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To my father.

One study concluded that there were 1.7 errors per patient per day in America’s ICUs. Of

these errors, 29 percent could have caused clinically significant harm or death. Given that the

average ICU length of stay is three days, this research suggests that nearly all patients

hospitalized in the ICU sustain a potentially life-threatening mistake at some point during

their stay,

— PETER PRONOVOST
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ABSTRACT

CONTEXT: The accurate and early diagnosis of critically ill patients depends on medical
staff’s attention and the observation of different variables, vital signs, and laboratory test results,
among others. Seriously ill patients usually have changes in their vital signs before worsening.
Monitoring these changes is essential to anticipate the diagnosis in order to initiate patients’
care. Prognostic indexes play a fundamental role in this context since they allow us to estimate
the patients’ health status. Besides, Electronic Health Records’ adoption improved data avail-
ability, which can be processed by machine learning techniques for information extraction to
support clinical decisions. The volume and variety of data stored in the EHR make it possible to
carry out more accurate analyzes that allow different types of health care assessments. Never-
theless, as the amount of data available is vast and complex, there is a need for new methods to
analyze that data to explore significant patterns. The use of Machine Learning (ML) techniques
to generate knowledge, search for information patterns, and support clinical decisions is one
of the possibilities to address this problem. OBJECTIVE: this work aims to create a computa-
tional model able to predict the deterioration of patients’ health status in such a way that it is
possible to start the appropriate treatment as soon as possible. The model was developed based
on the Deep Learning technique, a Recurrent Neural Networks, the Long Short-Term Memory,
to predict patient’s vital signs and subsequent evaluation of the patient’s health status severity
through Prognostic Indexes commonly used in the Health area. METHOD: The methodology
of this work consists of the following steps carried out in sequence. The definition of the data
source to be used in the creation of the model and the selection of the data, the pre-processing
to create a database for the development of the model, the definition of the implementation of
the model and its evaluation through comparison with other models. RESULTS: Experiments
showed that it is possible to predict vital signs with good precision (accuracy > 80%) and,
consequently, predict the Prognostic Indexes in advance to treat the patients before deteriora-
tion. Predicting the patient’s vital signs for the future and use them for the Prognostic Index’
calculation allows clinical times to predict future severe diagnoses that would not be possible
applying the current patient’s vital signs (50% - 60% of cases would not be identified). CON-
CLUSION: This work’s main scientific contribution is the creation of a method for predicting
vital signs based on historical data with low Mean Squared Error and its following application
in the calculation of prognostic indexes with effectiveness (50% - 60% of cases that would not
be identified as severe). The differential presented by this proposal stems from the fact that few
works predict vital signs. Most of the works focus on predicting specific health outcomes, such
as specific diagnoses, considering the current vital signs. In this work, the proposal is to predict
the evolution of vital signs in the future and use these predicted signs to calculate prognostic
indexes.

Keywords: Predictive Scores. Machine Learning. Deep Learning. LSTM. Health Informat-
ics.





RESUMO

CONTEXTO: O diagnóstico preciso e precoce do paciente crítico depende da atenção da
equipe médica e da observação de diversas variáveis, sinais vitais, resultados de exames labora-
toriais, entre outros. Pacientes gravemente enfermos geralmente apresentam alterações em seus
sinais vitais logo antes de piorar. O monitoramento dessas mudanças é essencial para anteci-
par o diagnóstico e iniciar o atendimento ao paciente. Os índices prognósticos desempenham
um papel fundamental neste contexto, uma vez que permitem estimar o estado de saúde dos
pacientes. Além disso, a adoção do Registro Eletrônico de Saúde melhorou a disponibilidade
de dados, que podem ser processados por técnicas de aprendizado de máquina para extração de
informações para apoiar decisões clínicas. O volume e a variedade de dados armazenados no
EHR possibilitam a realização de análises mais precisas que permitem diversos tipos de avali-
ações em saúde. No entanto, como a quantidade de dados disponíveis é vasta e complexa, há
uma necessidade de novos métodos de análise desses dados para explorar padrões significativos.
O uso de técnicas de Aprendizado de Máquina (AM) para gerar conhecimento, buscar padrões
de informação e apoiar decisões clínicas é uma das possibilidades para enfrentar esse problema.
OBJETIVO: este trabalho visa criar um modelo computacional capaz de predizer a deterioração
do estado de saúde dos pacientes de forma que seja possível iniciar o tratamento adequado o
mais rápido possível. O modelo foi desenvolvido com base na técnica de Deep Learning, uma
Rede Neural Recorrente, a Long Short-Term Memory, para predizer os sinais vitais do paciente
e posterior avaliação da gravidade do estado de saúde do paciente por meio de Índices Prognós-
ticos comumente utilizados na área da saúde. MÉTODO: A metodologia deste trabalho consiste
nas seguintes etapas realizadas em sequência. A definição da fonte de dados a ser utilizada na
criação do modelo e a seleção dos dados, o pré-processamento para criar uma base de dados
para o desenvolvimento do modelo, a definição da implementação do modelo e sua avaliação
por comparação com outros modelos. RESULTADOS: Experimentos mostraram que é pos-
sível predizer sinais vitais com boa precisão (acurácia >80%) e, conseqüentemente, predizer
os Índices Prognósticos com antecedência para tratar os pacientes antes da deterioração. Pr-
ever os sinais vitais do paciente para o futuro e usá-los para o cálculo do índice prognóstico
permite que os tempos clínicos prevejam diagnósticos graves futuros que não seriam possíveis
aplicando os sinais vitais atuais do paciente (50% - 60% dos casos não seriam identificados )
CONCLUSÃO: A principal contribuição científica deste trabalho é a criação de um método de
predição de sinais vitais baseado em dados históricos com baixo Erro Quadrático Médio e sua
posterior aplicação no cálculo de índices prognósticos com eficácia (50% - 60% dos casos que
não seriam identificado como graves). O diferencial desta proposta decorre do fato de poucos
trabalhos predizerem sinais vitais. A maioria dos trabalhos se concentra em predizer desfe-
chos de saúde específicos, como diagnósticos específicos, considerando os sinais vitais atuais.
Neste trabalho, a proposta é prever a evolução dos sinais vitais no futuro e utilizar esses sinais
previstos para calcular índices prognósticos.

Palavras-chave: Índices Prognósticos. Aprendizado de Máquina. Aprendizado Profundo.
LSTM. Informática na Saúde.
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1 INTRODUCTION

Studies suggest that early intervention based on policies and care standards can improve

patients’ chances of survival (CHEN, 2018; JUNG et al., 2019; PAN et al., 2019; JANG et al.,

2020) and Clinical Decision Support Systems (CDSS) can play a fundamental role in the iden-

tification of risk situations and take of action by hospital care teams to reduce cases of death

(JONES et al., 2014; O’BRIEN et al., 2020). Sepsis, for example, is a critical condition and is

the body’s response to infection. In sepsis, the first three hours after its detection are crucial to

start the treatment with antibiotics; it is the so-called sepsis golden hour (KUMAR et al., 2004).

1.1 Motivation

The volume and variety of data stored in the Electronic Health Record (EHR) make it possi-

ble to carry out accurate analyzes that allow different types of assessments in the area of health

care (CURTIS et al., 2018; WANG et al., 2020). Some of the benefits of using Big Data in the

Health area through EHR (SHAFQAT et al., 2018; ALLOGHANI et al., 2019) are prevention

and identification of risk factors for specific diseases as also interventions to change population

risk behaviors. The set of data collected from sensor-equipped devices, the idea of Internet of

Health Things (COSTA et al., 2018a), the EHR and analysis results generated by CDSS, and the

decisions physicians and their teams take every day increase the volume of data to be managed

by systems and people. Thus, Machine Learning (ML) techniques can extract knowledge from

the relationship between all of the data (PURUSHOTHAM et al., 2018; BRAND et al., 2018;

CROWN, 2015; GIANNINI et al., 2019).

ML algorithms have been applied to support the accurate diagnosis of critically ill patients

by analyzing their vital signs (CLIFTON et al., 2011; GULTEPE et al., 2014; RAJKOMAR

et al., 2018; LIU et al., 2013, 2014; ALLOGHANI et al., 2019). However, the anticipation of

diagnosis may depend on data not yet presented by the collection systems. Therefore, predict-

ing the evolution of some of the vital signs, important for specific diagnoses, can constitute a

reasonable alternative (FORKAN; KHALIL, 2017; JANG et al., 2020). The presented scenario

indicates the possibility of applying ML algorithms to identify patients’ risk to evolve to a more

severe state of health and identify possible treatments. Although these extensive use of ML

algorithms to analyze vital signs, to the best of our knowledge, only a few other works aim to

predict the vital signs itself, e.g., (FORKAN; KHALIL, 2017). It is important to note that most

works apply Machine Learning to predict a condition based on the patterns embedded in the

signal, while this work proposes predicting the vital signs itself (ALLOGHANI et al., 2019).

Besides, most ML systems are dedicated to predicting specific diagnoses through measured

vital signs at one moment instead of with predicted vital signs.

Deep Learning (DL) (LECUN; BENGIO; HINTON, 2015) is a ML technique able to learn

complex data abstractions through a hierarchical learning mechanism. Multiple abstraction
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levels, composed of a cascade of modules processing layers from a raw data input layer, each

successive layer transforms the input data into an output with a higher abstraction level (GOOD-

FELLOW; BENGIO; COURVILLE, 2016). DL techniques have better performance since the

creation of models can dispense the prepossessing stage, the discovery of knowledge happens

through the relationship between data itself, without the need to identify the best predictors

(SHICKEL et al., 2017; Pathak; Cai; Rajasekaran, 2018). Among DL techniques, Recurrent

Neural Networks (RNN) are considered adequate for processing data sequences and have been

applied in the Health area because they are appropriate for treating data such as text, speech, and

DNA sequences (RAVI et al., 2017). In this type of network, each state of the network affects

the next state’s results — however, RNN presents memory loss problems for older data that

may be important for prediction. The Long Short-Term Memory (LSTM) networks are RNN

that preserve memory dependencies already discovered inside data, which has a more signifi-

cant impact on prediction (GOODFELLOW; BENGIO; COURVILLE, 2016). The sequence of

vital signs monitored for each hospitalized patient can be lengthy, and it is essential to use the

entire available sequence so that the prediction model considers the history of patient outcome

evolution. Such a strategy may add customization characteristics to the model towards the idea

of precision medicine (BELLOT; SCHAAR, 2018).

Prognostic indexes (PHD et al., 2016) play a crucial role in establishing an estimate of

the inpatients’ progress. It can also help hospital units analyze their quality in care and per-

formance to measure hospital mortality control compared to different hospitals’ intensive care

units. Besides, prognostic indexes can predict Intensive Care Unity (ICU) stay, length of hos-

pital stay, and predict specific diseases such as heart attack or sepsis (ALAM et al., 2014;

LE LAGADEC; DWYER, 2017; DOWNEY et al., 2017). These indexes consider the knowl-

edge built in the Health area about the severity of patients’ state of health and depict ranges of

values for specific attributes and the relationships between them. Calculations are made to infer

some element, usually a numerical index, about the patient’s condition (GERRY et al., 2017;

PRYTHERCH et al., 2010). Acute Physiology And Chronic Health Evaluation II (APACHE II)

(WAGNER; DRAPER, 1984), Sequential Organ Failure Assessment Score (SOFA) (VINCENT

et al., 1996a), some variations of Early Warning Score (EWS) (VINCENT et al., 1996b), Sim-

plified Acute Physiology Score II (SAPS II) (LE GALL; LEMESHOW; SAULNIER, 1993) are

the scores primarily used in medical care units. The one chosen for the firsts experiments in this

work was the APACHE II because it has been applied all over the world (WAGNER; DRAPER,

1984).

1.2 Problem

It is crucial to detect the worsening situation as soon as possible to prevent the patient’s con-

dition from deteriorating. For severe cases, clinical protocols indicate that care teams’ actions,

if performed in the first hours of care, increase recovery chances (BOADA, 2016). Change in
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vital signs can generate more precise prognostic information (BREKKE et al., 2019). However,

the association between abnormal values of vital signs and the consequent outcome for hospi-

talized patients is not well known (ASIIMWE; VITTINGHOFF; WHOOLEY, 2020). Likewise,

there is little information about the mortality rate among patients who present normal vital signs

during hospitalization. The research carried out by (YAN; HSIA, 2019) identified that the fol-

lowing factors are common to patients who present normal vital signs at the time of the first

visit, but later die: septicemia, fluid and electrolyte disorders, acute renal failure, psychosis,

general weakness, and more advanced age. Thus, analyzing more information (e.g., laboratory

tests), in addition to vital signs, it is a possibility to improve prognosis. Besides, predicting this

information during patient care can improve the outcome prediction as well.

1.3 Research Question

The present work has as the main issue to study and apply ML techniques in the early iden-

tification of the worsening of the health status of patients admitted to hospital units. Therefore,

some prognostic indexes were studied, as well as their limitations, were pointed out. Besides,

some ML techniques were also analyzed, mainly considering the ones intended to EHR data,

which have temporal information. Considering this context, of calculating prognostic indexes

and the possibility of predicting the worsening of the patient’s health employing ML techniques,

we proposed the following research question to be answered by this work:

How would be an intelligent-based model to predict the information about the wors-

ening of patients’ health through different prognostic indexes calculated on clinical

data predicted using Deep Learning (DL) techniques?

Research carried out in the Health area can have an impact on clinical policies and practices

in the area, possibly generating good results for patient health care (AKHNIF et al., 2017).

Besides, they raise the idea of a Learning Health System (LHS) as an attractive alternative that

can reduce service providers’ costs (AKHNIF et al., 2017; LOWES et al., 2016; MURPHY

et al., 2017; PAYNE et al., 2015; YADAV et al., 2018; PLATT; RAJ; WIENROTH, 2020).

The research carried out in this work aims to generate positive impacts for the Health area,

encouraging automatic and intelligent techniques based on data analysis to support patients’

early diagnosis in serious condition.

Contributing to an LHS’s idea, the affirmation of the EHR as an alternative for storing pa-

tients’ health information during their hospitalizations and recording the history of the evolution

of their health status (ROEHRS et al., 2017; WILLIAMS et al., 2017; WANG et al., 2020). Nev-

ertheless, efforts to standardize and share EHR data allow us to glimpse a scenario where large

volumes of data will be available to researchers to develop new research (JOHNSON et al.,

2016; KAKKANATT et al., 2018; ROEHRS; COSTA; ROSA RIGHI, 2017).
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Finally, the finding that the evolution of computational resources and decrease in the cost

involved with the storage and processing of data provided the investment in intelligent analy-

sis techniques data and their application in the Health area also supports the research question

proposed by this work (SHICKEL et al., 2017; YADAV et al., 2018). Among the classes of tech-

niques employed, the ML techniques (KHARE et al., 2017), which have their comprehensive

taxonomy, have in DL methods one of the techniques that currently have repercussions for its

application with good results in the Health area (KAM; KIM, 2017; MANASHTY; THOMSON,

2017; RAJKOMAR et al., 2018; SHICKEL et al., 2017). DL techniques allow the discovery of

knowledge only through the data itself, without the knowledge of specialists in the application

area (RAVI et al., 2017), and for this reason, they are part of this work.

1.4 Objective and Scientific Contribution

The work presented here proposes the DeepSigns Model to work in conjunction with CDSS

in hospital practice to predict the input information for the methods of severity assessment

applied by hospitals. The DeepSigns Model aims to predict vital signs, through the use of

LSTM networks, and to calculate the prognostic index for the early diagnosis of worsening

patients’ health status. Indeed, the DeepSigns model incorporates other variables besides vital

signs, as results of laboratory tests, age, among others. DeepSigns considers the set of variables

from APACHE II, presented in Figure 2. Therefore, in this work, referring to vital signs implies

a broader set of variables.

Figure 1 depicts the traditional model for detecting deterioration of inpatients applied in

hospitals versus the DeepSigns model proposed in this work. In the conventional model, inpa-

tient vital signs are taken as input to the prognostic indexes, which will assess the patient health

deterioration status. On the other hand, the DeepSigns Model aims at considering the predicted

inpatient vital signs as inputs to the prognostic indexes calculation.

Many prognostic indexes, used in hospital units, could apply the DeepSigns predicted vital

signs in their calculation; for instance, Manchester protocol (AZEREDO et al., 1995; COOKE;

JINKS, 1999; STORM-VERSLOOT et al., 2011) in Emergency Departments or the scores typ-

ically used in ICU such as SAPS II, APACHE II, SOFA, or variations of EWS. Although there

is a general assessment that prognostic indexes based on domain expertise (heuristics), such as

those previously mentioned, are not as useful in identifying patients with a high risk of dete-

rioration (CHURPEK et al., 2014; LINNEN, 2019), the hypothesis considered here is that the

application of such methods with predicted data could be more effective.

The main scientific contributions of this work are as follows:

1. the development of a method for predicting patient data, feeding back to the model with

new personal data, meeting the idea of the precision medicine idea;

2. the assessment of many prognostic indexes using the vital signs predicted instead of spe-



27

Figure 1 – Health Deterioration Prognostic: Traditional Model x DeepSigns Model

cific time measured values;

3. this work’s main scientific contribution is the creation of a method for predicting vital

signs based on historical data and its following application in the calculation of prognostic

indexes;

4. the differential presented by this proposal stems from the fact that few works predict vital

signs. Most of the works focus on predicting specific health outcomes, such as specific

diagnoses, considering the current vital signs. In this work, the proposal is to predict the

evolution of vital signs in the future and use these predicted signs to calculate.

1.5 Methodological Aspects

This section describes the present study’s methodological aspects. The study has an applied

nature and proposes a predictive model for early detection of patient health deterioration, using
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Deep Learning, to assist the therapeutic decision-making in intensive medicine. The proce-

dures and methods used in this work has a quantitative methodological approach. According

to (AZEVEDO; MACHADO; SILVA, 2011), research with a quantitative focus aims to empha-

size deductive reasoning by comparing measurable variables. Therefore, this work will have an

experimental focus, analyzing the impacts of creating a prediction model based on vital signs

and other patient’s information, in conjunction with a heuristic-based prognostic index.

Defining the methodological procedures used in the research is essential, as stated by (GER-

HARDT; SILVEIRA, 2009). This research applied the following methods: bibliographic, docu-

mentary, and experimental research. The research process was composed of six steps, presented

in Figure 2: problem characterization; research question formulation; study of state of the art

related to the problem; DeepSigns model definition, development, and validation; results eval-

uation and discussion; and conclusions and future work propositions.

Figure 2 – Methodological Steps

Chapter 1 presented the two first steps of the methodology, according to Figure 2: the

problem characterization and the research question formulation. The next chapters and sections

will discuss steps three through six, as follows.

• Step 3: Chapters 2 and 3 discusses the main concepts underlying this research and present

related work, discussing their results and conclusions;
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• Step 4: Chapter 4 presents the DeepSigns model, the design decisions and architecture

underlying the model and its development and validation process;

• Step 5: Chapter 5 discusses the results obtained through the work, its limitations, and

opportunities.

• Step 6: Chapter 6 Discusses the lessons learned with this research and future directions.

1.6 Text Organization

To give the reader a better understanding of this text, the following is a brief description of

the reminder chapters that are part of this work.

• Chapter 2 - Background: discusses the main concepts underlying the present work: Big

Data in Health, Prognostic Indexes, and Machine Learning and Deep Learning.

• Chapter 3 - Related Works: presents works related to the present one, discussing their

results and aspects which inspired this research.

• Chapter 4 - Proposed Model: presents the model proposed in this work.

• Chapter 5 - Results and Discussion: discuss the results obtained through the work, its

limitations, and opportunities.

• Chapter 6 - Conclusion: Discusses the lessons learned with this research and future di-

rections.
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2 BACKGROUND

This chapter presents the theoretical framework that provides the basis for this study. The

bibliographic review searched for other scientific works that deal with the themes addressed

in this work. Returning to the research question proposed in this work, "What are the possi-

ble impacts on health care by predicting, in advance, the worsening of patients’ health status,

through different prognostic indexes calculated on predicted clinical data using Deep Learning

techniques? (DL)?", we see the need to study different themes. Some areas of study, the target

of this work, are more clearly portrayed in the text of the research question, namely: the prog-

nostic indexes currently used to assess the evolution of the health status of patients admitted to

hospital units; the demands of the Health area concerning the volume of data generated daily

within hospitals, which is attached to the Big Data area; and the techniques to analyze these data

in order to generate new prognoses, alternative to those currently employed, in order to improve

the quality of treatments and promote the recovery of patients. The themes mentioned will be

presented below and make up the body of knowledge covered by this work. Other themes are

also related to the proposed research question and are addressed throughout this work to support

some arguments and choices or promote discussion.

2.1 Big Data and Electronic Health Record in Patient Care

The possibility of obtaining new knowledge in the health field through the use of Big Data is

causing the rapid digitization of a large amount of data (RAHMAN; SLEPIAN; MITRA, 2016;

WANG; KUNG; BYRD, 2018). Increasingly, healthcare companies and organizations are using

Big Data technology to improve health information systems’ quality (RAHMAN; SLEPIAN;

MITRA, 2016).

The EHR initiative arose to meet the demand for data for the Health area, maintain data

on the regular operation of health institutions, and promote the creation of data collections that

allow research activities (YADAV et al., 2018; SCHLOEFFEL, 2002). The volume and variety

of data stored in the EHR make it possible to carry out more accurate analyzes that allow

different types of health care assessments (CURTIS et al., 2018). The benefits of using Big

Data in healthcare, through the EHR, can be seen from disease prevention and identification of

risk factors to the design of interventions to change risk behaviors in the population (SHAFQAT

et al., 2018).

This context motivated the construction of databases, with real and detailed data, specifically

created to support clinical decision support research. In the field of intensive care, several

databases, commercial (APACHE Outcomes, Project IMPACT, and Philips eICU) and non-

commercial (MIMIC - Medical Information Mart for Intensive Care) (JOHNSON et al., 2016),

were developed to assess the severity of health conditions, patient health, as well as the costs

involved in treatments, among other purposes (CELI et al., 2013).
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For the development of a Big Data project, the literature recommends six steps. First, it

is necessary to identify the problem to be solved. The second step is to find the best way to

collect the data. The third is to perform the pre-processing of data (clear the data), that is, to

store meaningful data. The fourth is to analyze the data for the production of knowledge. The

fifth step is to present the results found through analytical reports that are easy to understand.

Finally, the sixth is to evaluate the project to verify if the developed project solves the problem

(HUANG et al., 2015). The present work relates to Big Data applied to Health Area.

2.2 Machine Learning

According to (FANG et al., 2016), the amount of data available in the Health area is not

only vast but complex, requiring new ways to analyze this data. It is necessary to explore

significant patterns when analyzing large volumes of data. Applying ML techniques to generate

knowledge, search for information patterns, and support clinical decisions is one way to address

this problem (LEE et al., 2017).

As previously indicated, this work’s focus is to deal with health data, which exists in con-

siderable volume and analyze them to obtain assertive results concerning diagnoses and patient

care. ML provides techniques that allow the analysis of large volumes of data so that the data

itself can demonstrate specific situations, such as the patient’s health status, for example. The

ML allows the development of models called data-based models, which, unlike the prognostic

indexes presented in section 2.3, are not heuristic models (GERRY et al., 2017).

According to (REZENDE, 2003), ML intends to build learning systems that automatically

acquire knowledge. According to the authors, automated learning systems are computational al-

gorithms that try to solve problems, making decisions based on accumulated experiences, based

on successful decisions previously made. Also, according to (MITCHELL, 1997), transforming

observational data into a model that predicts future events or explaining data not yet observed,

improving its performance through experience is the objective of ML.

ML algorithms can be supervised and unsupervised (FANG et al., 2016). In supervised

learning, the algorithm seeks to develop a general prediction rule using a set of samples (training

base) where the class (label) of each sample is known, to predict the class of new data not yet

labeled. Generally, the training base is formed by a set of samples (inputs) that are described by

a vector of characteristics or attributes (variables) and the label of the associated class (answer

or output). Supervised learning algorithms are categorized into: Classification problems (for

class with discrete value labels) or Regression problems (for labels with continuous values).

The type of ML addressed in this work is the supervised one.

In unsupervised learning, the classes’ labels are unknown, and the objective of the algorithm

is to find a way to group the input data by searching for similar characteristics. This type of

problem is known as Clustering.

The learning process consists of finding a classifier with a greater generalization capacity,
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finding a general function (model) that covers the classification, not only of the existing samples

in the training base but also the largest number of new data. However, the model cannot be too

specialist (overfitting) in the training data used, as it may present a low level of accuracy for

new data (MITCHELL; MICHALSKI; CARBONELL, 2013).

According to (FANG et al., 2016), among the most widely used classification techniques in

the medical field are Decision Trees, Rules-Based Algorithms, Support Vector Machine, Sparse

Representation, Ensemble Algorithms (set of classifiers), Artificial Neural Networks (ANN),

and DL.

2.2.1 Deep Learning

DL is an ML technique that is capable of learning complex data abstractions through a

hierarchical learning mechanism. The technique provides multiple levels of abstraction, com-

posed of a cascade of modules, or simple processing layers, in which, from a raw data input

layer, each successive layer transforms the representation of the input data into an output with

a higher level of abstraction. This process’s final result (output layer) represents raw data in

useful information (GOODFELLOW; BENGIO; COURVILLE, 2016). DL techniques have the

best performance since the creation of the models can happen without a pre-processing step,

since the discovery of knowledge occurs through the data, without prior identification of the

best predictors (SHICKEL et al., 2017).

Although it is often challenging to train deep architectures efficiently, they have been the

subject of several research works, as they present two essential advantages: they promote the

reuse of resources and can lead to progressively more abstract comprehensions in the higher

layers. The ability to build multiple levels of representation is related to the depth of the archi-

tecture. In deep circuits, the number of paths, or the way to reuse different parts of it, grows

exponentially with depth, allowing, by changing the definition of what each node can calculate,

the circuit’s depth to be changed (BENGIO; COURVILLE; VINCENT, 2013).

Among DL techniques, Recurrent Neural Networks (RNN) are considered adequate for

processing data strings and have been applied in the Health area because they are appropriate

for treating data such as text, speech, and DNA sequences (RAVI et al., 2017). In this type of

network, each state of the network affects the next state’s result because of feedback connections

in its structure.

Convolutional Neural Networks (CNN) are another type of DL mechanism that does not

depend on any previous prediction information. For example, in the stock market prediction

task (SELVIN et al., 2017), the prediction depends more on the moment’s dynamics than any

previous information, and CNN would suit this type of application well.

One difficulty with RNN networks is that they have memory loss problems for older data,

which can be important for some prediction tasks. LSTM networks (HOCHREITER; SCHMID-

HUBER, 1997) are RNN that preserve the memory of dependencies already discovered among
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the data, which has a more significant impact on prediction (GOODFELLOW; BENGIO; COURVILLE,

2016).

In this work, we chose to apply LSTM networks because of the analysis of long sequences

of data, which portray the variety of patients’ vital signs.

2.3 Prognostic Indexes

Prognostic indexes (PHD et al., 2016) play a crucial role in establishing an estimate of the

inpatients’ progress. It can also help hospital units analyze their quality in care and perform as a

measure of hospital mortality to compare different hospitals’ intensive care units. Besides, prog-

nostic indexes can predict Intensive Care Unity (ICU) stay, length of hospital stay, and predict

specific diseases such as heart attack or sepsis (ALAM et al., 2014; LE LAGADEC; DWYER,

2017; DOWNEY et al., 2017). These indexes take into account the knowledge considered in the

Health area about the severity of patients’ state of health and depict ranges of values for specific

attributes and the relationships between them. The calculations intend to infer some element,

usually a numerical index, about the severity of the patient’s condition (GERRY et al., 2017;

PRYTHERCH et al., 2010). Acute Physiology And Chronic Health Evaluation II (APACHE II)

(WAGNER; DRAPER, 1984), Sequential Organ Failure Assessment Score (SOFA) (VINCENT

et al., 1996a), some variations of Early Warning Score (EWS) (VINCENT et al., 1996b), Sim-

plified Acute Physiology Score II (SAPS II) (LE GALL; LEMESHOW; SAULNIER, 1993) are

the scores primarily used in medical care units. The one chosen for the firsts experiments in this

work was the APACHE II because it has been applied all over the world (WAGNER; DRAPER,

1984). Table 1 shows a comparison between the variables that are applied by some prognostic

scores currently used by hospitals.

2.3.1 APACHE II

APACHE II is a mathematical clinical index system, published initially in (KNAUS et al.,

1991). The first version of the index was developed as a good and reliable classification sys-

tem based on multiple physiological variables, obtained from medical records, to estimate the

disease’s severity in critically ill patients.

The original version used the sum of the score of forty-three physiological variables to

calculate the index, which represented the degree of severity of the disease - Acute Physiology

Score (APS), and an assessment of the patient’s health status before admission to the ICU, such

as medical visits, work activity, ability to perform routine activities and the presence or absence

of malignant diseases (KNAUS et al., 1991).

Due to the complexity of the first version of the index, it was considered difficult to apply,

as it required many variables, (KNAUS et al., 1991) proposed a modification in the system to

make it simpler and increase its predictive power. In the second version, called APACHE II, the
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Table 1 – Common Scores Variables
Measure / Score SAPS II APACHE II SOFA NEWS qSOFA

Age X X

Temperature X X X

Blood Pressure (Diastolic) X X

Blood Pressure (Systolic) X X X X

Heart Rate X X X

Respiratory Rate X X X

Oxygenation FiO2 X X X X

Oxygenation PaO2 X X

Oxygenation SpO2 X

Arterial pH X

Sodium X X

Potassium X X

Bicarbonate X

Urea X

Creatinine X X

Hematocrit X

Leukocytes X X

Platelets X

Bilirubin X X

Urine Output X X

Glasgow Coma Scale X X X X

APVU X

Presence of Comorbidity X X

Type of Admission X

Number of variables 16 15 9 6 3

index started to use a smaller number of twelve variables, routinely collected in the ICU.

The APACHE II index is calculated based on the worst values recorded in the first twenty-

four hours after admission to the ICU. Its application requires a minimum period of twenty-four

hours of hospitalization of the patient. Physiological and laboratory variables are used, each

with points from zero to four. Points are also assigned according to age (from zero to six

points) and the presence or absence of comorbidities (zero to five points). The variables used

by APACHE II are shown in Figure 3.

It is possible to estimate the risk of death with the APACHE II index, through the sum of

physiological variables, age, and the presence of comorbidities (organ failure or immunocom-

promised evident before hospital admission). The result of the index can vary from zero to

seventy-one points, where the higher the value of the index, the greater the probability of death.
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There is a significant increase in death probability for every five points of increase in the index

(KNAUS et al., 1991).

APACHE II is based on the variables presented in Table 2, some of which are vital signs,

and other are laboratory exams results. Figure 3 shows its calculation algorithm. Table 1

shows a comparison between variables applied by prognostic scores currently used by hospitals.

APACHE II variables are similar to the ones from other scores, e. g. the SAPS II (LE GALL;

LEMESHOW; SAULNIER, 1993), but it has a broader set of variables than most of the other

indexes. APACHE II was chosen for experimenting at first because the proposal presented in

this work considers attaching different prognostic scores to the prediction model, as chapter 4

will discuss a broader set of vital signs to be part of the model seems adequate.

Table 2 – Vital signs present in the prediction model

Measure Abbr.

Temperature T

Mean Arterial Pressure MAP

Heart Rate HR

Respiratory Rate RR

Oxygenation - Fraction of inspired oxygen FiO2

Oxygenation - Partial pressure of oxygen PaO2

Oxygenation - Alveolar-arterial oxygen tension difference AaDO2

Arterial pH ApH

Serum Sodium SS

Serum Potassium SP

Creatinine C

Hematocrit H

Leukocytes L

Points on the GCS G

Age A

2.3.2 NEWS

The National Early Warning Score (NEWS), initially proposed in 2012 (PHYSICIANS,

2017), was developed to be used in the British health care system as a scoring system to predict

mortality and severe worsening health status of patients (SILCOCK et al., 2015). The most

recent version of this scoring system is NEWS2 (PHYSICIANS, 2017). Figure 4 shows the

weight scale assigned to each patient’s measurement when calculating the index. In the end,

there is the summation of weights, and the index is defined; its value can vary between 0 (zero)

and 6 (six). Considering m as the patient’s measurement for each sign shown in Table 4; n as the

number of signals (lines in Table 4) involved in the calculation of the index, and p represents the
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Figure 3 – APACHE II Calculation

weight of said measure in Table 4; Equation 2.1 presents the calculation of the patient’s NEWS

index.

n∑

k=1

p,m (2.1)

Figure 4 – NEWS Calculation

2.3.3 MEWS

The Modified Early Warning Score (MEWS) is an evolution of NEWS, including the differ-

ence of patient’s blood pressure to its expected value, plus the amount of urine (SUBBE, 2001).

The index calculation remains the same as the NEWS index mentioned in the previous section

but considering Figure 5.
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Figure 5 – MEWS Calculation

2.3.4 ViEWS

The VitalPAC Early Warning Score (ViEWS) implements some changes on top of MEWS

concerning the ranges of variables measured in each index level. The authors justify the changes

due to prior knowledge about such measures’ behavior and their relationship with possible

diagnoses and previous research (PRYTHERCH et al., 2010). The index calculation remains

the same as that mentioned for the NEWS and MEWS scoring systems, now considering Table

6.

Figure 6 – ViEWS Calculation

2.3.5 SAPS II

The Simplified Acute Physiologic Score (SAPS II) is a typical risk stratification score. It

was first described in 1984 as an alternative to the APACHE scoring system. SAPS II was de-

veloped and validated in European and North American cohorts. It is calculated from the worst

value of 12 routine physiological measurements during the first 24 hours of patient admission,

information about previous health status, and some information obtained at admission. This

calculation results in an integer point score between 0 and 163 and predicts hospital mortality

between 0% and 100%. (GRANHOLM et al., 2016; GODINJAK, 2016). Figure 7 shows the

calculation with the values of the variables.

2.3.6 SOFA and qSOFA

Sepsis is an organ dysfunction caused by a harmful organism’s response to infection, lead-

ing to death (SINGER et al., 2016). Sepsis is one of the biggest causes of mortality in serious
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Figure 7 – SAPS III Calculation

diseases worldwide (VINCENT et al., 1996b; FLEISCHMANN et al., 2016). Due to the sever-

ity of this health condition and to identify it early, there are studies to clearly define the medical

terms related to sepsis as criteria for diagnosis (SEYMOUR et al., 2016). The most recent effort

in this direction was made, in 2014, by a task force, called by the European Society of Inten-

sive Care Medicine and Society of Critical Care Medicine, and made up of 19 specialists in

intensive care medicine, infectious diseases, pneumology surgery (SINGER et al., 2016). The

work carried out by the commission was methodologically planned and endorsed by several

international societies around the world (SINGER et al., 2016).

It has five possible values assigned to the patient according to some objective criteria: the

range of measures related to 6 systems of the human organism: respiratory, blood, hepatic, car-

diovascular, central nervous, and renal (VINCENT et al., 1996b). Data used by the SOFA index

are usually in the EHR. The set of variables recovered from the EHR and which make the cal-

culation possible are partial oxygen pressure (PaO2), inspired oxygen fraction (FiO2), platelets,

bilirubin, mean arterial pressure (MAP), Glasgow Coma Scale (GCS), Creatinine, urine quan-

tity (SEYMOUR et al., 2016). Figure 8 presents the ranges of values for each measure used to

calculate the SOFA index.

SOFA score requires laboratory examinations, and this motivated the proposition of qSOFA

(quick Sepsis Related Organ Failure Assessment), also known as quickSOFA. It is based on

only three variables, respiration rate, systolic blood pressure, and mental status, each having a

single threshold to determine a subscore of 0 or 1, shown in Figure 9.
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Figure 8 – SOFA Calculation

Figure 9 – qSOFA Calculation
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3 RELATED WORKS

Monitoring the evolution of vital signs, and analyzing their interrelationships is one of the

possibilities presented to diagnose patients’ health status changes. Few studies were found

focused on predicting vital signs, at least to the knowledge of the author. The following are

some of the works whose research reflects a data-based approach to analyzing the patient’s vital

signs’ behavior, summarized in Table 3.

Forkan and Khalil (FORKAN; KHALIL, 2017) present a method for clinical decision sup-

port by monitoring and predicting the vital signs of monitored patients in their homes. The

analysis of continuously measured signals and the interrelationship between them provide the

prediction of patients’ vital signs. The work of (CLIFTON et al., 2011) employs ML in the early

detection of deterioration of vital signs of monitored patients hospitalized. The technique used

is a Support Vector Machine (SVM) of one class. The vital signs’ values and their combinations

that do not indicate deterioration of patients’ health are considered usual, and those outside this

standard are regarded as abnormal. The performance of the model was tested with both syn-

thetic data and data collected in a clinical study. The readmission of patients to the ICU can be

indicative of different problems. Patients who are previously discharged and need to return to

the ICU may present significant deterioration of their health status. Besides, readmissions may

also indicate erroneous assessments when these patients are discharged. Considering this mo-

tivation, (LIN et al., 2019) carried out a comparative study between several methods to predict

patients’ readmission in the ICU. The data used by the study come from MIMIC-III, the same

used in the present study, However, data considered in the study were notes on the patients’

physiological conditions, previous diseases, and demographic data. The study experimented

with LR (Logistic Regression), SVM, CNN (Convolutional Neural Networks) and LSTM.

In (RAJKOMAR et al., 2018), a prediction model, based on DL, is proposed on a clinical

data structure, considering all the data stored on the patients and a specific set of data. The

work employs a structure called Fast Healthcare Interoperability Resources (FHIR), where all

patient data is stored and accessed by the prediction model. The argument presented is that the

interrelationship between several data generates more accurate predictions, besides facilitating

the pre-processing phase. The model was tested with its application in predicting mortality,

hospital readmission within 30 days, and length of hospital stay.

Morales, Ribas, and Vellido (MORALES; RIBAS; VELLIDO, 2016) presents a study on

the factors that influence the prognosis of sepsis. The work consists of two stages. The first

one consists of studying the causal relationships between different measures registered in the

systems to find relationships between these measures that indicate possible diagnoses (mortality

and sepsis). This step is performed through a probabilistic approach, applying Bayesian net-

works. The second stage of the study is to predict the patient’s risk of mortality and sepsis risk,

leading to death or severe cognitive consequences. In this second stage, the work applied ANN

(Artificial Neural Networks) and SVM (Support Vector Machine).
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To early identify the imminent risk of death of a patient, (GHOSH et al., 2018) developed

a predictor called the Early Deterioration Indicator (EDI), which seeks to detect signs of acute

deterioration of the patient’s health status through subtle changes in vital signs. According to

the authors, these small variations often go unnoticed by prognostic indexes based on weight

assignment. EDI uses a data-driven approach. The work of (CHURPEK; ADHIKARI; EDEL-

SON, 2016) verified how much to include measures of trends in vital signs, rather than just the

patient’s current measurements, which can benefit the calculation of the prognostic indexes.

Table 3 – Related Works Summary
Related Work Patients 1 Measures 2 Technique(s) 3 Evaluation 4 Results 5

(LIN et al., 2019) 35,334 48,393 LSTM+CNN AUC (Readmission) 79.1%

48,393 LSTM AUC (Readmission) 78.7%

48,393 SVM AUC (Readmission) 77.9%

48,393 Logistic Regression AUC (Readmission) 77.7%

(GHOSH et al., 2018) * 14,282 Naive Bayes AUC 76.0%

(RAJKOMAR et al., 2018) 114,004 326,221 LSTM AUC (Mortality) 95.0%

Attention-based AUC (Readmission) 75.0%

Time-aware Neural Network

Neural Network with Boosted AUC (Lenght of stay) 86.0%

Time-based Decision Stumps

(FORKAN; KHALIL, 2017) 85 * J48 Decision Tree Hamming Score 90-95%

Random Tree

SVM

(CHURPEK; ADHIKARI; EDELSON, 2016) * 269,999 Statistical Analysis AUC 78.0%

(MORALES; RIBAS; VELLIDO, 2016) 412 * Artificial Neural Networks AUC (Mortality) 59.0%

Artificial Neural Networks AUC (Sepsis) 54.0%

SVM AUC (Mortality) 74.0%

SVM AUC (Sepsis) 77.0%

(CLIFTON et al., 2011) 19 1,500 SVM Accuracy 95.0%

Sensibility 98.0%

Specificity 92.0%

1 number of patients considered in the experiment;
2 number of measures considered in the experiment;
3 technique(s) considered by the model;
4 evaluation measure(s) used to assess the results;
5 result(s) of the evaluation technique(s) applied;
* not mentioned on source paper.

Table 3 summarizes this chapter of related works, recalling the volume of data considered in

each experiment, the techniques applied, and evaluation results. The work of Forkan and Khalil

(FORKAN; KHALIL, 2017) is the only multi-label classification model (PEREIRA et al.,

2018), and the others are single-label classification methods, and they apply the AUC (Area

Under The Curve ROC - Receiver Operating Characteristics) curve measure (OBUCHOWSKI;

BULLEN, 2018) for the model evaluation. As stated before, the DeepSigns Model proposed

here predicts the vital signs itself, instead of the specific diagnosis, which will serve as inputs

to other methods, such as risk scores applied by hospitals. The values predicted are evaluated

by the Mean Squared Error (MSE) because there is not one unique value to what the predicted

one can be compared to, so the assessment evaluation score like AUC could not be applied.
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The works presented in this chapter use vital signs in their models to monitor the patient’s

health status or some other related conditions. These works aim to detect a specific diagnosis,

such as a specific disease or a specific situation, such as the patient’s death or readmission

to the ICU. When we do not know what we are looking for, this type of model may not be

used effectively. On the other hand, there are a series of models based on heuristics, such

as the prognostic indexes presented in section (O’BRIEN et al., 2020), used in hospital units’

daily lives, but which lack data that benefit their application. Some studies have identified

that prognostic indexes do not have efficient results because they consider data from a specific

moment when patients arrive at the hospital. Ideally, it would be to have the patient monitored,

and such an index calculated considering the value of their data, something that current hospital

systems based on EHR can provide. Therefore, such scoring systems were not designed to

consider the availability of EHR data, although they are used in hospitals and are well known

by care teams. Taking advantage of this knowledge, added the possibility of providing data that

make the indexes’ calculation more efficient, is one of the gaps that the present work intends to

fill.
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4 THE DEEPSIGNS MODEL

This section presents the DeepSigns Model considering some design decisions that guided

the model’s architecture construction, and it also describes the Deep Learning algorithms chosen

as part of the model’s implementation. Although we present some methodological aspects in

this chapter, the choice to do so was conscious and aimed at a better comprehension of the

DeepSigns model.

4.1 Design Decisions

Different prognostic indexes are intended to predict the worsening of the patient’s health

status. However, most prognostic indexes consider vital signs measured at index calculation

(CHURPEK; ADHIKARI; EDELSON, 2016). Therefore, incorporating vital signs’ variability

into the prognostic indexes’ calculation presents an opportunity to improve such techniques.

Nowadays, with the increasingly frequent use of EHR in hospitals, patients’ historical data

allows the application of computational techniques that consider such variability of vital signs

measurements.

Some studies show that patient data measured over time has different relationships at distinct

moments and influence each other over time, leading to alternative diagnoses, depending on the

combination of specific values at a given time (FORKAN; KHALIL, 2017; CLIFTON et al.,

2011). Therefore, the prediction of patients’ data based on the combination of their variation in

time may be an alternative to diagnose diseases. The focus is not predicting the diagnosis itself,

but rather the evolution of patient data to identify a possible diagnosis for them in the future.

There are few publications on this subject to the best of our knowledge, so this work considers

such an alternative an excellent research opportunity.

Considering that patient data stored in EHR contains temporal information about each mea-

surement stored, the EHR records can be interpreted as a time series and serve as inputs to

techniques capable of processing such type of information. Besides, the time series’ informa-

tion allows considering historical data in the patient’s health record to predict their future data.

4.2 Architecture

DeepSigns model is presented in Figure 10. The model aims to predict patients’ vital signs

based on historical EHR data from different sources and calculate different prognostic indexes

based on predicted vital sign values. The purpose is that medical teams can compare the results

of different prognostic indexes and choose the referral considered more appropriate for the

patient.

Figure 10 depicts a scenario where there is a vital signs prediction model trained with patient

data from EHR. So, as patients arrive in a hospital unit, ICU, for example, their data are stored in
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Figure 10 – DeepSigns - General View

the hospital’s EHR and sent to the DeepSigns model to have their data predicted. The different

prognostic indexes used in the hospital can apply the predicted vital signs to predict the patient’s

health status severity.

4.3 Deep Learning Algorithms

The DeepSigns model predicts the evolution of patients’ data and was constructed based on

LSTM networks, consuming EHR data organized in time series. Figure 11 presents an overview

of this prediction model. At the first stage, we transform the EHR data in a time series format

and train n LSTM networks, one for each predicted data.

DeepSigns model uses a different LSTM network to predict each vital sign, with all other

vital signs as inputs. Each line in Table 4 presents a different LSTM network, its inputs, and the

predicted attribute in the last column. Our model uses APACHE II attributes, which works with

15 attributes, including age. The DeepSigns model has 15 minus 1 LSTM networks because it

does not predict age.

Deep Learning models have to set initial parameter values, which are not learned through

the model execution, called the hyperparameters (GOODFELLOW; BENGIO; COURVILLE,

2016). These hyperparameters are reset many times as the model performance is evaluated until

the best configuration is achieved. The LSTM Network used the following initial hyperparam-

eters configuration (Table 5). Table 5 shows the first configuration use by DeepSigns Model.

The first stage concerns the extraction of EHR data, transforming them in time series format,

and using these series to train and validate LSTM networks, one for each data to be predicted
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Figure 11 – DeepSigns Model - LSTM networks, consuming EHR data formated as time series

Table 4 – DeepSigns Model: LSTM networks, its inputs, and output - attribute predicted
att1 att2 att3 att4 att5 att6 att7 att8 att9 att10 att11 att12 att13 att14 Age Predicted

Attribute

1 Temperature MAP HR RR FiO2 PaO2 PaCO2 Arterial pH Sodium Potassium Creatinine Hematocrit Leukocytes GCS Age Temperature

2 MAP HR RR FiO2 PaO2 PaCO2 Arterial pH Sodium Potassium Creatinine Hematocrit Leukocytes GCS Temperature Age MAP

3 HR RR FiO2 PaO2 PaCO2 Arterial pH Sodium Potassium Creatinine Hematocrit Leukocytes GCS Temperature MAP Age HR

4 RR FiO2 PaO2 PaCO2 Arterial pH Sodium Potassium Creatinine Hematocrit Leukocytes GCS Temperature MAP HR Age RR

5 FiO2 PaO2 PaCO2 Arterial pH Sodium Potassium Creatinine Hematocrit Leukocytes GCS Temperature MAP HR RR Age FiO2

6 PaO2 PaCO2 Arterial pH Sodium Potassium Creatinine Hematocrit Leukocytes GCS Temperature MAP HR RR FiO2 Age PaO2

7 PaCO2 Arterial pH Sodium Potassium Creatinine Hematocrit Leukocytes GCS Temperature MAP HR RR FiO2 PaO2 Age PaCO2

8 Arterial pH Sodium Potassium Creatinine Hematocrit Leukocytes GCS Temperature MAP HR RR FiO2 PaO2 PaCO2 Age Arterial pH

9 Sodium Potassium Creatinine Hematocrit Leukocytes GCS Temperature MAP HR RR FiO2 PaO2 PaCO2 Arterial pH Age Sodium

10 Potassium Creatinine Hematocrit Leukocytes GCS Temperature MAP HR RR FiO2 PaO2 PaCO2 Arterial pH Sodium Age Potassium

11 Creatinine Hematocrit Leukocytes GCS Temperature MAP HR RR FiO2 PaO2 PaCO2 Arterial pH Sodium Potassium Age Creatinine

12 Hematocrit Leukocytes GCS Temperature MAP HR RR FiO2 PaO2 PaCO2 Arterial pH Sodium Potassium Creatinine Age Hematocrit

13 Leukocytes GCS Temperature MAP HR RR FiO2 PaO2 PaCO2 Arterial pH Sodium Potassium Creatinine Hematocrit Age Leukocytes

14 GCS Temperature MAP HR RR FiO2 PaO2 PaCO2 Arterial pH Sodium Potassium Creatinine Hematocrit Leukocytes Age GCS

Table 5 – LSTM Configuration
Hyperparameter Value
layers 3 (input, hidden, output)
LSTM Units 50
Loss Function Mean Absolute Error
Optimizer Adam
Activation ReLU
Batch Size 72

by the model. In this study, the data to be predicted are the patients’ vital signs presented in

Table 2.

The model application, presented in Figure 12, starts on the arrival of a new patient in the

hospital environment. Vital signs of the new patient will be measured at the arrival time and will

enter the model to predict that patient’s vital signs. After the prediction phase, the predicted data

can be passed on to any prognostic index calculation system based on such vital signs. Thus,

the calculation of the index will be performed for the patient’s predicted data, which will make

it possible to anticipate what will happen to the patient in the future, thus allowing the action

of care teams. The predictions with a positive impact on decision making will feedback to the
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model.

Figure 12 – Decision support model based on prediction of vital signs.

The differential of the proposed model in this study lies in the fact that the prognostic index

calculation will be performed based on the predicted values of vital signs, based on the historical

data series. With this, it is possible to predict what will be the patient’s situation in the future.

Commonly, prognostic indexes are used to identify the risks of patients’ condition based on

the current measurements of their vital signs (CHURPEK; ADHIKARI; EDELSON, 2016).

However, this form of calculation, for some diseases, considering the severity of the patient’s

state, can only be diagnosed when there are few resources to promote recovery.

Figure 13 shows the applicability of the proposed model. The cases of patients whose

prognostic indexes indicate low severity (normal health status) at time t but high severity at

time t + 1 are those that could benefit from the proposed model since they would already be

identified as severe at time t and due treatment could be initiated immediately.

4.4 Data Source

Data used in this work came from unidentified medical records in the MIMIC-III (Medical

Information Mart for Intensive Care) database (JOHNSON et al., 2016). MIMIC-III has data

from approximately 58,000 hospitalizations of more than 38,000 patients hospitalized between

2001 and 2012 in one of the adult ICU at Beth Israel Deaconess Medical Center: Coronary Unit,

Cardiac Surgery Recovery Unit, Medical ICU, Surgical ICU and Surgical ICU - Trauma. The

database includes demographic information, vital signs, laboratory tests, procedures, medica-

tion administration, discharge records, imaging examinations, and external government sources’

mortality information.
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Figure 13 – Applicability of the proposed model

Figure 14 provides a general overview of the MIMIC-III data source. The data from the

different sources are gathered in a repository and, before being included in the MIMIC database,

they are deidentified and converted into the formats required for the MIMIC-III scheme.

Figure 14 – Overview of MIMIC-III - data sources

MIMIC-III data are organized around 4 main elements: patients, hospitalizations, ICU

admissions and patient events. Figures 15 and 16 show a schematic view of the MIMIC-III

database scheme, showing the tables, their attributes and the relationships between them. Fig-

ure 16, specifically, presents a view of how events are attributed to patients; whe attributes

subject_id and hadm_id play a central role in identifying the records and relationships between

the tables.

In summary, Table 6 presents the main concepts stored in MIMIC-III and the relations where

these concepts are stored.

MIMIC-III database was chosen at the beginning of this research, and it demanded some

time and several procedures to use it effectively. MIMIC-III scheme is relatively detailed, so

as the data set, it was not straightforward to apply it to the DeepSigns model. Currently, the

MIMIC-IV (version v0.4) (JOHNSON et al., 2020) contains data from patients admitted be-

tween 2008 and 2019 to the Israel Deaconess Medical Center’s emergency department or ICU.
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Figure 15 – Relational scheme of MIMIC-III - Patient data

Table 6 – MIMIC-III Concepts and Tables
Concept Database Table

Measurement type D_ITEMS
Patient hospitalizations ADMISSIONS
Sequence of patient interactions in the hospital TRANSFERS
Patient demographics ADMISSIONS
ICD-9 code [1] DIAGNOSES_ICD
Medication administration OUTPUTEVENTS

INPUTEVENTS_CV
INPUTEVENTS_MV

Prescriptions PRESCRIPTIONS
1 International Classification of Diseases, Ninth Revision

4.5 Data Selection

The data retrieved from MIMIC-III for the development and validation of the model pro-

posed in this work are those that constitute the calculation of APACHE II and presented in

Table 2. Initially, it was necessary to recover the MIMIC-III data related to the patients’ mea-



51

Figure 16 – Relational scheme of MIMIC-III - Patient events

surements at each hospitalization and structure them in time series. Besides, in order to perform

the validation, the diagnostic data were also retrieved from the database. The model allows data

from other data sources to be used, following the same methodology presented here.

The attributes related to the hospitalization identification, measurement moment, measure,

measure numeric value, and unit of the measure were retrieved from MIMIC-III’s tables. The

measure retrieved were the ones of interest for the time series assembly, those representing the

variables considered in the APACHE II calculation. Table 7 shows an example dataset resulting

from this first step.

4.6 Preprocessing

Real-world health data often present noises, distortions, or missing values that impact the

performance of algorithmic solutions (FANG et al., 2016). Therefore, predictive models’ con-

struction requires deciding in advance which criteria should be adopted for data selection. So,

the first filter applied in data recovery consisted of records of adult patients (age greater than

or equal to 18 years) and hospitalization time greater than 24 hours. Besides, only records

containing non-zero values were retrieved for all variables of interest.

EHR data can be interpreted as a time series (CHE et al., 2017), but it is necessary to
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Table 7 – Example Dataset for Inpatient 100,006
hadm_id 1 charttime 2 itemid 3 valuenum 4 valueuom 5

100,006 06/04/08 16:30 618 22 BPM
100,006 06/04/08 16:30 456 100.667000 mmHg
100,006 06/04/08 16:30 678 97,000 Deg. F
100,006 06/04/08 16:30 198 15,000 points
100,006 06/04/08 17:00 618 20 BPM
100,006 06/04/08 17:00 456 85.333298 mmHg
100,006 06/04/08 18:00 456 88.000000 mmHg

1 hadm_id is the MIMIC-III’s attribute name for the hospitalization identification;
2 charttime is the MIMIC-III’s attribute name for the moment the measure was

inserted on database;
3 itemid is the MIMIC-III’s attribute name for the measure taken from patient;
4 valuenum is the MIMIC-III’s attribute name for the measure value taken from

patient;
5 valueuom is the MIMIC-III’s attribute name for the measure unit.

restructure such data, which were stored according to the relational model (Table 7), as it is the

case of MIMIC-III, in the form of a time series. For this purpose, a pre-processing phase has

performed the steps as follows:

• organization of data on a temporal basis;

• division into fixed time windows;

• calculation of the average of each measure within the time window;

• imputations of values for missing data;

• separating the data set into a training, test, and validation data.

In the work presented here, we experimented with many variations of time windows and im-

putation forms, considering that this may affect the results of the prediction (LIPTON; KALE;

WETZEL, 2016) and the section 5 presents the results. Each time window has data from one

admission from the same patient.

4.7 Computational tools

For this work, experiments were performed using TensorFlow framework (version 1.7.0),

Keras API interface (version 2.1.5), Python programming language (version 2.7.12), and Jupyter

Notebook web application (version 5.4.1), on a computer with Intel Core Processor (Haswell,

no TSX, IBRS) – 64 bits - 2GHz - 8 cores - 12GB RAM – and Ubuntu 16.04.4 LTS.
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4.8 Evaluation

For the vital signs prediction validation, considering that data was in the form of a time

series, the measure employed for evaluation was the Mean Squared Error (MSE), which is the

sum of the differences between the estimated and the actual value of the data, divided by the

number of terms. The objective is to measure how close an erroneous prediction is to the real

value. That is, to evaluate the distance between the predicted (estimated) value and the actual

value of the measurement.

In order to ensure the generalization capability, i.e., to produce accurate predictions when

analyzing new unlabeled data, ML models need to be trained, validated, and tested on inde-

pendent data sets (HAYKIN et al., 2009). In the case of DL, the default validation method is

Holdout. This method consists of dividing the data into two independents (mutually exclusive)

subsets: training and validation. Typically, 60% of data are used for training (learning), 10%

to evaluate performance during training (validation) through accurate measurements and er-

ror, and 30% for a final evaluation of the predictions (generalizations) performed by the model

(HAYKIN et al., 2009). For DeepSigns, We divided our dataset into two, 70% of data were

used for training the model, 60% for learning and 10% to evaluate, and 30% for testing. The

datasets were independents, as Figure 17 shows.

Figure 17 – Holdout method for training and testing

In detail, the evaluation of the prediction model proposed in this work involved the following

steps, also detailed in Figure 18.

• Training of LSTM networks with patient data before time t− 1;

• A new patient will be considered as the one with the data at time t− 1;

• application of the model to predict the patient’s vital signs for time t;

• calculation of prognostic index with vital signs predicted for time t;

• validation of the calculated prognostic index compared to what happened to the patient at

time t, from the historical information.
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In Figure 18, time t refers to the last vital signs’ measures recorded for the patient; so, time

t− 1 refers to the measures before it.

Figure 18 – Validation

4.9 Chapter Summary

This chapter introduced the DeepSigns model, detailing the following elements:

• Design Decisions: time series from EHR data.

• Architecture: Prognostic indexes calculations through predicted vital signs.

• Data Source: MIMIC-III database.

• Data Selection: variables applied in scoring systems’ calculation.

• Preprocessing: organization and aggregation of data.

• Computational tools: TensorFlow framework, Python programming language and Jupyter

Notebook.

• Evaluation: practical application evaluation.
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5 RESULTS AND DISCUSSION

This section presents the results of the experiments with the DeepSigns model. The first

stage, as described in Section 4.5, is concerned with retrieving the desired data from the MIMIC-

III database. All data from MIMIC-III, whose APACHE variables were collected and registered,

were included in this study, resulting in 12,735,811 records, representing measures from dis-

tinct patients’ admissions taken during hospitalization. These measures are likewise the ones

presented in Table 8 for patient 100,006 as an example. Table 8 presents a view of what would

be the whole dataset since it is impossible to present the dataset itself. Table 8 also shows that

data from MIMIC-III used in this work varies significantly since most of them are continuous

variables.

Table 8: Example Dataset for all Patients

Record hadm_id charttime itemid valuenum valueuom

1 100,006 06/04/08 16:30 618 22 BPM

2 100,006 06/04/08 16:30 456 100.667000 mmHg

3 100,006 06/04/08 16:30 678 97,000 Deg. F

4 100,006 06/04/08 16:30 198 15,000 points

5 100,006 06/04/08 17:00 618 20 BPM

6 100,006 06/04/08 17:00 456 85.333298 mmHg

7 100,006 06/04/08 18:00 456 88.000000 mmHg

8 100594 04/08/17 21:00 198 15 points

9 100594 04/08/17 22:00 211 84 BPM

10 100594 04/08/17 22:00 456 80 mmHg

... 100594 ... ... ... ...

110 100594 07/08/17 13:00 211 68 BPM

111 100594 07/08/17 13:00 618 17 BPM

112 100594 07/08/17 14:00 211 70 BPM

113 100594 07/08/17 14:00 618 19 BPM

... ... ... ... ... ...

10,250 102432 22/09/02 05:30 211 75 BPM

10,251 102432 22/09/02 05:30 456 63 mmHg

10,252 102432 22/09/02 07:00 211 72 BPM

10,253 102432 22/09/02 07:00 456 64.66670227 mmHg

10,254 102432 22/09/02 07:00 678 96.80000305 Deg. F

10,255 102432 22/09/02 07:00 198 15 points

... 102432 ... ... ... ...

10,900 ... ... ... ... ...
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... ... ... ... ... ...

200,000 ... ... ... ... ...

... ... ... ... ... ...

500,000 ... ... ... ... ...

... ... ... ... ... ...

1,675,000 ... ... ... ... ...

... ... ... ... ... ...

9,567,400 ... ... ... ... ...

... ... ... ... ... ...

... 199727 ... ... ... ...

12,735,807 199727 23/06/35 17:00 211 81 BPM

12,735,808 199727 23/06/35 17:00 456 65 mmHg

12,735,809 199727 23/06/35 19:00 456 68 mmHg

12,735,810 199727 23/06/35 19:00 618 28 BPM

12,735,811 199727 23/06/35 19:00 211 79 BPM

Complementary, as presented in section 4.6, the data were organized in 27,736 admissions.

After that, we randomized these admissions, every time, to select the volume of data to enter

the model. We created six different volume datasets with 100, 250, 500, 1000, 2,500 and 5,000

admissions each. Finally, we employed the holdout method for validation and repeated our

results for three iterations. The next stage was to split the data set in fixed time windows to

create the time series datasets. We experimented with fixed time windows of 1, 5, 10, 15, and

30 minutes.

We split it in fixed time windows for each volume dataset and created the time series to enter

the LSTM networks. Table 9 shows a time series example for the patient 100,006 built from

data presented in Table 7 and time window of 1 minute.

As aforementioned, we experimented with fixed time windows of 1, 5, 10, 15, and 30 min-

utes. DeepSigns has an approach to predict vital signs (and other variables) to feed the cal-

culation of scoring systems. There are many scores for different diagnoses, and each disease

evolves differently. Besides, more than one score can be recommended to help diagnose the

same disease or condition.

Sepsis, for example, is caused by the body’s response to an infection and leads the patient to

a critical and life-threatening condition (RHODES et al., 2017). The reference committees re-

sponsible for defining sepsis and the possible conduct of medical teams recommend using more

than one prognostic index, in this case, Systemic Inflammatory Response Syndrome (SIRS)

(BONE; SIBBALD; SPRUNG, 1992), SOFA, and qSOFA, for its early diagnosis. qSOFA is a

prognostic index that is easy and quick to calculate and employs only three variables (respira-

tory rate, systolic blood pressure, and index on the Glasgow coma scale). However, qSOFA does
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Table 9 – Temporal Serie for patient 100,006
line Temperature MAP HR RR FiO2 PaO2 PaCO2 Arterial pH Sodium Potassium Creatinine Hematocrit Leukocytes GCS Age APACHE II

1 99 90 89 18 21% 90 40 7,4 139.5 4.45 1.0 38% 8.95 15 49 5

2 97 101 115 22 21% 90 40 7,4 139.5 4.45 1.0 38% 8.95 15 49 5

3 97 85 117 20 21% 90 40 7,4 139.5 4.45 1.0 38% 8.95 15 49 5

4 97 85 117 20 21% 90 40 7,4 139.5 4.45 1.0 38% 8.95 15 49 5

5 97 88 122 18 21% 90 40 7,4 139.5 4.45 1.0 38% 8.95 15 49 5

6 97 88 122 18 21% 90 40 7,4 139.5 4.45 1.0 38% 8.95 15 49 5

7 97 88 117 23 21% 90 40 7,4 139.5 4.45 1.0 38% 8.95 15 49 5

8 97 88 117 23 21% 189 48 7,3 139.5 4.45 1.0 38% 8.95 15 49 5

9 97 105 117 18 21% 189 48 7,3 139.5 4.45 1.0 38% 8.95 15 49 5

10 97 105 117 18 21% 189 48 7,3 139.5 4.45 1.0 38% 8.95 15 49 5

11 97 80 118 20 21% 189 48 7,3 139.5 4.45 1.0 38% 8.95 15 49 5

12 97 80 118 20 21% 189 48 7,3 139.5 4.45 1.0 38% 8.95 15 49 5

13 97 82 115 18 21% 69 37 7,4 139.5 4.45 1.0 38% 8.95 15 49 5

14 97 82 115 18 21% 69 37 7,4 139.5 4.45 1.0 38% 8.95 15 49 5

15 97 100 117 20 21% 69 37 7,4 139.5 4.45 1.0 38% 8.95 15 49 5

16 97 100 117 20 21% 69 37 7,4 139.5 4.45 1.0 38% 8.95 15 49 5

17 98 80 112 22 21% 69 37 7,4 139.5 4.45 1.0 38% 8.95 15 49 5

18 98 80 112 22 21% 69 37 7,4 139.5 4.45 1.0 38% 8.95 15 49 3

19 98 81 105 21 21% 69 37 7,4 139.5 4.45 1.0 38% 8.95 15 49 3

20 98 81 105 21 21% 69 37 7,4 139.5 4.45 1.0 38% 8.95 15 49 3

21 98 85 103 19 21% 69 37 7,4 139.5 4.45 1.0 38% 8.95 15 49 3

22 98 85 103 19 21% 69 37 7,4 139.5 4.45 1.0 38% 8.95 15 49 3

23 98 84 106 21 21% 69 37 7,4 139.5 4.45 1.0 38% 8.95 15 49 3

24 98 84 106 21 21% 69 37 7,4 139.5 4.45 0.6 31% 13.60 15 49 4

25 97 88 109 18 21% 69 37 7,4 131.0 3.70 0.6 31% 13.60 15 49 4

26 97 88 109 18 21% 69 37 7,4 131.0 3.70 0.6 31% 13.60 15 49 4

27 97 88 100 16 21% 69 37 7,4 131.0 3.70 0.6 31% 13.60 15 49 4

28 97 88 100 16 21% 69 37 7,4 131.0 3.70 0.6 31% 13.60 15 49 4

29 97 89 95 19 21% 69 37 7,4 131.0 3.70 0.6 31% 13.60 15 49 4

30 97 89 95 19 21% 69 37 7,4 131.0 3.70 0.6 31% 13.60 15 49 4

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

228 98 115 105 19 40% 105 53 7,4 134.0 4.40 0.6 31% 9.8 15 49 6

229 98 103 122 17 40% 105 53 7,4 134.0 4.40 0.6 31% 9.8 15 49 6

230 98 103 122 17 40% 105 53 7,4 134.0 4.40 0.6 31% 9.8 15 49 7

231 98 95 119 26 40% 105 53 7,4 134.0 4.40 0.6 31% 9.8 15 49 7

232 98 95 119 26 40% 105 53 7,4 134.0 4.40 0.6 31% 9.8 15 49 6

233 98 96 136 21 40% 105 53 7,4 134.0 4.40 0.6 31% 9.8 15 49 6

234 98 96 126 21 40% 105 53 7,4 134.0 4.40 0.6 31% 9.8 15 49 6

235 98 96 124 20 40% 105 53 7,4 134.0 4.40 0.6 31% 9.8 15 49 6

236 98 96 124 20 40% 105 53 7,4 134.0 4.40 0.6 31% 9.8 15 49 6

not perform best in identifying sepsis (MD et al., 2018; GREEN et al., 2019). Other indexes,

such as SOFA, are more complex and require variables in their calculation that are not always

available at the bedside. The application of the DeepSigns model would be an alternative, as

the model could predict the unavailable variables.

In sepsis, the first hour after its detection is crucial to start the treatment with antibiotics

(DUGAR; CHOUDHARY; DUGGAL, 2020). So, smaller time windows can guarantee more

data to the network training. If we take 30 minutes time window, three hours generates six

samples. If the patient staying on the hospital is recent, let us say 24 hours, it would lead to

only 48 samples to be used by the prediction model. Otherwise, smaller time windows could

benefit the model with more training samples. Furthermore, we chose these time windows

after discussions with physicians involved in the project. They think that they are useful for

Emergency Departments and Intensive Care Unities.

The option for the 1-minute window was the one with the best results observed. The analysis

presented in Figures 19 and 20 shows the results obtained by successive evaluations, and the best
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results are always the ones observed for 1-minute windows for all the training datasets sizes.

Forkan, Khalil, and Atiquzzaman (2017) (FORKAN; KHALIL; ATIQUZZAMAN, 2017) also

carried out studies about an adequate window size for selecting the data to train the prediction

model. They performed tests with windows of 8, 10, 12, 16, 20 minutes, and evaluated the

window size of 10 minutes as the ideal size. Even the two models being different, the second

smaller time window tested yielded the best results.

50
0

1,
00
0

1,
50
0

2,
00
0

2,
50
0

3,
00
0

3,
50
0

4,
00
0

4,
50
0

5,
00
0

50

60

70

80

90

Number of Hospital Admissions

A
PA

C
H

E
II

P
re

di
ct

io
n

A
cc

ur
ac

y
(%

)

Predicted APACHE II Over Training Dataset Size

1min 5min 10min 15min 30min

Figure 19 – Accuracy of APACHE II with predicted data over the training dataset size range from 0 -
5.000 hospital admissions

Figure 19 depicts the percentage of tested cases over the training dataset size, where the

APACHE II index was calculated correctly. Besides, Figure 20 shows the best results like the

ones trained with the biggest dataset sizes and the lowest window time (1 min - 2.500 admissions

and 5 min - 5.000 admissions).

We also performed four different experiments about inputation values, replacing the missing

values by the reference value for each vital signal, value zero, or constant values -1 or -100. The

choice of such values is considered in the literature (LIPTON; KALE; WETZEL, 2016). As can

be seen in Figure 21, which presents the MSE for each vital sign considered in this study, the

best prediction (lowest value) was obtained when the reference value for each vital sign was

inputted. In this work, the reference value is considered an expected value for vital signs and

was defined as the median value from the APACHE II normal range for each vital sign. For

example, in the APACHE II calculation, the standard temperature value is in the range from

36.0 to 38.4; in this case, we used the value 37.2 as the reference value.
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Figure 20 – percentage of APACHE II Alert True over the training dataset size of hospital admissions.
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Dataset size and time window for aggregating data from the EHR are critical definitions to

provide a viable procedure for training LSTM networks. Combining larger dataset sizes and

smaller time windows lead to better results and a much longer time training the model. After

experimenting with different datasets and time window sizes, we observed that results did not

get much improvement after dataset size greater than 1,000. Recall Figures 19 and 20. Figure

22 plots the tradeoff between prediction accuracy and time (minutes) that takes to train the

model. The best accuracy occurs in the graph’s far-right point, and the more time-consuming

training process occurs at the highest point.
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Figure 22 – Dataset x Time Window x Training time - tradeoff

Table 10 presents the top 10 best results plotted in Figure 22. The best result is the first line

representing a dataset of 2,500 admissions, and it takes 22 hours to train. In contrast, a less

time-consuming training process is the line with 1,000 admissions, and it takes 1 hour to train.

Considering the DeepSigs model expects to aggregate more data over time, as new patients are

admitted to the hospital, the time to retrain the model is an essential and critical parameter to

DeepSigns to work correctly. That is why the next experiments will use the dataset with 1,000

patients’ admissions and a 15-minute time window.

In the next step, trying to achieve a better network configuration for the problem of CDSS

that we are dealing with in this work, we experimented with different number of neurons and

epochs configurations. We experimented with 10, 15, 20, 25, and 50 epochs and 50, 75, and

100 neurons. Figure 23 summarizes the results, showing the best results for the APACHE II

prediction accuracy with 50 epochs and 50 neurons LSTM configuration.

After training the networks with a dataset with 1,000 patients’ admissions, a 15-minute time

window, 50 epochs, and 50 neurons, Table 11 presents an evaluation of each network, showing

the MSE calculated for each of them. The magnitude of MSE value varies according to the
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Table 10 – Tradeoff Top 10

Admissions Time Window Accuracy Time

(Num) (min) (%) (h)

2500 1 81.50 22
5000 5 81.30 13

1000 1 79.30 9

5000 1 79.10 43

10000 10 78.60 20

10000 5 78.10 37

10000 15 77.80 12

500 1 77.70 4

1000 15 77.10 1

5000 15 77.00 4
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Figure 23 – Accuracy of Predicted APACHE II over Epochs.

attribute predicted since MSE is a measure that considers the distance between the predicted

value and the real value. The table shows the reference value for the attribute predicted by the

network, the range of values considered as typical values by the APACHE II score, and also

the MSE of the network. Thus, it is possible to observe how much each network allowed the

approximation between the real and the predicted value.

We compared our model’s results to the Ordinary Least Squares (OLS) (HUTCHESON,

1999), and the results show that DeepSigns outperforms OLS (Figure 24). OLS is a statistical
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Table 11 – LSTM MSE

LSTM Reference Range MSE

Value

1 T1 37.2 36.0 - 38.4 0.09

2 MAP2 89.5 70 - 109 1.43

3 HR3 89.5 70 - 109 1.91

4 RR4 18 12 - 24 0.76

5 FiO2 0.21 0.21* 0.01

6 PaO2 90 80 - 100 4.13

7 PaCO2 40 35 - 45 0.29

8 Arterial pH 7.395 7.33 - 7.49 0.01

9 Sodium 139.5 130 - 149 0.17

10 Potassium 4.45 3.5 - 5.4 1.60

11 Creatinine 1 0.6 - 1.4 0.03

12 Hematocrit 37.95 30 - 45.9 0.27

13 Leukocytes 8.95 3 - 14.9 0.31

14 GCS 15 15** 0.16
1 Temperature 2 Mean Arterial Pressure 3 Heart Rate 4 Respiratory Rate
* In ambient air, at sea level, we have a FiO2 of 21%. ** The minimum score is a three, indicating a deep
coma or a brain-dead state. The maximum is 15, which indicates a fully awake patient.

method to estimate unknown parameters in a linear regression model. It does the prediction

minimizing the sum of the squares of the differences between the variable’s values being ob-

served in a given dataset and those predicted by the linear function. Selvin et al. (SELVIN et al.,

2017), also compared his model developed based on RNN with a linear prediction model, the

ARIMA model (BOX et al., 2015), and obtained better results.

As proposed in Figure 13 of Section 4.8, the model applicability validation considered the

number of tested cases where the prognostic index calculation based on predicted vital signs

indicates a significant variation (KNAUS et al., 1991). These are the cases where an anticipated

intervention would possibly revert the patient’s health deterioration. Figure 20 depicts the per-

centage of tested cases over the training dataset size, where an alert would pop in anticipation

according to the above definition. As shown in Figure 20, the number of new alerts generated

based on predicted vital signs would be between 50% and 60%.

The predictive model of vital signs presented here has a low cost of development because,

as DL models make full use of data and its pattern of variation and relationships, there is no

need to identify the most relevant predictors for the problem. DL techniques allow automatic

generation of predictors, which reduces the need for human intervention at this stage of the

process (RAVI et al., 2017).

Furthermore, the possibility of processing historical data of the patient’s vital signs aligns
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with results found by (CHURPEK; ADHIKARI; EDELSON, 2016), which indicates the im-

portance of considering the variability of vital signs for the prognostic indexes calculation.

Differently from their work, here, the vital sign’s prediction, considering the variability of data,

will be used in the index calculation.

During their stay in hospital wards, patients’ data are dynamic, which means it can vary

faster than expected. The constant monitoring of these data is essential and can provide bet-

ter decision making. Moreover, predicting it can provide essential information to calculate

prognostic indexes and anticipate the outcome as a deterioration status instead of a specific

diagnostic, providing an indicator to continue patient treatment.

The early warning scoring systems take into account the real-time patient data in their cal-

culation. Some works demonstrate that these early warning scores have poor performance than

some of the new ML scoring systems in development (BRAND et al., 2018; TONEKABONI

et al., 2018; JIN et al., 2018; PAN et al., 2019; LYU et al., 2018). In contrast, the early warning

scoring system area is a mature subject and has substantial research about it for a long time.

The work presented here developed an idea that embeds the two techniques, a prediction model

based on Machine Learning (Deep Learning) and an early warning scoring system. It is essen-

tial to observe that the DeepSigns model can be attached to any scoring system considering the

model is retrained for the appropriate variables.
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6 CONCLUSION

This work presented the process of developing a computational model able to diagnose, in

advance, the worsening of the health status of patients in such a way that it is possible to start

the appropriate treatment as soon as possible and avoid deterioration of their health status. The

model was developed using ML techniques, employing a RNN of type LSTM to predict vital

signs of patients and posterior evaluation of the severity of the patient’s health status through

prognostic indexes commonly used in the Health area.

This work’s main scientific contribution is the creation of a method for predicting vital signs

based on historical data with low MSE and its following application in the calculation of prog-

nostic indexes with effectiveness (50% - 60% of cases that would not be identified as severe).

The differential presented by this proposal stems from the fact that few works predict vital

signs. Most of the works focus on predicting specific health outcomes, such as specific diag-

noses, considering the current vital signs. In this work, the proposal is to predict the evolution

of vital signs in the future and use these predicted signs to calculate prognostic indexes.

The development of a method for predicting patient data, feeding back to the model with

new personal data, meets precision medicine. Accordingly, the DeepSigns model highlights the

opportunity that ML models have to assist in hospitals’ decision-making, customizing care for

patients’ needs.

In the United States of America, the preventable inpatient deaths are estimated as between

44,000 and 98,000 per year (KOHN et al., 2000). A recent systematic review, which analyzed

eight studies of hospitalized patients, concluded that 3.1% of 12,503 deaths included in the

study were preventable according to physicians (RODWIN et al., 2020). The test results from

DeepSigns identified between 50%, and 60% of tested cases would generate an alert that would

not be produced otherwise. Considering also, 17% of these 50% and 60% tested cases died; it

means that around 9% of deaths could be prevented with DeepSigns model application to the

early intervention in ICU unities.

LSTM models are suitable for temporal series processing problems. Comparing ourselves

with the OLS (Ordinary Least Squares) technique, DeepSigns results were superior. So, we

decided to work with data loads and hyperparameters variations instead of experimenting with

other network configurations, for instance, adding more layers, what would, probably, add more

time to train the network. DeepSigns model was designed to be part of a CDSS (Clinical

Decision Support Systems) and this demands the model to be retrained from time to time with

data from new patients’ arrivals. The less time to train, the better are the chances to improve

the model performance in order to save people’s lives. DeepSigns is a generic model and does

not focus on specific diseases. So, the retraining mechanism plays an important role. Let us

say we are experiencing COVID-19, just like today’s pandemic situation. Furthermore, we get

many patients arriving at hospital units with similar vital signs (or other information) patterns.

DeepSigns model could be retrained once a day, for example, and some pattern could emerge
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from data, guiding hospital teams to recognize a new disease.

The prediction of each variable included in this study was quite good. Chapter 5 presents an

evaluation of each LSTM network, showing the MSE calculated for each of them. The results

presented in Table 11 show the reference value for the attribute predicted by the network, the

range of values considered as typical values by the APACHE II score, and also the MSE of the

network. Thus, it is possible to observe how much each network allowed the approximation

between the real and the predicted value. Considering these results, testing with other network

compositions will be subject of future works.

As a result, the present work has generated some publications, and with that, we hope to

contribute with ideas for improving health care, especially for hospitalized patients in critical

situations. Some of them directly linked to the work presented (SILVA et al., 2020) and other

related to previous works and collaborations (KAIESKI et al., 2020; SCHMIDT et al., 2018;

COSTA et al., 2018b) carried out during the Ph.D. period.

As future work, we intend to experiment with the DeepSigns model with dynamic data

obtained in real-time from patients in an ICU. With this data, we plan to discuss the results with

the clinical staff and evaluate the possible impact on the patients’ treatment. We also plan to

compare the results produced by the DeepSigns model with a model that predicts the prognostic

index itself using DL techniques and considering historical data.
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