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Abstract: Internet of Things has been without a doubt on the rise over the last few years as
more and more companies, in varying fields, start to automate their processes with the help of
Internet-Of-Things (IoT). IoT systems are often connected to critical processes of companies,
such as production line monitoring, requiring reliable and scalable environments. Cloud Com-
puting has been prevailing as an architecture of choice for IoT implementations due to its highly
scalable nature. However, that has brought forth challenges related to security, Quality of Ser-
vice, network congestion, and latency. Fog Computing has been on the rise as an alternative to
address those challenges as it allows not only increased security and reduced latency but also
reduced network congestion. Multiple studies suggest different models for Cloud-Fog architec-
tures for IoT implementations, mostly focusing on task execution and job scheduling, but not
thoroughly addressing elasticity control mechanisms. In this context, this article presents Pro-
Fog, a proactive elasticity model for Cloud-Fog architectures for IoT scenarios. ProFog makes
use of the Auto-Regressive Integrated Moving Average (ARIMA) mathematical formalism to
predict load behaviors and trigger scaling actions as close to when they are required as possible,
allowing the delivery of new resources prior to reaching an overloaded state. We developed a
prototype in order to validate ProFog on a simplified use case and its results were compared to
those of a reactive model. The results showed an improvement of 11,21% in energy consump-
tion in favor of ProFog due to data smoothing achieved by the ARIMA predictions and open
way for additional studies on proactive elasticity for fast deployment environments.

Keywords: Cloud Computing, Fog Computing, IoT, resource management, elasticity

1 INTRODUCTION

The advance of the Internet-of-Things (IoT) industry is connected to the needs of many seg-
ments of the economy, such as the automation in industries as part of Industry 4.0 (I4.0) (MA-
SOOD; SONNTAG, 2020), Smart Cities, transportation and healthcare (MOHAMED, 2017).
Over the past few years, more industries started to adhere to the automation of processes and
the implementation of IoT applications and the tendency is for that only to grow further as the
results of such implementations start to be seen. Therefore, it is expected for IoT implemen-
tations to grow as well based on the continuous and increasing demand from other industries.
According to Cisco (CISCO, 2020), the number of devices connected to the network will be
close to 30 billion by the end of 2023.

The applications of IoT are numerous. Internet of Things allows monitoring of machines and
processes on manufacturing (Mourtzis; Vlachou; Milas, 2016), stock control on retail, security

1Graduando em de Ciência da Computação pela Unisinos. Email: guilherme_barth96@hotmail.com
2Mini-currículo do orientador. Email: rrrighi@unisinos.br



2

and management on cities, patient monitoring on healthcare (FISCHER et al., 2020), and many
others. Each of these applications has its own set of peculiarities which makes IoT systems
rather complex. These systems may be used from data collection for long-term actions - such
as predictive maintenance - to emergency actions - such as healthcare (MAHMUD; KOCH;
BUYYA, 2018) and Smart Manufacturing (Yin; Luo; Luo, 2018). The IoT devices and format
of data used on each kind of scenario also vary. For this variety of requirements and use cases,
IoT systems must be as flexible and manageable as possible. This heterogeneity of scenarios
and devices is one of the main challenges of IoT along with the collaboration of systems, data
transmission, management of resources, and energy consumption (Hu et al., 2019).

Relying only on a local central processing server to address all the operations of IoT im-
plementations would result in high costs on infrastructure and maintenance as it would require
a very robust server and network to avoid overloading the server or flooding the network with
data. In most industrial scenarios, IoT systems are connected to critical applications that re-
quire high availability from the server given that failure of the system may result in significant
financial losses for the company or even damage to machinery. Cloud computing is often used
as an approach in such cases to take advantage of its scalability and high availability with re-
duced infrastructure costs. However, sending requests to a Cloud server adds a constant latency
overhead to the communication (STANKOVSKI et al., 2016) that can not be accepted in some
cases, such as healthcare scenarios as response time is critical for the system.

As explained by Vaquero, the existence of billions of devices constantly producing data on
the edge of the network may cause the network to become a bottleneck (VAQUERO; RODERO-
MERINO, 2014). Using Cloud Computing as the main paradigm for IoT scenarios will only
further contribute to network congestion (Yin; Luo; Luo, 2018) as the “Internet is not scalable
and efficient enough to handle IoT big data” as explained by Xiang (Sun; Ansari, 2016). Sub-
mitting massive loads of data to a Cloud Computing server may also result in high costs for the
service as providers may charge based on the amount of data going into the Cloud.

To allow further development and implementation of IoT, it is necessary to design new
architectures and solutions that allow higher scalability while reducing the number of requests
on the network and maintaining the required Quality of Service (QoS). Fog Computing has been
gaining position as an architecture of choice for IoT scenarios due to its concept of keeping the
processing near to its data sources, thus allowing reduced latency, stable QoS (SUGANUMA,
2018) and addressing another of the key concerns of IoT which is the data security.

Like Cloud Computing, Fog Computing also has its set of disadvantages when it comes
to IoT systems. Fog nodes, unlike Cloud servers, are often limited in hardware capabilities,
therefore they are not appropriate for CPU intensive tasks such as data analytics, which is one
of the key components for turning data into information on IoT systems. In order to address
the many requirements of IoT systems and achieve a highly scalable and reliable architecture,
Fog Computing may be used in combination with Cloud Computing to provide the best of both
architectures into a single environment that is able to cover the multiple needs of IoT systems
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efficiently.

The majority of studies released to date which address this kind of scenario focuses on task
scheduling and resource allocation algorithms based on different criteria, not giving too much
attention to the elasticity control technologies behind the maintenance of the system’s opera-
tions. Elasticity control strategies may be classified as reactive or proactive. The first one is
based on if-then rules and pre-set thresholds which scale the system when certain conditions
are met, providing a simple approach for elasticity control. This strategy however may result
in tardy scaling decisions, delivering resources too late and subjecting the system to an over-
loaded state in the meantime, or increased energy consumption due to unnecessary scaling. The
second strategy on the other hand makes use of different prediction techniques to anticipate the
system’s behavior and ensure that resources are delivered on time, avoiding overloaded states
and unpredicted errors.

In this study, we present ProFog, a proactive elasticity model for resource management on
Cloud-Fog environments for IoT implementations. ProFog uses the mathematical formalism
ARIMA (AutoRegressive Integrated Moving Average) to predict the system’s behavior and
deliver new resources as close to when they are required as possible, allowing elasticity with
minimum energy consumption and operating costs.

In section 2 of this article, we present the background information that is necessary to un-
derstand the concepts later referred to in the study. Section 3 describes related work in the area.
Over the course of section 4, we present the ProFog model in detail, explaining its architecture
and technologies. Section 5 introduces our prototype, workload, and evaluation metrics used
to analyze its results. Section 6 comprises a review of the results of the prototype tests. At
last, section 7 provides the scientific contributions, challenges, and future work involving the
solution.

2 BACKGROUND

This section explores and defines the most important topics for the understanding and de-
velopment of Internet of Things systems, covering architecture, commonly used technologies,
challenges, and future direction.

2.1 IoT Architecture

Internet-of-Things (IoT) systems are composed of a number of physical objects that are
connected to the internet and constantly produce loads of data based on the environment they are
applied to (Mourtzis; Vlachou; Milas, 2016). The end devices, data output format, frequency,
and application vary across the many different IoT use cases. However, the massive quantity
of collected data is a constant for large IoT implementations. IoT has been on the rise over
the last few years and its use and research have been expanding throughout several different
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areas, such as maintenance of factories, supply chain management, agriculture, and healthcare
(SUGANUMA, 2018).

In order to address the huge loads of data generated by IoT systems, Cloud Computing has
been prevailing as the architecture of choice for those systems as it offers computing resources,
storage capacity, scalability, and reliability (MAHMUD; KOCH; BUYYA, 2018). However,
many difficulties have emerged with the use of Cloud Computing as a center of IoT systems
such as “increased network loads, response delays, and privacy concerns”, as per Takuo (SUG-
ANUMA, 2018). Certain IoT applications can not be subject to such response delays though,
like healthcare applications where IoT is implemented mainly for automation of patient moni-
toring and emergency response. Data security is another stable concern when it comes to IoT
systems and Cloud Computing. As IoT devices are directly connected to internal systems and
confidential data, having a direct connection between the edge devices and the internet may
pose risk for data leakage and Cyber-Physical attacks (HE et al., 2016).

Due to those concerns and difficulties, Fog computing has been gaining space as an alterna-
tive to Cloud computing. Fog computing allows the processing of data to be conducted near to
its data sources or control object, thus reducing the network load and delays as well as privacy
concerns. Many architectural models making use of different technologies were proposed for
IoT systems. However, none of those models has become a standard for the industries.

2.2 Cloud and Fog Computing

Cloud Computing systems are characterized by the provisioning of On-Demand computing
services over the internet, allowing service consumers to pay only for what is used and to
use only what is required (Abbasi et al., 2019) without the need to maintain a local server.
These services are divided on three categories: 1. Platform as a Service (PaaS), allowing the
deployment of applications and use of the Cloud as their platform; 2. Infrastructure as a Service
(IaaS), offering computing, storage, and networking resources on-demand to consumers along
with control over the operating system and applications, giving more flexibility than PaaS;
3. Software as a Service (SaaS), offering a specific service over the internet on-demand to
consumers.

These processes rely on server elasticity which is the virtualization of resources whenever
the load the server is submitted to requires so. That can be achieved by virtualizing machines
that act as processing environments - known as horizontal elasticity - and dividing the load of a
central server in many different nodes, increasing the overall throughput of the server (Agarwal;
Yadav; Yadav, 2015), or by adding extra resources to existing virtualized machines - known as
vertical elasticity.

Cloud Computing offers a set of benefits to consumers - which highly boosted its acceptance
by companies - such as: 1. Reduced infrastructure costs as companies do not need to maintain
expensive servers to cover their demands or employees to maintain the same; 2. Scalability is



5

provided by the Cloud provider which allows companies to scale its services on demand rather
than maintaining oversized servers to cover for occasions that lead to unusual server load, such
as Black Friday for retail stores; 3. Redundancy and reliability against hardware failures are
handled by the Cloud provider as they are responsible for the server and the adherence to service
level agreements (SLAs) related to server availability; 4. Reduced landscape complexity as the
system is maintained by a separate company and so is its security.

Cloud Computing is rather attractive to companies as it allows them to spare expenses on
hardware and maintenance and to focus on business, however it is also associated with its own
set of challenges, such as: 1. Security and privacy concerns as the data resides outside of the
company’s firewall; 2. System availability as the system is maintained by a different company
and SLAs may not be maintained; 3. Performance is limited by bandwidth and latency on the
communication, affecting the user experience with the application.

To address the challenges of Cloud Computing implementation in the presence of the ad-
vance of Internet-of-Things, Cisco introduced the concept of Fog Computing. Similarly to
Cloud Computing, this technology may provide computing, storage, and networking services
in a virtualized platform. Unlike Cloud Computing, Fog Computing is typically positioned
close to the end devices, on the edge of the network (BONOMI et al., 2012). One may say that
Fog is a Cloud that is closer to the user.

Fog Computing systems are essentially composed of multiple Fog nodes - which are indi-
vidual processing units - that provide services to edge devices. The services provided by Fog
nodes are numerous varying according to the application of the system, from failure detection
on assembly lines to streaming services on sports events. Edge devices also vary based on the
IoT application, from mere sensors to Smart Cars. Fog Computing nodes are limited on pro-
cessing capacity, making the use of VMs for virtualization too resource-demanding, fostering
the use of containers as a light-weight virtualization option that is also capable of faster de-
ployment incurring in better overall response times in communication (Yin; Luo; Luo, 2018).
The positioning of the Fog Computing architecture is strategical and connected to many other
characteristics that make it a promising architecture for Internet-of-Things implementations:

• Higher number of nodes;

• Wide-spread geographical distribution;

• Low latency due to edge positioning;

• Increased security;

• Heterogeneity.

The proximity of the Fog to the end user allows lower latency on the communication and
facilitates tasks of maintaining the required Quality-of-Service (QoS) - of extreme importance
to several IoT applications. Fog Computing also allows higher control and security over the
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data as Fog nodes may be placed behind the company’s firewall and configured as required to
meet the company’s security standards. Fog Computing was not designed to be a substitute
for Cloud Computing, but to extend it and address its challenges, allowing the development of
applications and services that could not be achieved with Cloud alone (BONOMI et al., 2012).
By properly integrating the two different architecture paradigms, it is possible to achieve high
scalability with reduced latency and higher security standards while also reducing the amount
of data on the network, preventing network congestion.

2.3 Load Prediction

Performance is a constant concern on large scale systems, especially on IoT implementa-
tions as the complexity of scenarios, number of connected devices and aggregated data can eas-
ily reach massive numbers. Maintaining application requirements such as QoS is a challenging
task that can only be fulfilled by the implementation of proactive resource management on the
system and that can only be achieved through the use of intelligent load prediction techniques.

Load prediction consists on forecasting resource consumption within the infrastructure based
on aggregated data of resource monitoring. This allows for proactive management actions to
be taken before a state of depletion of resources is reached. Working on an overloaded state
may result in a series of undesired effects on the system, such as high response times, timeouts,
denial-of-service, or unforeseen application errors (Righi et al., 2019). There are two steps in
load prediction: the first one is the collection of data on certain metrics that represent the sys-
tem’s state and the second is the analysis of the collected data with the use of algorithms to
predict future resource utilization rates.

Data is typically organized as time series - a set of observations that represent sequential
events over a period of time - to allow the analysis of the system’s state over time. Depend-
ing on its characteristics, time series can be classified as deterministic or stochastic processes.
Deterministic processes are defined by known mathematical functions, meaning future values
can be calculated through the use of formulas. They may be represented by linear models and
further classified as stationary or non-stationary. Stationary time series are those that display
no tendency over time while non-stationary time series tend to increase or decrease over time,
both tendencies may occur at different points as well. Multiple methods are commonly used for
linear time series analysis, such as Moving Average (MA), Autoregressive (AR), AR Integrated
MA (ARIMA), and Holt-Winters.

Stochastic processes on the other hand can not be defined by any known mathematical
model, so their values can not be formally calculated. Therefore, stochastic processes require
non-linear models. Non-linear time series are often analyzed by Artificial Neural Networks
(ANN) as they are capable to learn and adapt from the data without prior knowledge of the
model (Righi et al., 2019). Neural Networks may produce more accurate results in comparison
to time-series models, but they also require more data and extended learning periods to achieve
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such results which may be prohibitive for use on critical applications, such as medical use cases.

3 RELATED WORK

This section reviews related articles and their research on the subject to determine the most
commonly used technologies and architecture organizations for IoT scenarios and Fog Comput-
ing. These areas are a constant point of study for researchers and are under constant and quick
change. Therefore, in order to filter out possibly outdated information, we used a filter not to
return any article released before 2016.

We performed the search for related articles using a query string that encapsulated general
terms used on IoT and Fog Computing scenarios: Fog Computing, Cloud Computing, Internet
of Things, scalability, elasticity, and resource management. We chose Google Scholar to per-
form the query for articles as it simultaneously queries multiple scientific repositories, such as
IEEE Xplore Digital Library, ScienceDirect, ACM Digital Library, and Springer Library. The
following exclusion criteria (EC) were also used to further filter articles returned on the search:

1. EC1: Articles that were not written in English;

2. EC2: Articles that performed surveys on the subject;

3. EC3: Articles that performed reviews on the subject.

Figure 1 – Query string used to search for related work.

3.1 State-of-the-art

Inspired by IoT adoption rate and Cisco’s predictions for data traffic and number of devices
connected to the network, many researchers aimed efforts at the development of Fog Computing
enablement technologies. Yin’s work proposed the use of a request evaluator as the first module
on Fog Computing nodes, allowing to evaluate the complexity of a task based on its calculated
computing time to decide where such task should be addressed to meet its requirements. In
case the request evaluator decides the task can not be addressed locally - on the edge device -
and requires to be executed by the Fog or Cloud, the same is directed to a task scheduler that
is responsible for the decision if the task will be computed on the Cloud or the Fog. The task
scheduler evaluates the resource demand of a task and the calculated resource threshold of a
period of time for the Fog to determine the allocation. A local resource manager on each of
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the Fog nodes is responsible for the initialization of tasks as well as resource reallocation to
tasks based on delay constraints (Yin; Luo; Luo, 2018). Yin’s work focused on proper resource
allocation for QoS adherence and reduction of communication to remote servers, minimizing
network congestion risks.

Ranesh’s study used a resource ranking approach - based on available processing, latency,
and bandwidth - for dynamic resource allocation on Cloud-Fog architectures as a mean to
achieve optimal response times. The resource provisioning method included data transmis-
sion as a metric for the provisioning decision along with a hierarchical approach to minimize
latency, response times, and network congestion by giving priority to the lowest members of the
hierarchy whenever possible (NAHA et al., 2020).

Chen (Chen et al., 2017) on the other hand proposed a four-layer architecture - consisting
of IoT, Middleware, Fog, and Cloud - where the majority of the services are provided by the
Cloud initially and the same are allocated to the Fog upon demand. In his work, the middle-
ware is responsible for receiving tasks from IoT devices and performing job classification and
resource scheduling. Job classification is based on data privacy and QoS requirements, tasks
subject to data privacy are directly assigned to a local Fog node to ensure security while non-
privacy-sensitive tasks have their QoS requirements evaluated to determine which nodes of the
system are capable of meeting the QoS. Based on the results of the classification, the middle-
ware schedules tasks to the Fog or Cloud based on an operational cost evaluation performed
by the resource scheduler with the use of predefined costs. The system monitors resource uti-
lization on the Fog and Cloud layers and determines resource allocation needs and the pool of
resources for scheduling based on predefined threshold settings.

Small’s work proposed a middleware solution for microservice-based orchestration of appli-
cations on multi-tier IoT infrastructures as a mean to allow reduced communication to remote
servers (Small et al., 2017). His solution orchestrated the deployment of services to Cloud, Fog,
or Mist layers based on the requirements of the services and available resources on the layers.
The Cloud layer used OpenStack hosted VMs, having the capacity to boot VMs ahead of time,
reducing deployment time, while services on the Fog were provided by containers instantiated
on demand.

Cisco’s initial Fog Computing model definition did not specify hardware-specific details for
Fog nodes, such as computing and storage power. To this day, many authors have proposed
different kinds of hardware configurations to allow different Fog use cases. Jianhua’s work pro-
posed a multi-tier Fog architecture model to allow complex analytical tasks to take place on Fog
level and reduce the load of requests directed to Cloud servers for data analytics scenarios. The
proposed multi-tier model was composed of two layers of Fog nodes, A-Fog (ad-hoc) and D-
Fog (dedicated), which operated on analytics tasks based on their complexity (He et al., 2018).
A-Fog was composed of low computing power devices while D-Fog was formed by a cluster
of servers, allowing the execution of complex data analytics without a Cloud server. Resource
allocation was based on utility cost as a measure of decision rather than QoS adherence as in
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some of the previous studies.

Instead of focusing on resource allocation on Fog or Cloud, Alsaffar proposed a collabo-
ration strategy between Fog Computing and Cloud Computing to allow the execution of more
complex tasks. On his work, a Fog broker evaluated received requests and in case its node was
not capable of processing it within its SLAs, it contacted a service monitor server located on
the Cloud which hosted information about VM availability on all of the Cloud and Fog environ-
ments. Based on the availability information retrieved from the service monitor server, the Fog
broker divided the job into multiple blocks for distribution across available VMs. Upon the con-
clusion of the processing, each remote VM returned the data for aggregation to the initial Fog
broker. The requests were evaluated based on predefined categories. The proposed approach
supported the collaboration of Fog nodes for the execution of CPU intensive tasks, offering an
option for big data management. However, this process may also take too much processing of
the Fog layer for scheduling, data division, and aggregation processes (ALSAFFAR, 2016).

Mohammed proposed a Fog-2-Fog collaboration system to allow better resource utilization
and load distribution across Fog nodes. Mohammed designed algorithms for resource real-
location decisions using multiple delay metrics such as service delay, propagation delay, and
computational delay (AL-KHAFAJIY et al., 2019). The decision of when to offload work from
a Fog node to another was based on two conditions: 1. Evaluation if one or more services in the
queue would miss their deadline; 2. Comparison of service arrival rate to service output on the
node.

Nguyen’s study (Nguyen et al., 2020) pointed out that merely monitoring server metrics,
such as CPU load and memory consumption, is not an appropriate solution to address the het-
erogeneity of applications comprised by IoT. On that note, Nguyen proposed ElasticFog, a
framework built on top of Kubernetes for dynamic resource allocation of container-based ap-
plications on Fog Computing. ElasticFog monitors network traffic at each Fog node location
and uses that as an affinity rule on Kubernetes to improve resource allocation decisions. The
evaluation of the solution showed significant improvements in throughput and latency in favor
of ElasticFog when compared to Kubernetes’ default scheduling mechanism.

3.2 Analysis and research opportunities

By analyzing the related works - refer to table 1 - we can see that the majority of studies
focus on task scheduling and resource allocation algorithms based on different criteria, from
security to utility cost and QoS adherence. This approach allows the evaluation of tasks and
their deployment to the most suitable environment for their execution. However, it does not
fully address the scalability management side of resource provisioning.

In order to create a highly reliable environment that allows the maintenance of QoS for a
wide range of IoT implementations, it is important to implement load prediction algorithms
and make use of proactive elasticity as a mean to scale the system before the same reaches an
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overloaded state, which may affect the QoS and create unpredicted errors on the server.

4 PROFOG MODEL

This section describes the ProFog model, a model that uses proactive elasticity to improve
resource allocation for IoT applications on Fog Computing. Figure 3 depicts the composition
of the model. The following sections address its design decisions and underlying algorithms of
the core components.

4.1 Design Decisions

Cloud computing models face many challenges when it comes to IoT implementation, such
as data security, latency, network congestion, and cost. Fog Computing offers a way to address
these challenges as the positioning of the Fog allows for increased security, reduced latency, and
reduced risk of network congestion. However, Fog Computing systems do not have as much
processing and storage capacity as Cloud Computing systems, thus we can not expect them to
be able to perform all the operations that rely on Cloud Computing. Considering the varying
requirements of different Internet of Things scenarios, a Cloud-Fog architecture is currently the
most promising solution for IoT implementation in the long term as it allows for a wider variety
of scenarios to be implemented while also providing additional security and control over the
data, reducing network congestion and facilitating QoS adherence.

In order to meet QoS requirements and create a stable and reliable environment for the exe-
cution of IoT services, it is essential for the system to make use of elasticity control techniques
and scale itself on demand. Reactive elasticity models trigger scaling operations once the server
load reaches a pre-set threshold. Scaling operations are not instant, though - they require a cer-
tain deployment and start-up time until the resources are available for use. This may cause
the applications to operate in an overloaded state until the resources become available, possi-
bly resulting in a series of undesired effects on the system, like high response times, timeouts,
denial-of-service, or unforeseen application errors (Righi et al., 2019).

Proactive elasticity models on the other hand apply the collected load data to predictive
algorithms to estimate future load and trigger scaling operations before such load is reached,
allowing for resources to be available before the server reaches an overloaded state, avoiding
system errors. Given the importance of stability and QoS for IoT applications, we have decided
to make use of proactive elasticity on ProFog. Unlike Cloud servers, Fog nodes are limited on
processing capacity, limiting the use of vertical elasticity. For that reason, we have chosen to
apply horizontal elasticity instead by instantiating new service instances on idle Fog nodes.

The proposed architecture is divided on three different physical layers: Internet-of-Things,
Fog Computing, and Cloud Computing. The IoT layer is composed of network edge devices
that collect data to be analyzed, interact with its surroundings or require services made available
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Article Focus
Elasticity
on Cloud

Elasticity on Fog
Resource

collaboration

(Yin; Luo; Luo,
2018)

Resource
scheduling and

allocation
NA

Vertical elasticity
using resource
reallocation w/

custom
algorithms

NA

(NAHA et al.,
2020)

Resource
scheduling and

allocation
NA NA NA

(Chen et al.,
2017)

Job Classification
+ Resource

scheduling and
allocation

Reactive Reactive NA

(Small et al.,
2017)

Application
deployment

orchestration
with resource

scheduling

Proactive NA NA

(He et al., 2018)
Resource

scheduling for
data analytics

NA NA NA

(ALSAFFAR,
2016)

Resource
allocation based
on collaboration
between Fog and

Cloud
Computing

NA NA X

(AL-KHAFAJIY
et al., 2019)

Load balancing
based on

collaboration
between Fog

nodes

NA NA X

(Nguyen et al.,
2020)

Resource
allocation

NA Reactive X

Table 1 – Related works comparison. NA is used to indicate that the item was not addressed by
the author of the work. X indicates the item is addressed on the related work.
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on the Fog Computing layer- these devices may vary from simple sensors to smart devices, like
Smart Cars. The Fog layer is composed of multiple Fog nodes which perform initial data
treatment and provide time sensitive services for the IoT layer and other service consumers.
The Cloud layer is responsible for the monitoring and scaling of the system as a whole - the
Cloud and the Fog nodes - and also for performing non-time-sensitive and CPU intensive tasks,
such as data analytics. Figure 2 provides a high-level overview of a Cloud-Fog architecture for
IoT implementation.

Cloud

Fog nodeFog node

C
lo

ud
 L

ay
er

Fo
g 

La
ye

r
Io

T 
La

ye
r

IoT Device IoT Device IoT Device IoT Device IoT Device

...

...

Figure 2 – High-level view of a Cloud-Fog architecture.

4.2 Architecture

ProFog focuses on elasticity for the execution of time-critical applications on Fog Com-
puting. For that purpose, we apply load prediction algorithms to time series data in order to
determine resizing needs and trigger proactive scaling. ProFog acts as a middleware by manag-
ing the deployment and execution of different services and applications in a seamless manner.
Figure 3 provides an overview of the core components of the model, highlighting in red the
ones that are part of ProFog. The model is composed of three physical layers - Cloud Comput-
ing, Fog Computing, and Internet-of-Things. However, ProFog is distributed only on the Cloud
Computing and Fog Computing layers.

ProFog is composed of three different modules: 1. Cloud Manager; 2. Fog Manager; 3.
Elastic Manager. The Cloud Manager is responsible for triggering the deployment of services
to the Fog layer based on requests from the IoT devices, load balancing, and for the communi-
cation with Fog nodes about load and triggering scaling actions on the Fog and Cloud layers.
The Fog Manager downloads application images from the Cloud and instantiates them as con-
tainers on the Cloud Manager’s request while also constantly monitoring its load and updating
the Cloud Manager about the same. The Elastic Manager receives data about the load of the



13

Fog	Layer

...

IoT	Layer

Cloud

Load Prediction

Container Image
Repository

Business
Applications

Service Consumer

Fog Manager Time-Critical Operations

Data Collection/Treatment

Fog node

IoT device IoT device IoT device...

Elastic Manager

Data
Monitoring
Scaling
Service provisioning

Fog Manager Time-Critical Operations

Data Collection/Treatment

Fog node

IoT device IoT device IoT device...

Cloud Manager Application deployment

Figure 3 – ProFog model applied to Cloud-Fog environment. Elements highlighted with a red
dot represent the main modules of ProFog.

Fog nodes and Cloud applications from the Cloud Manager, applies the collected data to load
prediction algorithms, and informs the Cloud Manager about its scaling decisions.

ProFog requires the deployment of a Fog Manager to all Fog nodes of the architecture and
of a Cloud Manager and an Elastic Manager to the selected Cloud server. The number of Fog
nodes on the system depends on the complexity of the implemented scenario. Applications
and services to be deployed on the Fog layer must also follow certain formats for compatibility
with ProFog. On the runtime, IoT devices initially request services to the Cloud Manager that
redirects them to the Fog node which provides the service, depicted in Figure 4. From there
on out, the IoT device communicates directly with the service provider on the Fog. These
services may perform data treatment and forward the data to the Cloud for analytics - or other
processing intensive task - or provide time-critical functionalities to the IoT layer or external
service consumers. This allows for reduced network congestion - which may reach critical
points on IoT scenarios - and QoS adherence for time-critical services benefitting from Fog’s
reduced latency.

All management activities are centralized to a single point - the Cloud - facilitating system
management and reducing landscape complexity. The Cloud Manager also monitors the load
of local applications and collects information about the load of Fog applications from each
Fog Manager, this data is then forwarded to the Elastic Manager which applies load prediction
algorithms based on the collected data and provides proactive elasticity to both Cloud and Fog
layers with no human intervention.
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Figure 4 – Service request routing process performed by the Cloud Manager.

4.3 Application model for Fog deployment

Applications are exposed for deployment as Docker container images which include all the
necessary services for its operations, in a similar way to what was proposed by Nguyen in his
study (Nguyen et al., 2020). In order to start the application, ProFog creates an instance of the
container image for that application, requiring the image to be built and configured to run the
application upon initialization. Any necessary parameters for the application start-up can be
provided during the instantiation of the container as long as the image was previously built with
an ENTRYPOINT or CMD statement to support command line argument consumption through
Docker. Deploying applications as isolated containers simplifies the deployment process while
also providing more flexibility to the application development as it becomes possible to install
any necessary resources for the application directly on its container.

As applications are deployed as containers, they are isolated from the Fog Manager, requir-
ing them to implement internally any functionalities that are necessary for consuming data or
providing services. For instance, an application that receives data from edge devices, performs
operations on such data, and then forwards it to the Cloud must implement an HTTP server
to receive data from edge devices through HTTP requests. The Fog Manager provides the ap-
plication with the port number it should use to run its HTTP server upon initialization. The
application must implement a shutdown service and a process to handle the rerouting of any
connected clients back to the Cloud. The Fog Manager calls the shutdown service to notify
the application of any eventual shutdown due to down-scaling, providing it the time left for
the shutdown and the address of the Cloud Manager which may be used to reroute clients to
another active application instance. All monitoring and elasticity control related tasks are man-
aged by the Fog Manager and Cloud Manager, relieving application developers of any concerns
of elasticity control at application level.
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4.4 Elasticity Algorithm

ProFog uses proactive elasticity to provide stable QoS and prevent having the system on an
overloaded state, which may compromise its operations. Proactive elasticity is not only capable
of achieving more consistent and reliable scaling decisions with better rates of false-positive
results in case of sudden peaks of load when compared to reactive elasticity, but it also allows
to include relevant metrics such as deployment and start-up time into consideration for scaling
decisions. This makes possible to have the necessary resources ready before they are required,
preventing the application to go into an overloaded state.

Proactive elasticity depends on constant monitoring of the system’s state, followed by the
prediction of future load based on the collected data through the use of time-series forecasting
algorithms. We selected the mathematical model ARIMA (AutoRegressive Integrated Moving
Average) for this purpose as it is widely used for time series based prediction and it can provide
predictions in fewer boot cycles than the machine learning models (da Rosa Righi et al., 2020).
The term AutoRegression (AR) means that it is a regression of the variable against itself, thus
the variable of interest is forecasted using a linear combination of its past values. Moving
Average models use past forecast errors rather than past values of the variable. ARIMA takes
both the previous values of the variable and the previous forecast errors into consideration for
its predictions.

ARIMA has several configurations that are dependent on three parameters: d which is the
minimum number of differencing that is required to make the time series stationary, p which is
the order of autoregressive terms (AR) and q which is the order of the moving average (MA)
term. We have used Auto Arima, a function from the time series analysis library used, to
determine the most appropriate values for these parameters. As ARIMA’s predictions depend
on the analysis of time series data, it is necessary to collect a given number of load observations
to start the load predictions. Righi’s study (da Rosa Righi et al., 2020) suggests the use of at
least six cycles - or six monitoring observations - for the calculation of the predictions. We
have chosen to use the data of ten cycles for our predictions, meaning ARIMA will take 10

x monitoring_observation_period to initialize and provide its first prediction. For example, if
there is an interval of 10 seconds between each observation of the load of the system, it will
take 100 seconds to collect enough values to make the first prediction.

We have also defined a ahead parameter based on the equation 1 - which was proposed by
Righi on his article (da Rosa Righi et al., 2020) - to determine how many cycles ahead into time
ARIMA should make its prediction to allow the deployment of new resources in time. A proper
definition of the ahead parameter is of crucial importance to avoid two possible pitfalls: 1. Too
high of a value may cause the prediction to miss short-term changes on the application behavior
incurring in false-negative or false-positive elasticity; 2. If the value is too low, the elasticity
action may deliver the resources after they start to be necessary, causing the application to run on
an overloaded state for some time, affecting its operations (da Rosa Righi et al., 2020). Figure
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6 depicts the flow of actions performed by ProFog for elasticity management. Like reactive
models, proactive elasticity models also require the definition of upper and lower threshold
settings. After performing load prediction, the predicted values are compared to the threshold
values to determine if scaling actions are required. Figure 5 illustrates the behavior of proactive
elasticity models during execution.

ahead =
Abs(Max(scaling_out_time))

monitoring_observation_period
(1)
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Figure 5 – Server elasticity managed by a proactive elasticity model.
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5 EVALUATION METHODOLOGY

The following sections describe the use case that we selected to evaluate the model, the
infrastructure and workload used for the tests, and metrics used for their evaluation.

5.1 Application

The domain of Internet-of-Things is composed of a variety of scenarios, each having its
own set of demands and peculiarities. The proposed solution is designed to address the demand
for low-latency and continuous Quality-of-Service which is present in a series of solutions and
industries, such as Smart Manufacturing, Smart Cities, and healthcare. Therefore, in order to
properly evaluate the results of the proposed architecture, a scenario presenting such a set of
demands is required to be used as a case. After analyzing a series of possible IoT scenarios that
were documented by the OpenFog Consortium, an association for the advance of Fog Comput-
ing as a connected and interoperable architecture, we decided to make use of a video streaming
use case for the prototype’s test. Cases such as healthcare and Industry 4.0 require very specific
knowledge of the industry to recreate scenarios properly as the variables, data, and the analysis
of such data are very specific to their environment. However, streaming scenarios are far more
versatile as they are by themselves more connected to the information technology area and do
not involve as many unfamiliar end devices and sensors.

Streaming of sports’ events has become popular as even those attending the event itself are
simultaneously watching it on their smartphones to have access to different angles of view. This
generates a demand for higher availability on streaming services and lower latency to maintain
the feeling of real-time to the clients. In such scenarios, Fog nodes may be used to execute pre-
processing and encoding of video as well as its distribution to nearby clients with low latency
and constant QoS. Not only maintaining the feeling of real-time but also reducing network
congestion and distributing the load on more service providers.

There are no applications or benchmarks designed to evaluate the performance of such sce-
narios, so we have modeled an application to allow us to evaluate the prototype. The official
version of the streaming scenario proposed by the Industrial Internet Consortium is composed
of multiple different Fog levels, each responsible for a specific task in order to achieve the high-
est level of performance for live-event streaming. As this project’s solution is not specific for
streaming, but for a general Cloud-Fog architecture, the streaming scenario was simplified to a
single Fog level which provides Video-On-Demand (VOD) to clients while monitoring its state
and performing scaling operations proactively.
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5.2 Infrastructure

In order to evaluate the results of ProFog, we have deployed our solution to a Cloud-Fog
environment. For the Cloud layer, we have used an Azure Container instance, configured with
2 CPUs and 4GB of RAM, to host the Cloud Manager and Elastic Manager. The Fog layer was
composed of three Raspberry PI 4 Model B microcomputers as Fog nodes, hosting application
services.

On the Industrial Internet Consortium’s proposition of the video broadcasting scenario,
which we have based our case on, the IoT layer is composed of HD video cameras that col-
lect data for transmission. As our goal is to validate the elastic capacity of ProFog and not the
streaming scenario, we have removed the HD video cameras in exchange for pre-recorded video
files (VOD), allowing us to simplify the application and test infrastructure while maintaining
the elastic behavior. By doing that, we have removed the IoT layer from the test infrastructure.
In our test scenario, the services provided by the Fog layer are consumed by Video-On-Demand
clients which are generated by JMeter on a separate machine, creating service load for the Fog
and scaling needs. The machine we used to emulate the clients is configured with an Intel I7 7th
Generation processor and 16GB of RAM. Figure 7 shows a diagram of the test infrastructure.

Figure 7 – Infrastructure used for the prototype evaluation.
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We initially aimed to connect the machine that emulates the clients to the network over WiFi
to more accurately recreate a real scenario. However, we ruled out that option upon testing as
any relatively high load of clients affected the download times over WiFi, which could be caused
by a machine limitation or a router limitation. All the devices had to be connected to the network
via cable in order to emulate the necessary load to evaluate the scenario.

5.3 Prototype

The Cloud Manager and the services on the Fog layers were built on top of Node.js as it pro-
vides native asynchronous request handling and a high performance and lightweight backend,
which contributes to the overall performance of the system. This is especially important for
the Fog nodes as they are limited in hardware capacity. The Elastic Manager was created with
Python and it uses the pmdarima library for time series analysis. Pmdarima delivers Python
data science capabilities to substitute the use of R code. Using Python instead of R allows us
more for communication options between the Cloud Manager and Elastic Manager as Python
is an all-purpose high-level programming language while R is focused on data science.

The Fog nodes provide the streaming service through an HTTP server running on Node.js
which streams video content to the connected clients using the HTTP Live Streaming (HLS)
protocol. This protocol was developed by Apple in 2009 to address the difficulties in accessing
streaming services from different resolution devices and constrained bandwidth connections.
HLS consists of first chopping up the video content into small encoded chunks (MPEG2 Trans-
port Stream) that are later on stored and provided to clients by an HTTP server. During the
encoding of the video into transport streams, a playlist file (M3U8) is also created. The playlist
is interpreted on the client-side and works as an index to determine the existing video chunks
and the resolution/bandwidth configuration they are meant to. Due to its adaptive bitrate capac-
ity, native support on Apple devices, and support on HTML5 Video Players, HLS has become
not only Apple’s standard streaming technology but also one of the most popular technologies
for streaming lately (Jain; Shrivastava; Moghe, 2020).

For our prototype, we have used FFMpeg to encode a nine-minute long video file and stored
the generated index file and video stream chunks locally for consumption, refer to figure 8 for
the preparation of the video files. Streaming clients initially connect to the Cloud Manager
which then redirects them to an active Fog node which provides the requested service, seam-
lessly to the client - refer to figure 9. Upon receiving a service request, the Cloud Manager
performs load balancing between different active Fog nodes, always directing clients to the
node with the least load. The prototype does not contain any application on the Cloud side for
the evaluation of the Cloud elasticity.
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Figure 8 – Video encoding for HLS streaming.

Figure 9 – Sequence diagram of the flow of requests prior to starting the streaming service.

5.4 Workload and scenarios

In order to test the solution in the selected scenario, it is necessary to create and manage hun-
dreds of simultaneous streaming clients. We have used JMeter, a load testing tool maintained by
the Apache Foundation, for this purpose as it is a stable load testing tool with an active commu-
nity that has the capacity to handle massive amounts of threads. We have used different JMeter
elements to emulate the required streaming logic, allowing the redirect of streaming clients to
different servers during the streaming process, along with a few custom Groovy scripts which
perform validations of the request responses and emulate video buffer control.

During the test execution, each client generated by JMeter makes HTTP requests to a service
provider on the Fog layer for transport stream files - video chunks. Replying back to the HTTP
requests requires the service provider to execute the TCP algorithm, resulting in CPU load and
network connections which generate resizing needs as the number of clients increases. We have
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configured JMeter to emulate clients at two different points in time. The first client emulation
created 400 clients over 180 seconds. The second client emulation created 200 more clients
over 100 seconds. The first load was triggered at the start of the test and the second load at 250
seconds into the test.

In order to evaluate the prototype, we have configured ProFog to accept two different exe-
cution modes which allow us to observe two different scenarios in the same environment:

• Scenario 1: Streaming service with ProFog running on reactive elasticity mode;

• Scenario 2: Streaming service with ProFog running on proactive elasticity mode.

5.5 Evaluation Metrics

We observed the system’s average load in order to determine the efficiency of ProFog on
handling resizing upon demand. Average load is a metric that considers CPU load, network
connections, and I/O operations, being a more reliable metric for certain applications that do
not rely exclusively on CPU intensive operations. This metric is a calculated numerical value
based on multiple factors that is present on Unix-based operational systems, requiring a deeper
understanding of the system’s purpose and use for its evaluation than the CPU usage.

One of the benefits achieved by the use of proactive elasticity is a more efficient manage-
ment of resources, so we are also observing energy consumption as a metric to evaluate this
behavior. We are able to estimate the energy consumption by analyzing the deployment times
of containers and for how long they were active (da Rosa Righi et al., 2020), as shown in equa-
tion 2. On equation 2, n is the maximum number of containers and T(i) is the time spent running
with i containers. For example, suppose the following scenario: 1 container for 40 seconds, 2
containers for 25 seconds, 3 containers for 50 seconds; this would result in energy = 1 x 40 + 2
x 25 + 3 x 50 = 240.

Energy =
n∑

i=1

(i x T (i)) (2)

6 RESULTS

This section presents the results that were observed when running the prototype. We first
present the graphs of the results and review the elastic decisions for both evaluated scenarios,
proactive and reactive, followed by a review of the energy consumption for each scenario.

6.1 Load and resource allocation

We have configured ProFog to collect data from each of the Fog nodes every 5 seconds.
Calculating the prediction on the Elastic Manager takes up to 4 seconds. With these metrics, the
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total interval data for each collection is around 9 seconds. The download of the container image
from Dockerhub takes up to 20 seconds, depending on network congestion, and the initialization
of the application using the container image less than 2 seconds, adding up to close to 22
seconds. Based on the equation 1, predictions should be performed for 2.44 measures ahead,
resulting from 22 divided by 9. We have decided to round this value up to 3 to compensate for
unaccounted communication delays.

Figure 10 illustrates the system behavior using the reactive elasticity approach over the
course of a twelve-minute load test. Analyzing the graph, we can see that a load peak at 1:45min
has triggered the start-up of the second Fog node. After that, the same situation repeats itself
at 2:35min. At 2:40min, three Fog nodes were already active and remained active until the
load dropped below the lower threshold at 10:25min. The upper and lower threshold values for
elasticity control were set to 0.9 and 0.5, respectively, based on the observation of the system’s
behavior over multiple test runs.

Figure 10 – Scenario 1: Streaming service with ProFog running on reactive elasticity mode.

By analyzing figure 11 - which illustrates the system behavior with ProFog running on
proactive mode, we can see that the start-up of the second Fog node was delayed as the predicted
values were lower than the observed load value, which was a peak. In this scenario, the start-
up of the second Fog node took place at 2:05min and of the third node at 4:25min. We can
also see that the predicted values are very close to the observed load values, this behavior may
be related to the parameterization used for ARIMA or to the fact that the predictions are only
taking place three measures ahead, which is quite low. Increasing the ahead value could result in
improvements in the predictions, but it could also incur in the allocation of a resource for longer
than it is necessary. The drops to zero in the predicted values mean that the Elastic Manager has
requested an elastic action to be taken and cleared its buffer of load values, this action could be
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followed or ignored by the Cloud Manager depending on resource availability at the moment.

We have opted not to calculate a standard deviation or mean at this point as the application
used for the test is of dynamic nature and subject to multiple variables of the emulation environ-
ment which would affect the results. Furthermore, the most important point for us to monitor at
this moment is the elastic behavior of the system and its impact on resource allocation. As the
current prototype does not contain any applications which run on the Cloud, we were not able
to verify the elastic behavior on the Cloud side either.

Figure 11 – Scenario 2: Streaming service with ProFog running on proactive elasticity mode.

6.2 Energy consumption

We have mapped the Fog node initialization times for each of the scenarios to calculate an
estimate of energy consumption. Table 2 presents the results for scenario 1 and table 3 the
results for scenario 2. By comparing the total values on the tables, we see that scenario 2 has
presented lower energy consumption. Even though the predictions were not far enough ahead
to trigger scaling actions in advance on the tested scenario, we can see that the use of time series
analysis has helped to smooth the data and minimize unnecessary scaling on sudden peaks. This
has improved energy consumption by 11.21%, resulting from (1785/1605 - 1).
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Energy consumption
Number of Fog

Nodes
Period of time (s) Energy consumption

1 125 125
2 125 250
3 470 1410

Total 1785

Table 2 – Energy consumption estimate based on equation 2 for the scenario 1.

Energy consumption
Number of Fog

Nodes
Period of time (s) Energy consumption

1 170 170
2 215 430
3 335 1005

Total 1605

Table 3 – Energy consumption estimate based on equation 2 for the scenario 2.

6.3 Discussion

The proximity between the actual load values and the predicted load values shows us that
the use of proactive elasticity for fast deployment environments, such as the ones based on con-
tainers, may be challenging. The lower the time required for deployment is, the more difficult
it is to make a prediction that is capable of scaling the system in time. By modifying the ahead
parameter used for the predictions, we could further anticipate scaling needs, however, at the
same time, we may deliver resources before they are required, which may incur unnecessary
energy consumption and additional costs.

Even though the predictions performed by ProFog were too close to the actual load values
for us to see preemptive scaling actions take place, we can see that the use of time series analysis
has brought other benefits to the system. By analyzing the system load over time for scenario
2, we see that the load predictions have smoothed load peaks, helping to avoid unnecessary
deployment of new Fog nodes - as we can see that occurred in scenario 1. By preventing
unnecessary deployment of Fog nodes caused by load peaks, ProFog has reduced the number of
active machines for a period of time, consequently reducing energy consumption and operating
costs for the system.

We believe the research on proactive elasticity for Fog Computing is of great importance
for the advance of IoT systems. Therefore, we may, in the future, perform further research on
an accurate way to determine how far ahead in time predictions should be made for proactive
elasticity applied to Fog Computing implementations. It would also be interesting to include
additional metrics for the predictions, such as network traffic, that may allow us to have a more
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reliable view of the system as a whole and further support the heterogeneity of IoT systems that
exists.

7 CONCLUSION

As the use of IoT grows across multiple industries, it becomes necessary to review how
IoT systems are designed. Cloud data centers are often used for the implementation of IoT
scenarios as they offer scalability and reliability, but such configuration poses many challenges
- from security to QoS and network congestion - that may prevent certain use cases or the
adoption in certain industries. These challenges have fostered the advance of another system
architecture named Fog computing. This architecture brings the processing of data closer to the
resource, allowing better response times, lower latency, and increased security.

Considering the aforementioned scenario, this article addressed proactive elasticity for re-
source allocation on Fog computing for IoT implementations by presenting a model named
ProFog. This model manages resource allocation and provides proactive elasticity to applica-
tions without any user intervention or elasticity control logic from the application end. In order
to validate the model, we have built a prototype using Microsoft Azure - as the Cloud - and
three Raspberry Pi 4 microcomputers - which operated as Fog nodes. We evaluated our proto-
type using a Video-On-Demand streaming scenario. However, ProFog may be applied to a wide
range of scenarios, such as manufacturing, healthcare and Smart Cities.

The prototype validation showed positive results when analyzing energy consumption - pre-
senting an improvement of 11.21%. However, the load predictions made by ProFog were not
capable of scaling the system preemptively. This result may be associated with a number of dif-
ferent reasons, such as the technologies used for the prototype - containers for instance which
create an extremely fast deployment environment - our selected use case, our application, or
the parameterization of ARIMA. Therefore, we believe that the observed results do not make
ProFog as a model an unviable solution, but open way for further research on the subject and
additional improvements. From a contribution perspective, ProFog offers seamless proactive
elasticity control - through the use of time series analysis - for applications and services which
operate on top of Fog computing systems.

Future research includes further analysis of different prediction methodologies that may
be more suitable for fast deployment environments, the monitoring and analysis of different
metrics for individual applications, and the configuration of application operation requisites to
allow the deployment of applications to Fog nodes that match certain criteria.
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