which is part of a research

project of the university, and results from other studies in the project’s scope. The following

three published articles contain the concepts presented in this study:

1. Title: Exploring Publish/Subscribe, Multilevel Cloud Elasticity, and Data Compression

in Telemedicine

Journal: Computer Methods and Programs in Biomedicine

Impact Factor: 3.632

DOI: http://dx.doi.org/10.1016/j.cmpb.2020.105403

Citation: RODRIGUES, V. F.; PAIM, E. P.; KUNST, R.; ANTUNES, R. S.; COSTA, C.

A. da; RIGHI, R. R.. Exploring Publish/Subscribe, Multilevel Cloud Elasticity, and Data

Compression in Telemedicine. Computer Methods and Programs in Biomedicine, v. 191,

p. 105403, 2020.

2. Title: On Providing Multi-Level Quality of Service for Operating Rooms of the Future

Journal: SENSORS

Impact Factor: 3.275

DOI: https://doi.org/10.3390/s19102303

126

Citation: RODRIGUES, V. F.; RIGHI, R. R.; COSTA, C. A. da; ESKOFIER, B.;

MAIER, A.. On Providing Multi-Level Quality of Service for Operating Rooms of the

Future. SENSORS, v. 19, p. 2303-27, 2019.

3. Title: A Survey of Sensors in Healthcare Workflow Monitoring

Journal: ACM Computing Surveys

Impact Factor: 7.990

DOI: https://doi.org/10.1145/3177852

Citation: ANTUNES, R. S.; SEEWALD, L. A.; RODRIGUES, V. F.; COSTA, C. A.

da; JUNIOR, L. G. S.; RIGHI, R. R.; MAIER, A.; ESKOFIER, B.; OLLENSCHLAGER,

M.; NADERI, F.; FAHRIG, R.; BAUER, S.; KLEIN, S.; CAMPANATTI, G.. A Survey of

Sensors in Healthcare Workflow Monitoring. ACM Computing Surveys, v. 51, p. 1-37,

2018.

Some other two articles that also contain the concepts of the current study are currently

submitted for evaluation:

1. Title: Proactiveness, Global Analysis, and Artificial Intelligence: There Future Asks for

QoS in Healthcare 4.0

Journal: IEEE Technology and Society Magazine

Impact Factor: 1.256

DOI: -

Citation: RODRIGUES, V. F.; RIGHI, R. R.; COSTA, C. A. DA C.; ANTUNES, R. S..

Proactiveness, Global Analysis, and Artificial Intelligence: There Future Asks for QoS in

Healthcare 4.0. IEEE Technology and Society Magazine.

2. Title: HealthStack: Providing an IoT Middleware for Malleable QoS Service Stacking

for Hospital 4.0 Operating Rooms

Journal: ACM Transactions on Computing for Healthcare

Impact Factor: -

DOI: -

Citation: RODRIGUES, V. F.; RIGHI, R. R.; COSTA, C. A. DA C.; ANTUNES, R.

S.; BAZO, R.; REIS, E. S.; SEEWALD, L. A.; JUNIOR, L. G.; ESKOFIER, B.. Health-

Stack: Providing an IoT Middleware for Malleable QoS Service Stacking for Hospital 4.0

Operating Rooms. ACM Transactions on Computing for Healthcare.

Besides the articles related to this study, several other articles were produced in the project’s

scope and studies during the research period. The following list presents the articles already

published:

1. Title: Use of Internet of Things With Data Prediction on Healthcare Environments

Journal: International Journal of E-Health and Medical Communications (IJEHMC)

127

Impact Factor: 0.570

DOI: http://dx.doi.org/10.4018/ijehmc.2020040101

Citation: FISCHER, G. S.; RIGHI, R. R.; RODRIGUES, V. F.; COSTA, C. A. da. Use

of Internet of Things With Data Prediction on Healthcare Environments. International

Journal of E-Health and Medical Communications, v. 11, p. 1-19, 2020.

2. Title: Looking at Fog Computing for E-Health through the Lens of Deployment Chal-

lenges and Applications

Journal: SENSORS

Impact Factor: 3.275

DOI: http://dx.doi.org/10.3390/s20092553

Citation: VILELA, P. H.; RODRIGUES, J. J. P. C.; RIGHI, R. R.; KOZLOV, S.; RO-

DRIGUES, V. F.. Looking at Fog Computing for E-Health through the Lens of Deploy-

ment Challenges and Applications. SENSORS, v. 20, p. 2553, 2020.

3. Title: Baptizo: A sensor fusion based model for tracking the identity of human poses

Journal: Information Fusion

Impact Factor: 13.669

DOI: https://doi.org/10.1016/j.inffus.2020.03.011

Citation: BAZO, R.; REIS, E.; SEEWALD, L. A.; RODRIGUES, V. F.; COSTA, C.

A. da; JUNIOR, L. G.; ANTUNES, R. S.; RIGHI, R. R.; MAIER, A.; ESKOFIER, B.;

FAHRIG, R.; HORZ, T.. Baptizo: A sensor fusion based model for tracking the identity

of human poses. Information Fusion, v. 62, p. 1-13, 2020.

4. Title: Towards providing middleware-level proactive resource reorganisation for elastic

HPC applications in the cloud

Journal: International Journal of Grid and Utility Computing

Impact Factor: 1.890

DOI: https://doi.org/10.1504/IJGUC.2019.097220

Citation: RIGHI, R. R.; RODRIGUES, V. F.; NARDIN, I. F.; COSTA, C. A.; ALVES,

M. A. Z.; PILLON, M. A.. Towards providing middleware-level proactive resource reor-

ganisation for elastic HPC applications in the cloud. International Journal of Grid and

Utility Computing, v. 10, p. 76-92, 2019.

5. Title: Pipel: Exploiting Resource Reorganization to Optimize Performance of Pipeline-

Structured Applications in the Cloud

Journal: International Journal of Computational Systems Engineering

Impact Factor: -

DOI: https://doi.org/10.1504/IJCSYSE.2019.098414

Citation: MEYER, V.; RODRIGUES, V. F.; RIGHI, R. R.; COSTA, C. A.; GALANTE,

G.; BOTH, C. B.. Pipel: Exploiting Resource Reorganization to Optimize Performance

128

of Pipeline-Structured Applications in the Cloud. International Journal of Computational

Systems Engineering, v. 5, p. 1-14, 2019.

6. Title: ElBench: a microbenchmark to evaluate virtual machine and container strategies

on executing elastic applications in the cloud

Journal: International Journal of Computational Science and Engineering

Impact Factor: 0.890

DOI: https://dx.doi.org/10.1504/IJCSE.2020.106068

Citation: RIGHI, R. R.; COSTA, C. A. da; YAMIN, A. C.; RODRIGUES, V. F.;

BRAUNER, D.. ElBench: a microbenchmark to evaluate virtual machine and container

strategies on executing elastic applications in the cloud. International Journal of Compu-

tational Science and Engineering, v. 1, p. 1-16, 2019.

7. Title: Elastic-RAN: An adaptable multi-level elasticity model for cloud radio access net-

works

Journal: Computer Communications

Impact Factor: 2.816

DOI: https://doi.org/10.1016/j.comcom.2019.04.012

Citation: RIGHI, R. R.; ANDRIOLI, L.; RODRIGUES, V. F.; COSTA, C. A. da; AL-

BERTI, A. M.; SINGH, D.. Elastic-RAN: An adaptable multi-level elasticity model for

cloud radio access networks. Computer Communications, v. 3, p. 67-81, 2019.

8. Title: A systematic literature review of data forecast and internet of things on the e-health

landscape

Journal: International Journal of Computational Medicine and Healthcare

Impact Factor: -

DOI: https://doi.org/10.1504/IJCMH.2019.104359

Citation: FISCHER, G. S.; RIGHI, R. R.; COSTA, C. A. da; RODRIGUES, V. F.. A sys-

tematic literature review of data forecast and internet of things on the e-health landscape.

International Journal of Computational Medicine and Healthcare, v. 1, p. 34, 2019.

9. Title: Towards Characterizing Architecture and Performance in Blockchain: A Survey

Journal: International Journal of Blockchains and Cryptocurrencies

Impact Factor: -

DOI: https://dx.doi.org/10.1504/IJBC.2020.109002

Citation: FURTADO, F. R.; SILVA, J. V. S. e; CAPPELARI, M. J.; CASTILHOS, C.

H. M.; RODRIGUES, V. F.; COSTA, C. A. da; RIGHI, R. R.. Towards Character-

izing Architecture and Performance in Blockchain: A Survey. International Journal of

Blockchains and Cryptocurrencies, v. 1, p. 1-33, 2019.

10. Title: MigPF: Towards on self-organizing process rescheduling of Bulk-Synchronous

Parallel applications

129

Journal: Future Generation Computer Systems

Impact Factor: 6.125

DOI: https://doi.org/10.1016/j.future.2016.05.004

Citation: RIGHI, R. R.; GOMES, R. Q.; RODRIGUES, V. F.; COSTA, C. A. da; AL-

BERTI, A. M.; PILLA, L. L.; NAVAUX, P. O. A.. MigPF: Towards on self-organizing

process rescheduling of Bulk-Synchronous Parallel applications. Future Generation Com-

puter Systems, v. 78, p. 272-286, 2018.

11. Title: Toward analyzing mutual interference on infrared-enabled depth cameras

Journal: Computer Vision and Image Understanding

Impact Factor: 3.121

DOI: https://doi.org/10.1016/j.cviu.2018.09.010

Citation: SEEWALD, L. A.; RODRIGUES, V. F.; OLLENSCHLÄGER, M.; ANTUNES,

R. S.; COSTA, C. A. da; RIGHI, R. R.; JUNIOR, L. G.; MAIER, A.; ESKOFIER, B.;

FAHRIG, R.. Toward analyzing mutual interference on infrared-enabled depth cameras.

Computer Vision and Image Understanding, v. 178, p. 1-15, 2018.

12. Title: Towards Combining Reactive and Proactive Cloud Elasticity on Running HPC

Applications

Journal: Proceedings of the 3rd International Conference on Internet of Things, Big Data

and Security

Impact Factor: -

DOI: https://doi.org/10.5220/0006761302610268

Citation: RODRIGUES, V. F.; RIGHI, R. R.; COSTA, C. A. da; SINGH, D.; MUNOZ,

V. M.; CHANG, V.. Towards Combining Reactive and Proactive Cloud Elasticity on

Running HPC Applications. In: 3rd International Conference on Internet of Things, Big

Data and Security, 2018, Funchal. Proceedings of the 3rd International Conference on

Internet of Things, Big Data and Security, p. 261, 2018.

13. Title: Combinando Elasticidade Reativa e Proativa para Aumentar o Desempenho de

Aplicações HPC

Journal: Anais da XVIII Escola Regional de Alto Desempenho do Estado do Rio Grande

do Sul

Impact Factor: -

DOI: -

Citation: RODRIGUES, V. F.; RIGHI, R. R.. Combinando Elasticidade Reativa e Proa-

tiva para Aumentar o Desempenho de Aplicações HPC. In: XVIII Escola Regional de

Alto Desempenho do Estado do Rio Grande do Sul (ERAD/RS 2018), 2018, Porto Ale-

gre. Anais da XVIII Escola Regional de Alto Desempenho do Estado do Rio Grande do

Sul (ERAD/RS 2018), 2018. v. 18.

130

14. Title: A lightweight plug-and-play elasticity service for self-organizing resource provi-

sioning on parallel applications

Journal: Future Generation Computer Systems

Impact Factor: 6.125

DOI: https://doi.org/10.1016/j.future.2017.02.023

Citation: RIGHI, R. R.; RODRIGUES, V. F.; ROSTIROLLA, G.; COSTA, C. A. da;

ROLOFF, E.; NAVAUX, P. O. A.. A lightweight plug-and-play elasticity service for self-

organizing resource provisioning on parallel applications. Future Generation Computer

Systems, v. 78, p. 176-190, 2018.

15. Title: On exploring proactive cloud elasticity for internet of things demands

Journal: 2017 XLIII Latin American Computer Conference (CLEI)

Impact Factor: -

DOI: https://doi.org/10.1109/CLEI.2017.8226417

Citation: RODRIGUES, V. F.; CORREA, E.; COSTA, C. A. da; RIGHI, R. R.. On

exploring proactive cloud elasticity for internet of things demands. In: 2017 XLIII Latin

American Computer Conference (CLEI), 2017, Córdoba. 2017 XLIII Latin American

Computer Conference (CLEI), 2017. p. 1-65.

16. Title: Towards Enabling Live Thresholding as Utility to Manage Elastic Master-Slave

Applications in the Cloud

Journal: Journal of Grid Computing

Impact Factor: 2.095

DOI: https://doi.org/10.1007/s10723-017-9405-3

Citation: RODRIGUES, V. F.; RIGHI, R. R.; ROSTIROLLA, G.; BARBOSA, J. L. V.;

COSTA, C. A. da; ALBERTI, A. M.; CHANG, V.. Towards Enabling Live Thresholding

as Utility to Manage Elastic Master-Slave Applications in the Cloud. Journal of Grid

Computing, v. 11, p. 101-125, 2017.

17. Title: Brokel: Towards enabling multi-level cloud elasticity on publish/subscribe brokers

Journal: International Journal of Distributed Sensor Networks

Impact Factor: 1.151

DOI: https://doi.org/10.1177/1550147717728863

Citation: RODRIGUES, V. F.; WENDT, I. G.; RIGHI, R. R.; COSTA, C. A. da; BAR-

BOSA, J. L. V.; ALBERTI, A. M.. Brokel: Towards enabling multi-level cloud elasticity

on publish/subscribe brokers. International Journal of Distributed Sensor Networks, v.

13, p. 155014771772886, 2017.

18. Title: MMEliot: Um Modelo para Internet das Coisas Explorando a Elasticidade da Com-

putação em Nuvem

Journal: Revista Eletrônica Argentina-Brasil de Tecnologias da Informação e da Comu-

131

nicação

Impact Factor: -

DOI: http://dx.doi.org/10.5281/zenodo.877328

Citation: RODRIGUES, V. F.; YVES, T.; RIGHI, R. R.; COSTA, C. A.. MMEliot: Um

Modelo para Internet das Coisas Explorando a Elasticidade da Computação em Nuvem.

Revista Eletrônica Argentina-Brasil de Tecnologias da Informação e da Comunicação, v.

1, p. 1, 2017.

19. Title: On providing on-the-fly resizing of the elasticity grain when executing HPC appli-

cations in the cloud

Journal: International Journal of Computational Science and Engineering

Impact Factor: 0.890

DOI: https://dx.doi.org/10.1504/IJCSE.2019.104432

Citation: RIGHI, R. R.; RODRIGUES, V. F.; CUNHA, L. F. S.; COSTA, C. A.. On

providing on-the-fly resizing of the elasticity grain when executing HPC applications in

the cloud. International Journal of Computational Science and Engineering, v. 1, p. 1-18,

2017.

Finally, the following articles are still in evaluation for publishing or already accepted for

publication:

1. Title: ChainElastic: A Cloud Computing Elasticity Model for IoT-based Blockchain Ap-

plications

Journal: International Journal of Blockchains and Cryptocurrencies

Impact Factor: -

DOI: -

Citation: RODRIGUES, V. F.; SILVA, J. V. S. e; RIGHI, R. R.; COSTA, C. A. da;

ROEHRS, A.; ChainElastic: A Cloud Computing Elasticity Model for IoT-based Blockchain

Applications. International Journal of Blockchains and Cryptocurrencies. (ACCEPTED)

2. Title: A Survey on Single-View Multi-Person Pose Estimation

Journal: Elsevier Pattern Recognition

Impact Factor: 7.196

DOI: -

Citation: REIS, E. SOUZA DOS; SEEWALD, L. A.; ANTUNES, R. S.; BAZO, R.;

RODRIGUES, V. F.; RIGHI, R. R.; COSTA, C. A. da; JUNIOR, L. G. SILVEIRA;

ESKOFIER, B.; MAIER, A.; HORZ, T.; FAHRIG, R.. A Survey on Single-View Multi-

Person Pose Estimation. Elsevier Pattern Recognition.

3. Title: A Survey About Real-Time Location Systems in Healthcare Environments

Journal: Journal of Medical Systems

132

Impact Factor: 3.058

DOI: -

Citation: BAZO, R.; COSTA, C. A. da; SEEWALD, L. A.; JUNIOR, L. G.; ANTUNES,

R. S.; RIGHI, R. R.; RODRIGUES, V. F.. A Survey About Real-Time Location Systems

in Healthcare Environments. Journal of Medical Systems.

7.4 Limitations and Future Work

HealthStack presents some limitations which might be explored in future researches. First,

the QoS Manager chooses which component receives QoS services based only on their current

status. It does not take into account past events, which would improve the decision-making

process. Every time a QoS violation occurs, the Manager computes the weights and the Po-

tential of Adaption for all components. To do that, the Manager considers as input the current

measures from each application and middleware component. Pattern recognition and data fore-

casting strategies could improve this process providing a more proactive method. Second, the

QoS Model does not assess the effect of QoS services on-the-fly. In other words, HealthStack

does not keep track of the impact of delivering each type of QoS service. By having this infor-

mation, every time the QoS Manages must deliver a new QoS service, it could verify past events

to choose the most appropriate. For instance, if a specific QoS service always brings drawbacks

to a specific data type, it would be useful to avoid employing it in similar situations.

A third limitation regards the specific QoS metrics HealthStack employs. The model em-

ploys only delay and jitter. Several other metrics could be considered as packet loss, for in-

stance. However, the design decisions of HealthStack consider a reliable end-to-end network

infrastructure, and for that reason, other metrics are not considered. Although covering two

essential metrics, other options could provide more flexibility to the user when choosing their

target threshold. Fourth, HealthStack takes a high number of human-defined parameters that can

change the middleware’s behavior. Some parameters only change the monitoring intervals and

are easy to set. However, several parameters of the QoS Service Stacking strategy can change

its behavior considerably. The current research proposed the values for each parameter that can

be used to deploy HealthStack. Though, it is essential to keep in mind that HealthStack allows

their modification. On the bright side, this allows the algorithm tunning for different scenarios.

In terms of evaluation, the QoS Manager only adds QoS services to the component stacks,

never removing them. That happens because the experiments employ a batch of user applica-

tions that never disconnect the middleware. Therefore, components are always generating data

for at least one application in the whole execution time. Besides that, the prototype covers a

limited set of QoS services. Although HealthStack proposes four QoS services, the Resource

Elasticity was not implemented in the experiments. This particular QoS service can bring differ-

ent outcomes than the other ones because it allows resizing resources to execute the middleware

components. However, it requires the infrastructure to offer hosts with a high capacity of re-

133

sources supporting vertical elasticity. Unfortunately, that is not always the case in hospitals and

IoT systems. Considering the Healthstack limitations, the continuation of this thesis consists of

studies in the following directions:

(i) Use of new heuristics in the QoS model to define the services for user applications and

sensors;

(ii) Development of new services and metrics in the architecture modules;

(iii) Evaluation of HealthStack with other types of sensors;

(iv) Explore horizontal elasticity strategies for the service layer, proposing load balancing

techniques.

Currently, the QoS model from the HealthStack QoS Manager defines a QoS Service Stack-

ing strategy that takes several parameters. Future research can consider changing the strategy

to select the components to receive QoS services. It would enable a comparison of different

strategies and how they affect the middleware. There is a possibility to change this strategy by

a different heuristic to select the services for user applications and sensors. For instance, it is

possible to change it by fuzzy logic, strategy considering the QoS Manager’s input variables. In

the case of QoS parameters, it is possible to define new metrics and services in the model. It re-

quires new metrics definitions and which components generate them. One example is to add the

disc usage metric, which could be extracted from the operating system of each node running a

HealthStack process. Additionally, adapting the QoS service according to historical data is also

a promising strategy. Proactive decision-making is possible by analyzing past actions and their

effect. This analysis could improve the process of defining the best actions in each overload

situation.

Next, it is possible to analyze the QoS model parameters to identify their effect on differ-

ent scenarios. Also, as the model comprises a limited number of services, future studies can

investigate further services, including, for instance, admission control and multi-channel data

transmission. Besides, the experiments of this research focused on only two types of sensor

data sources. It is worthy to assess HealthStack against other types of sensors. Specifically,

tags position and depth image are the raw data the Collectors extract from the sensors. An

idea for future research would include the evaluation of the model considering a different set of

data. It would be possible to acquire data directly from medical sensors, such as blood pressure

and heartbeat information. Currently, camera RGB image frames are not valid in healthcare

since medical environments have high privacy constraints, and patients’ and medical staff’s

identification is sensitive information. Therefore, this type of data is not in the model, as in its

evaluation.

Finally, HealthStack proposes as one of its services vertical elasticity. In future research, it

is possible to explore the horizontal model of elasticity. In this regard, load balancing strategies

134

and new strategies for communication reconfiguration are the main challenges. A load balance

process would be necessary to distribute user application connections among more than one

instance of the PubSub Broker. Besides, replication of the Core process requires distribution of

the Collector instances to avoid transmission and storing replicated data.

135

REFERENCES

ACETO, G.; PERSICO, V.; PESCAPé, A. Industry 4.0 and health: internet of things, big data,
and cloud computing for healthcare 4.0. Journal of Industrial Information Integration,
Amsterdam, Netherlands, v. 18, p. 100129, 2020.

ADAME, T. et al. Cuidats: an rfid-wsn hybrid monitoring system for smart health care
environments. Future Generation Computer Systems, Amsterdam, Netherlands, v. 78,
p. 602 – 615, 2018.

AFFERNI, P.; MERONE, M.; SODA, P. Hospital 4.0 and its innovation in methodologies and
technologies. In: IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED
MEDICAL SYSTEMS (CBMS), 31., 2018, Karlstad, Sweden. Proceedings. . . IEEE, 2018.
p. 333–338.

AGIRRE, A. et al. Qos management for dependable sensory environments. Multimedia Tools

and Applications, Amsterdam, Netherlands, v. 75, n. 21, p. 13397–13419, Nov 2016.

AHMED, T.; LE MOULLEC, Y. A qos optimization approach in cognitive body area
networks for healthcare applications. Sensors, Basel, Switzerland, v. 17, n. 4, 2017.

AL-TARAWNEH, L. A. Medical grade qos improvement using ieee802.11e wlan protocol. In:
AMERICAN UNIVERSITY IN THE EMIRATES INTERNATIONAL RESEARCH
CONFERENCE, 1., 2019, Dubai, UAE. Proceedings. . . Springer International Publishing,
2019. p. 229–235.

ALBAHRI, O. et al. Fault-tolerant mhealth framework in the context of iot-based real-time
wearable health data sensors. IEEE Access, New York, NY, USA, v. 7, p. 50052–50080, 2019.

ALEMDAR, H.; ERSOY, C. Wireless sensor networks for healthcare: a survey. Computer

Networks, Amsterdam, Netherlands, v. 54, n. 15, p. 2688–2710, 2010.

ALLIANCE, Z. What is zigbee. Available in:
http://www.zigbee.org/what-is-zigbee. Accessed in: October 30th 2020.

ANTUNES, R. S. et al. A survey of sensors in healthcare workflow monitoring. ACM

Comput. Surv., New York, NY, USA, v. 51, n. 2, p. 42:1–42:37, Apr. 2018.

BAI, T. et al. An optimized protocol for qos and energy efficiency on wireless body area
networks. Peer-to-Peer Networking and Applications, New York, NY, USA, v. 12, n. 2,
p. 326–336, Mar 2019.

BAIG, M. M.; HOSSEINI, H. G.; LINDÉN, M. Machine learning-based clinical decision
support system for early diagnosis from real-time physiological data. In: IEEE REGION 10
CONFERENCE (TENCON), 2016., 2016, Singapore, Singapore. Proceedings. . . IEEE,
2016. p. 2943–2946.

BANOUAR, Y. et al. Qos management mechanisms for enhanced living environments in iot.
In: IFIP/IEEE SYMPOSIUM ON INTEGRATED NETWORK AND SERVICE
MANAGEMENT (IM), 2017., 2017, Lisbon, Portugal. Proceedings. . . IEEE, 2017.
p. 1155–1161.

136

GRZEGORZEK, M. et al. (Ed.). Real-time range imaging in health care: a survey. In: _____.
Time-of-flight and depth imaging. sensors, algorithms, and applications: dagstuhl 2012
seminar on time-of-flight imaging and gcpr 2013 workshop on imaging new modalities.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. p. 228–254.

BERNSTEIN, D. S. Matrix mathematics: theory, facts, and formulas (second edition).
Princeton, New Jersey, USA: Princeton University Press, 2009. (Princeton reference).

BIOLCHINI, J. et al. Systematic review in software engineering. Rio de Janeiro, Brazil:
System Engineering and Computer Science Department COPPE/UFRJ, 2005.

Bluetooth. How it works. Available in: https:
//www.bluetooth.com/what-is-bluetooth-technology/how-it-works.
Accessed in: October 30th 2020.

Bluetooth. Bluetooth low energy. Available in: https://www.bluetooth.com/
what-is-bluetooth-technology/how-it-works/le-p2p. Accessed in:
October 30th 2020.

BONDI, A. B. Characteristics of scalability and their impact on performance. In:
INTERNATIONAL WORKSHOP ON SOFTWARE AND PERFORMANCE, 2., 2000, New
York, NY, USA. Proceedings. . . Association for Computing Machinery, 2000. p. 195–203.
(WOSP ’00).

BOULOS, M. N. K.; BERRY, G. Real-time locating systems (rtls) in healthcare: a condensed
primer. International journal of health geographics, London, United Kingdom, v. 11, n. 1,
p. 25, 2012.

BRADAI, N. et al. Qos architecture over wbans for remote vital signs monitoring applications.
In: ANNUAL IEEE CONSUMER COMMUNICATIONS AND NETWORKING
CONFERENCE (CCNC), 12., 2015, Las Vegas, NV, USA. Proceedings. . . IEEE, 2015.
p. 1–6.

CELDRÁN, A. H. et al. Ice++: improving security, qos, and high availability of medical
cyber-physical systems through mobile edge computing. In: IEEE INTERNATIONAL
CONFERENCE ON E-HEALTH NETWORKING, APPLICATIONS AND SERVICES
(HEALTHCOM), 20., 2018, Ostrava, Czech Republic. Proceedings. . . IEEE, 2018. p. 1–8.

CHEATLE, A. et al. Sensing (co)operations: articulation and compensation in the robotic
operating room. Proc. ACM Hum.-Comput. Interact., New York, NY, USA, v. 3, n. CSCW,
Nov. 2019.

CHIU, D.; AGRAWAL, G. Evaluating caching and storage options on the amazon web
services cloud. In: IEEE/ACM INTERNATIONAL CONFERENCE ON GRID
COMPUTING, 11., 2010, Brussels, Belgium. Proceedings. . . IEEE, 2010. p. 17–24.

CHUA, C. L.; REN, H.; ZHANG, W. Towards a touchless master console for natural
interactions in sterilized and cognitive robotic surgery environments. In: _____. Robot

intelligence technology and applications 2: results from the 2nd international conference on
robot intelligence technology and applications. New York, NY, USA: Springer International
Publishing, 2014. p. 785–795.

137

COSTA, C. A. da et al. Internet of health things: toward intelligent vital signs monitoring in
hospital wards. Artificial Intelligence in Medicine, Amsterdam, Netherlands, v. 89, p. 61 –
69, 2018.

DAS, S.; PERKINS, C.; ROYER, E. Ad hoc on demand distance vector (aodv) routing. IETF

RFC3561, July, Santa Barbara, CA, USA, 2003.

DECIA, I. et al. Camacua: low cost real time risk alert and location system for healthcare
environments. In: LATIN AMERICAN CONGRESS ON BIOMEDICAL ENGINEERING
CLAIB, 7., 2017, Singapore. Proceedings. . . Springer Singapore, 2017. p. 90–93.

DJELOUAT, H. et al. Real-time ecg monitoring using compressive sensing on a heterogeneous
multicore edge-device. Microprocessors and Microsystems, Amsterdam, Netherlands, v. 72,
p. 102839, 2020.

ELLIS, C. A. Workflow technology. In: Computer supported cooperative work. Chichester,
UK: John Wiley and Sons, 1999. p. 25–54.

ETSI. Etr003: network aspects (na); general aspects of quality of service (qos) and network
performance (np). ETSI Technical Report, Valbonne, France, October 1994.

FANG, R. et al. Computational health informatics in the big data age: a survey. ACM

Computing Surveys, New York, NY, USA, v. 49, n. 1, p. 12:1–12:36, 2016.

FARAHANI, S. Zigbee wireless networks and transceivers. Burlington, MA, USA:
Newnes, 2008.

FEKI, M. A. et al. The internet of things: the next technological revolution. Computer,
Piscataway, NJ, USA, v. 46, n. 2, p. 24–25, 2013.

THUEMMLER, C.; BAI, C. (Ed.). Surgery 4.0. In: _____. Health 4.0: how virtualization and
big data are revolutionizing healthcare. Cham: Springer International Publishing, 2017.
p. 91–107.

FOIX, S.; ALENYA, G.; TORRAS, C. Lock-in time-of-flight (tof) cameras: a survey. IEEE

Sensors Journal, Piscataway, NJ, USA, v. 11, n. 9, p. 1917–1926, 2011.

FüRSATTEL, P. et al. A comparative error analysis of current time-of-flight sensors. IEEE

Transactions on Computational Imaging, Piscataway, NJ, USA, v. 2, n. 1, p. 27–41, 2016.

GALANTE, G.; BONA, L. C. E. de. A survey on cloud computing elasticity. In: IEEE
INTERNATIONAL CONFERENCE ON UTILITY AND CLOUD COMPUTING, 5., 2012,
Chicago, IL, USA. Proceedings. . . IEEE, 2012. p. 263–270.

GATOUILLAT, A.; BADR, Y.; MASSOT, B. Qos-driven self-adaptation for critical iot-based
systems. In: SERVICE-ORIENTED COMPUTING – ICSOC 2017 WORKSHOPS, 2018,
Cham. Proceedings. . . Springer International Publishing, 2018. p. 93–105.

GHANBARI, H. et al. Exploring alternative approaches to implement an elasticity policy. In:
IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING (CLOUD), 2011.,
2011, Washington, DC, USA. Proceedings. . . IEEE, 2011. p. 716–723.

GIATRAKOS, N. et al. Interactive extreme-scale analytics: towards battling cancer. IEEE

Technology and Society Magazine, Piscataway, NJ, USA, v. 38, n. 2, p. 54–61, 2019.

138

GOYAL, R. et al. An energy efficient qos supported optimized transmission rate technique in
wbans. Wireless Personal Communications, Amsterdam, Netherlands, p. 1–26, 2020.

GUEZGUEZ, M. J.; REKHIS, S.; BOUDRIGA, N. A sensor cloud for the provision of secure
and qos-aware healthcare services. Arabian Journal for Science and Engineering, Berlin,
Germany, v. 43, n. 12, p. 7059–7082, Dec 2018.

HARTMANN, F.; SCHLAEFER, A. Feasibility of touch-less control of operating room lights.
International Journal of Computer Assisted Radiology and Surgery, Berlin, Germany,
v. 8, n. 2, p. 259–268, 2013.

HASSAN, M. M.; ALRUBAIAN, M.; ALAMRI, A. Effective qos-aware novel resource
allocation model for body sensor-integrated cloud platform. In: INTERNATIONAL
CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY (ICACT), 18.,
2016, Pyeongchang, South Korea. Proceedings. . . IEEE, 2016. p. 596–601.

HAZLEHURST, B. et al. How the icu follows orders: care delivery as a complex activity
system. In: AMIA ANNUAL SYMPOSIUM PROCEEDINGS (AMIA), 2003. Proceedings. . .

National Institute of Health, 2003. p. 284–288.

HERBST, N. R. et al. Self-adaptive workload classification and forecasting for proactive
resource provisioning. In: ACM/SPEC INTERNATIONAL CONFERENCE ON
PERFORMANCE ENGINEERING, 4., 2013, New York, NY, USA. Proceedings. . . ACM,
2013. p. 187–198. (ICPE ’13).

HU, L. et al. Design of qos-aware multi-level mac-layer for wireless body area network.
Journal of Medical Systems, New York, NY, USA, v. 39, n. 12, p. 192, Oct 2015.

HUSSMANN, S.; HAGEBEUKER, B.; RINGBECK, T. A performance review of 3d tof

vision systems in comparison to stereo vision systems. London, UK: INTECH Open Access
Publisher, 2008.

HYNDMAN, R. J.; ATHANASOPOULOS, G. Forecasting: principles and practice. Monash
University, Australia: OTexts, 2018.

IBRAHIM, A. A. et al. Weighted energy and qos based multi-hop transmission routing
algorithm for wban. In: INTERNATIONAL ENGINEERING CONFERENCE
“SUSTAINABLE TECHNOLOGY AND DEVELOPMENT" (IEC), 6., 2020, Erbil, Iraq.
Proceedings. . . IEEE, 2020. p. 191–195.

IEEE Computer Society. Ieee standard for information technology – local and

metropolitan area networks – specific requirements – part 15.1a: wireless medium access
control (mac) and physical layer (phy) specifications for wireless personal area networks
(wpan). Piscataway, New Jersey, USA: IEEE Computer Society, 2005.

IEEE Computer Society. Ieee standard for information technology – telecommunications

and information exchange between systems – local and metropolitan area networks –

specific requirements – part 11: wireless lan medium access control (mac) and physical layer
(phy) specifications. Piscataway, New Jersey, USA: IEEE Computer Society, 2007.

IEEE Computer Society. Ieee standard for low-rate wireless networks. Piscataway, New
Jersey, USA: IEEE Computer Society, 2016.

139

IMAI, S.; CHESTNA, T.; VARELA, C. A. Elastic scalable cloud computing using
application-level migration. In: IEEE INTERNATIONAL CONFERENCE ON UTILITY
AND CLOUD COMPUTING, 5., 2012, Chicago, IL, USA. Proceedings. . . IEEE, 2012.
p. 91–98.

IRANMANESH, S. A.; RIZI, F. Y. Qos provisioning for multiple co-existing body sensor
networks. In: IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2018,
Mashhad, Iran. Proceedings. . . IEEE, 2018. p. 1595–1600.

ISLAM, S. R. et al. The internet of things for health care: a comprehensive survey. IEEE

Access, New York, NY, USA, v. 3, p. 678–708, 2015.

ITUT. E. 800, definitions of terms related to quality of service. International

Telecommunication Union’s Telecommunication Standardization Sector (ITU-T) Std,
Switzerland, 2008.

JACOB, A. K.; JACOB, L. Energy efficient mac for qos traffic in wireless body area network.
International Journal of Distributed Sensor Networks, Thousand Oaks, CA, USA, v. 11,
n. 2, p. 404182, 2015.

JAGADISH, H. V. et al. Big data and its technical challenges. Communications of the ACM,
New York, NY, USA, v. 57, n. 7, p. 86–94, 2014.

KADKHODAMOHAMMADI, A. et al. Articulated clinician detection using 3d pictorial
structures on rgb-d data. Medical Image Analysis, London, United Kingdom, v. 35, p. 215 –
224, 2017.

KHALIL, A.; MBAREK, N.; TOGNI, O. Iot service qos guarantee using qbaiot wireless
access method. In: INTERNATIONAL CONFERENCE ON MOBILE, SECURE, AND
PROGRAMMABLE NETWORKING, 2019, Cham. Proceedings. . . Springer International
Publishing, 2019. p. 157–173.

KITCHENHAM, B.; CHARTERS, S. Guidelines for performing systematic literature

reviews in software engineering. Keele, Newcastle, United Kingdom: Keele University,
2007.

KOLAKOWSKI, J.; DJAJA-JOSKO, V.; KOLAKOWSKI, M. Uwb monitoring system for aal
applications. Sensors, Basel, Switzerland, v. 17, n. 9, 2017.

KOPETZ, H. The real-time environment. In: _____. Real-time systems: design principles for
distributed embedded applications. Boston, MA: Springer USA, 1997. p. 1–28.

KOPETZ, H.; OCHSENREITER, W. Clock synchronization in distributed real-time systems.
IEEE Transactions on Computers, Washington, DC, USA, v. C-36, n. 8, p. 933–940,
Aug 1987.

KURMOO, Y. et al. Real time monitoring of biofilm formation on coated medical devices for
the reduction and interception of bacterial infections. Biomater. Sci., London, United
Kingdom, v. 8, p. 1464–1477, 2020.

LEE, C.-J.; JUNG, J.-Y.; LEE, J.-R. Bio-inspired distributed transmission power control
considering qos fairness in wireless body area sensor networks. Sensors, Basel, Switzerland,
v. 17, n. 10, 2017.

140

LEE, H. et al. Wireless lan with medical-grade qos for e-healthcare. Journal of

Communications and Networks, Seoul, Republic of Korea, v. 13, n. 2, p. 149–159, 2011.

LEE, J. S.; SU, Y. W.; SHEN, C. C. A comparative study of wireless protocols: bluetooth,
uwb, zigbee, and wi-fi. In: ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL
ELECTRONICS SOCIETY (IECON), 33., 2007, Taipei, Taiwan. Proceedings. . . IEEE, 2007.
p. 46–51.

LIM, H. C. et al. Automated control in cloud computing: challenges and opportunities. In:
WORKSHOP ON AUTOMATED CONTROL FOR DATACENTERS AND CLOUDS, 1.,
2009, New York, NY, USA. Proceedings. . . ACM, 2009. p. 13–18. (ACDC ’09).

LINDSEY, W. C.; SIMON, M. K. Telecommunication systems engineering. Chelmsford,
MA, USA: Courier Corporation, 1991.

LIU, B.; YAN, Z.; CHEN, C. W. Medium access control for wireless body area networks with
qos provisioning and energy efficient design. IEEE Transactions on Mobile Computing,
Washington, DC, USA, v. 16, n. 2, p. 422–434, Feb 2017.

LIU, J. et al. Towards real-time indoor localization in wireless sensor networks. In: IEEE
INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION
TECHNOLOGY (ICCIT), 12., 2012, Chengdu, China. Proceedings. . . IEEE, 2012.
p. 877–884.

LIU, Y. et al. Prominent coagulation disorder is closely related to inflammatory response and
could be as a prognostic indicator for icu patients with covid-19. Journal of Thrombosis and

Thrombolysis, Amsterdam, Netherlands, p. 1–8, 2020.

LIU, Z.; LIU, B.; CHEN, C. W. Transmission-rate-adaption assisted energy-efficient resource
allocation with qos support in wbans. IEEE Sensors Journal, Piscataway, NJ, USA, v. 17,
n. 17, p. 5767–5780, Sep. 2017.

LOGITRACK rtls. Available in: https://logi-tag.com/. Accessed in: October
30th 2020.

LORIDO-BOTRAN, T.; MIGUEL-ALONSO, J.; LOZANO, J. A review of auto-scaling
techniques for elastic applications in cloud environments. Journal of Grid Computing,
Berlin, Germany, v. 12, n. 4, p. 559–592, 2014.

MAATOUGUI, E.; BOUANAKA, C.; ZEGHIB, N. Self-adaptive architecture for ensuring qos
contracts in cloud-based systems. In: INTERNATIONAL CONFERENCE ON MODEL AND
DATA ENGINEERING, 2017, Cham. Proceedings. . . Springer International Publishing,
2017. p. 126–134.

MACK, C. A. How to write a good scientific paper: title, abstract, and keywords. Journal of

Micro/Nanolithography, MEMS, and MOEMS, USA, v. 11, n. 2, p. 020101, 2012.

MAGALHÃES, A. M. M. d. et al. Processos de medicação, carga de trabalho e a segurança do
paciente em unidades de internação. Revista da Escola de Enfermagem da USP, SP, Brazil,
v. 49, p. 43 – 50, 12 2015.

141

MAINETTI, L.; PATRONO, L.; VILEI, A. Evolution of wireless sensor networks towards the
internet of things: a survey. In: INTERNATIONAL CONFERENCE ON SOFTWARE,
TELECOMMUNICATIONS AND COMPUTER NETWORKS (SOFTCOM), 19., 2011,
Split, Croatia. Proceedings. . . IEEE, 2011. p. 1–6.

MALHOTRA, S. et al. Workflow modeling in critical care: piecing together your own puzzle.
Journal of Biomedical Informatics, Amsterdam, Netherlands, v. 40, n. 2, p. 81–92, 2007.

MALINDI, P.; KAHN, M. T. Providing qos for ip-based rural telemedicine systems. In:
INTERNATIONAL CONFERENCE ON BROADBAND COMMUNICATIONS,
INFORMATION TECHNOLOGY BIOMEDICAL APPLICATIONS, 3., 2008, Gauteng,
South Africa. Proceedings. . . IEEE, 2008. p. 499–504.

MILLER, F. P.; VANDOME, A. F.; MCBREWSTER, J. Huffman coding: computer science,
algorithm, lossless data compression, variable- length code, david a. huffman, doctor of
philosophy, massachusetts institute of technology. Orlando, FL, USA: Alpha Press, 2009.

MILLS, D. L. Internet time synchronization: the network time protocol. IEEE Transactions

on Communications, New York, NY, USA, v. 39, n. 10, p. 1482–1493, Oct 1991.

MITROKOTSA, A.; DOULIGERIS, C. Integrated rfid and sensor networks: architectures and
applications. In: _____. Rfid and sensor networks: architectures, protocols, security and
integrations. Boca Raton, FL, USA: Auerbach Publications, CRC Press, Taylor & Francis
Group, 2009. p. 511–535.

MOESLUND, T. B.; HILTON, A.; KRüGER, V. A survey of advances in vision-based human
motion capture and analysis. Elsevier Computer Vision and Image Understanding,
Amsterdam, Netherlands, v. 104, n. 2, p. 90–126, 2006.

WICKRAMASINGHE, N.; BODENDORF, F. (Ed.). Intelligent risk detection in health care:
integrating social and technical factors to manage health outcomes. In: _____. Delivering

superior health and wellness management with iot and analytics. Cham: Springer
International Publishing, 2020. p. 225–257.

MONTENEGRO, G. et al. Transmission of ipv6 packets over ieee 802.15.4 networks.
Worldwide: RFC Editor, 2007. (4944).

MORENO, I. S.; XU, J. Customer-aware resource overallocation to improve energy efficiency
in realtime cloud computing data centers. In: IEEE INTERNATIONAL CONFERENCE ON
SERVICE-ORIENTED COMPUTING AND APPLICATIONS (SOCA), 2011., 2011, Irvine,
CA, USA. Proceedings. . . IEEE, 2011. p. 1–8.

MUKHOPADHYAY, A. Qos based telemedicine technologies for rural healthcare
emergencies. In: IEEE GLOBAL HUMANITARIAN TECHNOLOGY CONFERENCE
(GHTC), 2017., 2017, San Jose, CA, USA. Proceedings. . . IEEE, 2017. p. 1–7.

MUSTRA, M.; DELAC, K.; GRGIC, M. Overview of the dicom standard. In:
INTERNATIONAL SYMPOSIUM ELMAR, 50., 2008, Zadar, Croatia. Proceedings. . . IEEE,
2008. v. 1, p. 39–44.

NANDA, P.; FERNANDES, R. C. Quality of service in telemedicine. In: INTERNATIONAL
CONFERENCE ON THE DIGITAL SOCIETY (ICDS’07), 1., 2007, Guadeloupe, France.
Proceedings. . . IEEE, 2007. p. 2–2.

142

NFC Forum. Nfc technology. Available in:
http://nfc-forum.org/what-is-nfc/about-the-technology. Accessed in:
October 30th 2020.

NIAZKHANI, Z. et al. The impact of computerized provider order entry systems on inpatient
clinical workflow: a literature review. Journal of the American Medical Informatics

Association, Oxford, United Kingdom, v. 16, n. 4, p. 539–549, 2009.

NIELSEN, M. A. Neural networks and deep learning. San Francisco, CA, USA:
Determination Press, 2015. v. 2018.

NOLLERT, G.; WICH, S. Planning a cardiovascular hybrid operating room: the technical
point of view. The Heart Surgery Forum, USA, v. 12, n. 3, p. 119–124, 2009.

NYCE, C.; CPCU, A. Predictive analytics white paper. American Institute for CPCU.

Insurance Institute of America, Malvern, PA, USA, p. 9–10, 2007.

OODAN, A. et al. Telecommunications quality of service management: from legacy to
emerging services. London, United Kingdom: Iet, 2003. n. 48.

OZTEMEL, E.; GURSEV, S. Literature review of industry 4.0 and related technologies.
Journal of Intelligent Manufacturing, Amsterdam, Netherlands, v. 31, n. 1, p. 127–182,
2020.

PANDIT, S. et al. An energy-efficient multiconstrained qos aware mac protocol for body
sensor networks. Multimedia Tools and Applications, Amsterdam, Netherlands, v. 74, n. 14,
p. 5353–5374, Jul 2015.

PAULY, O. et al. Machine learning-based augmented reality for improved surgical scene
understanding. Computerized Medical Imaging and Graphics, United Kingdom, v. 41, n. 1,
p. 55–60, 2015.

PONCETTE, A.-S. et al. Improvements in patient monitoring in the intensive care unit: survey
study. J Med Internet Res, Canada, v. 22, n. 6, p. e19091, Jun 2020.

POORANI et al. Qos guarantee cloud-based remote health monitoring system. ASCI Journal

of Management, India, v. 46, p. 25 – 51, 2017.

PORCINO, D.; HIRT, W. Ultra-wideband radio technology: potential and challenges ahead.
IEEE Communications Magazine, USA, v. 41, n. 7, p. 66–74, 2003.

PRAMANIK, I. et al. Smart health: big data enabled health paradigm within smart cities.
Expert Systems With Applications, United Kingdom, v. 87, n. 1, p. 370–383, 2017.

PURI, T.; CHALLA, R. K.; SEHGAL, N. K. Energy efficient qos aware mac layer time slot
allocation scheme for wbasn. In: INTERNATIONAL CONFERENCE ON ADVANCES IN
COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2015., 2015, Kochi,
India. Proceedings. . . IEEE, 2015. p. 966–972.

RAWAT, P. et al. Wireless sensor networks: a survey on recent developments and potential
synergies. The Journal of Supercomputing, Amsterdam, Netherlands, v. 68, n. 1, p. 1–48,
2014.

143

RAZZAQUE, M. A. et al. Qos-aware error recovery in wireless body sensor networks using
adaptive network coding. Sensors, Basel, Switzerland, v. 15, n. 1, p. 440–464, 2015.

REGOLINI, J. et al. A simple room localization method to find technology in a big trauma
center. In: WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL
ENGINEERING 2018, 2019, Singapore. Proceedings. . . Springer Singapore, 2019.
p. 321–325.

ROJAS, E. et al. Process mining in healthcare: a literature review. Journal of Biomedical

Informatics, Amsterdam, Netherlands, v. 61, n. 1, p. 224–236, 2016.

RUTLE, A. et al. A user-friendly tool for model checking healthcare workflows. Procedia

Computer Science, Amsterdam, Netherlands, v. 21, p. 317–326, 2013.

SAMANTA, A.; LI, Y.; CHEN, S. Qos-aware heuristic scheduling with delay-constraint for
wbsns. In: IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC),
2018., 2018, Kansas City, MO, USA. Proceedings. . . IEEE, 2018. p. 1–7.

SAMANTA, A.; MISRA, S. Dynamic connectivity establishment and cooperative scheduling
for qos-aware wireless body area networks. IEEE Transactions on Mobile Computing,
Washington, DC, USA, v. 17, n. 12, p. 2775–2788, Dec 2018.

SÁNCHEZ, D.; TENTORI, M.; FAVELA, J. Activity recognition for the smart hospital. IEEE

Intelligent Systems, USA, v. 23, n. 2, p. 50–57, 2008.

SCHARSTEIN, D.; SZELISKI, R. High-accuracy stereo depth maps using structured light. In:
IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN
RECOGNITION (CVPR), 2003, Madison, WI, USA, USA. Proceedings. . . IEEE, 2003.
p. 195–202.

SCHEUNEMANN, M. M. et al. Utilizing bluetooth low energy to recognize proximity, touch
and humans. In: IEEE INTERNATIONAL SYMPOSIUM ON ROBOT AND HUMAN
INTERACTIVE COMMUNICATION (RO-MAN), 25., 2016, New York, NY, USA.
Proceedings. . . IEEE, 2016. p. 362–367.

SCHMALZ, C. et al. An endoscopic 3d scanner based on structured light. Medical Image

Analysis, London, United Kingdom, v. 16, n. 5, p. 1063–1072, 2012.

SHARMA, A.; ADARKAR, H.; SENGUPTA, S. Managing qos through prioritization in web
services. In: INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS
ENGINEERING WORKSHOPS, 2003. PROCEEDINGS., 4., 2003, Rome, Italy.
Proceedings. . . IEEE, 2003. p. 140–148.

SISINNI, E. et al. Industrial internet of things: challenges, opportunities, and directions. IEEE

Transactions on Industrial Informatics, USA, v. 14, n. 11, p. 4724–4734, 2018.

SKORIN-KAPOV, L.; MATIJASEVIC, M. Analysis of qos requirements for e-health services
and mapping to evolved packet system qos classes. International Journal of Telemedicine

and Applications, Egypt, v. 2010, 2010.

SODHRO, A. H. et al. Mobile edge computing based qos optimization in medical healthcare
applications. International Journal of Information Management, United Kingdom, v. 45,
p. 308 – 318, 2019.

144

SONG, H. et al. Artificial intelligence enabled internet of things: network architecture and
spectrum access. IEEE Computational Intelligence Magazine, USA, v. 15, n. 1, p. 44–51,
2020.

STEINMETZ, R. Human perception of jitter and media synchronization. IEEE Journal on

Selected Areas in Communications, USA, v. 14, n. 1, p. 61–72, 1996.

SZYMANSKI, T. H.; GILBERT, D. Provisioning mission-critical telerobotic control systems
over internet backbone networks with essentially-perfect qos. IEEE Journal on Selected

Areas in Communications, USA, v. 28, n. 5, p. 630–643, 2010.

TAN, B. et al. Wi-fi based passive human motion sensing for in-home healthcare applications.
In: IEEE WORLD FORUM ON INTERNET OF THINGS (WF-IOT), 2., 2015, Milan, Italy.
Proceedings. . . IEEE, 2015. p. 609–614.

TAN, Y.; VENKATESH, V.; GU, X. Resilient self-compressive monitoring for large-scale
hosting infrastructures. IEEE Transactions on Parallel and Distributed Systems, USA,
v. 24, n. 3, p. 576–586, 2013.

TANENBAUM, A. S.; VAN STEEN, M. Distributed systems: principles and paradigms.
New Jersey, USA: Prentice-Hall, 2007.

THUEMMLER, C.; BAI, C. Health 4.0: how virtualization and big data are revolutionizing
healthcare. 1st. ed. New york, NY, USA: Springer Publishing Company, Incorporated, 2018.

TSENG, H.-W.; WANG, Y.-B.; YANG, Y. An adaptive channel hopping and dynamic
superframe selection scheme with qos considerations for emergency traffic transmission in
ieee 802.15.6-based wireless body area networks. IEEE Sensors Journal, Piscataway, NJ,
USA, v. 20, n. 7, p. 3914–3929, 2020.

TVETER, D. The pattern recognition basis of artificial intelligence. 1st. ed. USA: IEEE
Press, 1997.

VADIVEL, R.; RAMKUMAR, J. Qos-enabled improved cuckoo search-inspired protocol
(icsip) for iot-based healthcare applications. In: Incorporating the internet of things in

healthcare applications and wearable devices. USA: IGI Global, 2020. p. 109–121.

VANKIPURAM, M. et al. Toward automated workflow analysis and visualization in clinical
environments. Elsevier Journal of Biomedical Informatics, Amsterdam, Netherlands, v. 44,
n. 3, p. 432–440, 2011.

MÖLLER, S.; RAAKE, A. (Ed.). Quality of service versus quality of experience. In: _____.
Quality of experience: advanced concepts, applications and methods. Cham: Springer
International Publishing, 2014. p. 85–96.

VENKATESH, K. et al. Qos improvisation of delay sensitive communication using sdn based
multipath routing for medical applications. Future Generation Computer Systems,
Amsterdam, Netherlands, v. 93, p. 256 – 265, 2019.

WAHEED, T. et al. Qos enhancement of aodv routing for mbans. Wireless Personal

Communications, Amsterdam, Netherlands, p. 1–28, 2020.

145

WALDSPURGER, C. A.; WEIHL, W. E. Lottery scheduling: flexible proportional-share
resource management. In: USENIX CONFERENCE ON OPERATING SYSTEMS DESIGN
AND IMPLEMENTATION, 1., 1994, USA. Proceedings. . . USENIX Association, 1994.
p. 1–es. (OSDI ’94).

WANG, J.; SUN, Y.; JI, Y. Qos-based adaptive power control scheme for co-located wbans: a
cooperative bargaining game theoretic perspective. Wireless Networks, Amsterdam,
Netherlands, v. 24, n. 8, p. 3129–3139, Nov 2018.

WANG, Q. et al. Enable advanced qos-aware network slicing in 5g networks for slice-based
media use cases. IEEE Transactions on Broadcasting, USA, v. 65, n. 2, p. 444–453,
June 2019.

WANT, R. An introduction to rfid technology. IEEE Pervasive Computing, USA, v. 5, n. 1,
p. 25–33, 2006.

WANT, R. Near field communication. IEEE Pervasive Computing, USA, v. 10, n. 3, p. 4–7,
2011.

WHEELER, A. Commercial applications of wireless sensor networks using zigbee. IEEE

Communications Magazine, USA, v. 45, n. 4, p. 70–77, 2007.

WILLIAMS, A. M. et al. Artificial intelligence, physiological genomics, and precision
medicine. Physiological Genomics, USA, v. 50, n. 4, p. 237–243, 2018. PMID: 29373082.

XIAO, J. et al. A survey on wireless indoor localization from the device perspective. ACM

Computing Surveys, New York, NY, USA, v. 49, n. 2, p. 25:1–25:31, 2016.

ZHOU, T. et al. Multimodal physiological signals for workload prediction in robot-assisted
surgery. J. Hum.-Robot Interact., New York, NY, USA, v. 9, n. 2, Jan. 2020.

ZITTA, T. et al. Multi-channel access to improve qwl in health care services - infrastructure
based qos ensurance in iot. In: INTERNATIONAL SYMPOSIUM ELMAR, 2018., 2018,
Zadar, Croatia. Proceedings. . . IEEE, 2018. p. 7–10.

ZUHRA, F. T. et al. Miqos-rp: multi-constraint intra-ban, qos-aware routing protocol for
wireless body sensor networks. IEEE Access, New York, NY, USA, v. 8, p. 99880–99888,
2020.

