
Programa de Pós-Graduação em

Computação Aplicada
Mestrado Acadêmico

Robson Keemps da Silva

SmellGuru: A machine learning-based approach to

predict design problems

São Leopoldo, 2022

Cataloging-in-Publication:
Librarian Vanessa Borges Nunes - CRB 10/1556

S586s Silva, Robson Keemps da
 SmellGuru : a machine learning-based approach to

predict design problems / by Robson Keemps da Silva. –
2022.

 91 l. : ill., 30 cm.

 Dissertação (mestrado) — Universidade do Vale do Rio
dos Sinos, Programa de Pós-Graduação em Computação
Aplicada, 2022.
 Advisor: Prof. Dr. Kleinner Farias ; Co-advisor: Rafael
Kunst.

1. Prediction. 2. Design problems. 3. Machine learning.
4. Code smells. 5. Bad smells. I. Title.

CDU 004

ACKNOWLEDGEMENTS

Furthermore, this dissertation would not have happened without the great help of my ad-
visor Kleinner Farias and co-advisor Rafael Kunst, who through long weekly lectures provided
me with valuable help, advice and words that in one way or another motivated me to continue
despite of all difficulties. I thank teacher Rodrigo Righi for his time and valuable suggestions.
Finally, I would like to thank the entire collegiate of the program for their support during the
course.

ABSTRACT

Nowadays, the prediction of source code design problems plays an essential role in the soft-
ware development industry, identifying defective architectural modules in advance. For this
reason, some studies have explored this subject in the last decade due to relation with aspects of
maintenance and modularity. Unfortunately, the current literature lacks (1) a generic workflow
approach that contains key steps to predict design problems, (2) a language to allow developers
to specify design problems, and (3) a machine learning model to generate predictions of design
problems. Therefore, this dissertation proposes ModelGuru, which is a machine learning-based
approach to predict design problems. In particular, this study (1) introduces an intelligible
workflow that provides clear guidance to users and facilitates the inclusion of new strategies
or steps to improve predictions; (2) proposes a domain-specific language (DSL) to specify bad
smells, along with a tool support; and (3) proposes a machine model to support the prediction
of design problems. In addition, this study carried out a systematic review of the literature
that allowed creating an overview of the current literature on the subject of predicting design
problems. An exploratory study was carried out to understand the impact of the proposed DSL
on three variables: correctness rate of the created specifications, error-rate and time invested
to elaborate the specifications of design problems. The initial results obtained, supported by
statistical tests, point to for encouraging results by revealing an above correct rate than 50%,
error rate below 30% and effort less than 15 minutes to specify a bad smell. The evaluation
of the proposed SmellGuru approach was carried out with 23 participants, students and profes-
sionals from Brazilian companies with professional experience in software development. It was
possible to assess the perceived ease of use, perceived usefulness and behavioral intention of
using the proposed SmellGuru approach. Respondents agree that SmellGuru is easy to interpret
(43.47%), Innovative (60.86%) and would make the software easier to maintain (78.26%). Fi-
nally, this study draws up some implications and shows the potential of adopting the proposed
approach for supporting the specification and prediction of design problems.

Keywords: Prediction. Design Problems. Machine learning. Code Smells. Bad Smells.

LIST OF FIGURES

1 The systematic mapping process used in our study (adapted from (PETERSEN
et al., 2008)). 26

2 The selected studies throughout the filtering process. 29
3 Distribution of the primary studies based the explored research topics over

the years. 36
4 Bubble chart that shows the relationship among three variables. 37
5 An overview of the proposed approach. 44
6 A component-based architecture for the proposed SmellGuru approach . . . 48
7 Diagram of railroad of the syntax of the language. 50
8 Code example of SmellDSL. 51
9 SmellDSL tool integrated into the Eclipse platform. 52
10 Visualization SmellGuru . 56
11 Building a Prediction Model SmellGuru 58
12 Confusion matrix results of best RF model 59
13 Feature importance to the RF algorithm . 60
14 Confusion Matrix - SVM with RBF Kernel 61
15 Confusion Matrix - SVM with Linear Kernel 61
16 Average time invested per scenario in minutes (RQ3) 67
17 Diagram SmellDSL 01 . 91

LIST OF TABLES

1 Research questions that were investigated in this article 25
2 A description of the major terms and their alternative terms. 26
3 List of the used search engine. 27
4 List of the selected studies. 31
5 Classification of the primary studies based on their design problems (RQ1). . 32
6 Classification of the primary studies based on their prediction aspects (RQ2). 33
7 Classification of the primary studies based on their prediction techniques

(RQ3). 34
8 Study classification by contributions (RQ4). 35
9 Study classification by research methods (RQ5). 35
10 Place of publication of studies (RQ6). 37
11 Comparative analysis of related works . 42
12 Description of Class level Design Metrics with categorization. 55
13 Metrics of the RF model with the highest accuracy 60
14 Accuracy of trained models . 62
15 Evaluation scenarios of SmellDSL . 65
16 Participants profile . 66
17 Initial results for the tested hypotheses. 66
18 Participants profile . 71
19 Participants Experience . 72
20 TAM (Technology Acceptance) . 73
21 TAM (Clarity) . 73

CONTENTS

1 INTRODUCTION . 13
1.1 Problem Statement . 14
1.2 Research Questions . 16
1.3 Objectives . 17
1.4 Methodology . 17
1.5 Outline . 18

2 BACKGROUND . 19
2.1 Software design . 19
2.2 Design problems . 19
2.3 Prediction of design problems . 20

3 RELATED WORK . 23
3.1 Mapping of Literature . 23
3.1.1 Planning . 25
3.1.2 Objective and research questions . 25
3.1.3 Search strategy . 26
3.1.4 Elaboration of the Search String . 26
3.1.5 Exclusion and inclusion criteria . 27
3.1.6 Data extraction . 28
3.1.7 Study Filtering . 29
3.1.8 Results . 30
3.1.9 RQ1: What are the design problems explored by prediction techniques? 30
3.1.10 RQ2: What aspects are considered for predicting design problems? 32
3.1.11 RQ3: Which techniques have been used to predict design problems? 33
3.1.12 RQ4: What would be the contributions? . 34
3.1.13 RQ5: What research methods were used? . 34
3.1.14 RQ6: Where have the studies been published? 35
3.1.15 Discussion and future directions . 37
3.1.16 Distribution of primary studies . 38
3.1.17 Future challenges . 38
3.1.18 Threats to validity . 39
3.2 Analysis of the Literature on Domain-Specific Languages for Specifying Bad

Smells . 39
3.2.1 Analysis of related works . 40
3.2.2 Comparative analysis of the selected related works 41

4 PROPOSED APPROACH . 43
4.1 Overview of the SmellGuru approach . 43
4.1.1 Component-based architecture . 46
4.2 Domain-Specific Language for Specification of Bad Smells 48
4.2.1 Language Design Decisions . 48
4.2.2 Language Grammar . 49
4.2.3 Implementation Aspects . 50
4.3 Machine Learning Model for Predicting Design Problems 51
4.3.1 Methodology . 52
4.3.2 Classifier - Random Forest Algorithm . 53

4.3.3 Predictive model . 54
4.3.4 Description of Dataset . 54
4.3.5 Implementation Aspects . 55
4.3.6 A Proposal of SmellGuru Dashboard . 55
4.3.7 An extension of the approach . 56
4.3.8 Experimental Design . 57
4.3.9 Operation . 58

5 EVALUATION . 63
5.1 Evaluation SmellDSL . 63
5.1.1 Research Objective and Questions SmellDSL 63
5.1.2 Study Variables . 63
5.1.3 Hypotheses and Analysis Procedure . 64
5.1.4 Experimental Tasks . 64
5.1.5 Context and Selection of Participants . 64
5.1.6 Results SmellDSL . 65
5.1.7 Conclusion and Future Works . 66
5.2 Evaluation of Model SmellGuru for Predicting Design Problems 67
5.2.1 RQ1: Can the presence of code smells impact the design? 67
5.2.2 RQ2: What is the performance of ML algorithms for predicting impact and non-

impact design changes? . 68
5.2.3 RQ3: What features are the best indicators of change that impact design? 68
5.2.4 Discussion . 68
5.3 Evaluation SmellGuru Proposed Model . 69
5.3.1 Context and Selection of Participants . 70

6 CONCLUSION AND FUTURE WORK . 75
6.1 Contribuitions . 76
6.2 Limitations . 76

REFERENCES . 79
.3 Grammar SmellDSL . 89
.4 Diagram SmellDSL . 90

13

1 INTRODUCTION

The software development process has evolved a lot since its inception. However, with the
increasing presence of software in people’s daily lives, especially in the execution of critical
tasks (such as controlling aircraft and medical equipment), the concern with the final quality of
the software has, since then, aroused the interest of industry and academia (SOMMERVILLE,
2011). It is often necessary to change the software design even at an advanced stage of devel-
opment. This is because new functionalities are linked to the software, foreseen or not in its
initial design stage, or correction of structural problems and even code maintenance. Coding
can be distant from the initial project, its quality can be degraded and later its maintenance
becomes difficult at the project level with several collaborators involved. In this context, it is
important to investigate and propose new approaches to minimize coding and software design
problems. Software developers need in their day-to-day to identify bad smells and software
design problems, in modified and adapted code, increasing its complexity.

Design problems are internal structures of source code that challenge design principles or
rules (OIZUMI et al., 2016; SHARMA; SPINELLIS, 2018; SURYANARAYANA; SAMARTHYAM;
SHARMA, 2014). Design problems are often harmful in several software systems and hav-
ing negative consequences, they are often targets of significant maintenance effort of software
(SCHACH et al., 2002; GARCIA et al., 2009; SOUSA et al., 2018; TAKAHASHI et al., 2021).
Bad smells are internal source code structures that challenge design principles or rules, nega-
tively impacting internal quality (OIZUMI et al., 2016; SURYANARAYANA; SAMARTHYAM;
SHARMA, 2014). Studies show that the presence of bad smells is related to aspects of (WERNER
et al., 2020) maintenance, architectural integrity (FONTANA et al., 2017), in addition to sus-
ceptibility to failures (WALTER; ALKHAEIR, 2016). They often indicate potential problems
in software, which may lead to long-term challenges and expensive maintenance efforts. Al-
though bad smells often occur in source code, bad smells also exist in representations of design
descriptions and models (POPOOLA; ZHAO; GRAY, 2021).

Nowadays in many projects, a good part of the cost is dedicated to maintenance. Thus,
it is necessary to facilitate the maintainability and readability of the code, improving its in-
ternal quality (REIS; ABREU; CARNEIRO, 2017; SAHIN et al., 2014; LIU et al., 2011;
DAS; YADAV; DHAL, 2019; KESSENTINI; VAUCHER; SAHRAOUI, 2010; GRIFFITH;
WAHL; IZURIETA, 2011). According to (YAMASHITA; MOONEN, 2012a; KREIMER,
2005; DI NUCCI et al., 2018; MUMTAZ et al., 2018; SHIPPEY; BOWES; HALL, 2019;
FONTANA; ZANONI, 2017; TOLLIN et al., 2017; IRWANTO, 2010; VIDAL et al., 2015),
there are tools and techniques to assist professionals in the journey of identifying bad smells.
According to (LIPOW, 1979; FENTON; NEIL, 1999; PECORELLI; Di Nucci, 2021; WANG;
BANSAL; NAGAPPAN, 2021), predicting software design problems is still a complex task,
with many challenges. The foregoing considerations show the importance of the concept of
predicting software design problems; however, it is necessary to find out how a given design

14

problem can in the future generate code smells, it is possible to perform the prediction using
machine learning techniques.

The literature covers a wide variety of ML techniques, each with characteristics and applica-
tions. Predictive models are generally data-driven models that require a variety of data streams
data provided by multiple sources offline and in real time(DALZOCHIO et al., 2020).

Nowadays, the prediction of source code design problems plays an essential role in the
software development industry, identifying defective architectural modules in advance. For this
reason, some studies have explored this subject in the last decade due to relation with aspects of
maintenance and modularity. Unfortunately, the current literature lacks (1) a generic workflow
approach that contains key steps to predict design problems, (2) a language to allow developers
to specify design problems, and (3) a machine learning model to generate predictions of design
problems. Therefore, this dissertation proposes SmellGuru, which is a machine learning-based
approach to predict design problems. In particular, this study (1) introduces an intelligible
workflow that provides clear guidance to users and facilitates the inclusion of new strategies
or steps to improve predictions; (2) proposes a domain-specific language (DSL) to specify bad
smells, along with a tool support; and (3) proposes a machine model to support the prediction
of design problems. In addition, this study carried out a systematic review of the literature
that allowed creating an overview of the current literature on the subject of predicting design
problems.

1.1 Problem Statement

Software development plays a crucial role in diverse fields of modern society. Solutions
in electronics, transportation, healthcare, telecommunications, industry 4.0, and financial ser-
vices rely on software for correct operation (SOMMERVILLE, 2011; HERMANN; PENTEK;
OTTO, 2016; LEW et al., 2019; TSENG et al., 2021; SAAD; BAHADORI; JAFARNEJAD,
2021). Updating and maintaining these pieces of software is challenging and may lead to
development-related problems. One way of identifying these problems is through the detec-
tion of code smells. The typical approach to find code smells involves software analytics and
following good practices during the development process. An incipient field of research is the
use of machine learning models to identify code smells. Related work in this field is still either
theoretical or in the initial stages of development (FONTANA; BRAIONE; ZANONI, 2012;
PAIVA et al., 2017; RASOOL; ARSHAD, 2017; AZEEM et al., 2019; KAUR et al., 2021a).

Usually, the source code of applications undergoes constant changes to accommodate new
features or even correct existing ones. Such changes often promote the scattering and tangling
of software concerns, which violate design principles such as the single-responsibility principle.
These violations are typically noticed by bad smells (OIZUMI et al., 2016), symptoms of poor
design (PALOMBA et al., 2017).

Empirical studies (PALOMBA et al., 2017, 2018; OIZUMI et al., 2016) point out that bad

15

smells are indicators of design problems. Couplers and bloaters are examples of such bad
smells (SURYANARAYANA; SAMARTHYAM; SHARMA, 2014) that indicate excessive cou-
plings and large proportions of source code elements, turning maintenance tasks prone to errors.
The documentation of architectural decisions, for example, through UML models (PETRE,
2014), might help developers refactoring tasks, however in some cases, such documentation is
either not elaborated or out of date, leading to relying on the tacit knowledge of the developers
to avoid new violations of design principles.

Prediction of design problems can play an essential role in this context, especially identi-
fying defective architectural modules in advance. The greater the forecast of the appearance of
design problems, the greater the anticipation capacity to address such problems. An alternative
would be to generate predictions of design problems, for example, based on size, complexity,
coupling, and cohesion as the source code is modified(DINAN et al., 2021).

The presence of design problem issues is an indication that the software architecture may be
undergoing a process of degradation. Architectural degradation occurs when the implementa-
tion does not conform to the design decisions portrayed in the software architecture (TAYLOR,
2019). The longevity of an evolving application depends largely on its resilience to the symp-
toms of (MACIA et al., 2012a) architecture degradation. Therefore, it is important to have
mechanisms that identify possible design problems that can generate code smell.

Different types of code smells are referenced in several works (EMDEN; MOONEN, 2002;
FARD; MESBAH, 2013; YAMASHITA; MOONEN, 2012b; KHOMH; DI PENTA; GUEHENEUC,
2009; SJøBERG et al., 2013). While code smell detection and removal has been well researched
over the past decade, it remains open to debate whether or not code smells should be considered
significant conceptualizations of code quality issues based on software design.

However, reference techniques and architectures have been developed in the last decades,
the works still have gaps to be filled by new investigations. The works found, for the most part,
only classify or identify the smells (ABBES et al., 2011; BOUSSAA et al., 2013; AZEEM
et al., 2019; Uchôa et al., 2020). Most recommend the use of static source code analysis tools
and do not show a possible root of the actual problem detected. Furthermore, identifying design
problems and demonstrating possible code anomalies that may be generated in the future is one
of the issues to be addressed in this dissertation, so we can support the prediction of design
problems and possibly identify the source of code smells. About the problems characterized
above, this study investigates the Problems (P) that are described below:

• P1: Lack of the current literature map on the automatic prediction of design prob-
lems. Absence of a broad view of the state of the art. In recent years, several studies have
analyzed various code smells, mainly using tools embedded with the use of static software
code analysis. Little is known about the types of bad smells and the software metrics that
characterize them, a clear definition of the smell, and the type of research strategies and
software abstraction criteria that studies have used. Thus, it becomes relevant to explore
the gaps and trends in the academy, as well as highlight the remaining opportunities.

16

• P2: Lack of an overview about approaches to predict design problems. The main
difficulty is defined by the lack of an intelligible workflow to predict design problems,
along with automatic strategies for identifying design problems.

• P3: Lack of a machine learning-based approach to predict design problems. Pro-
vide information from automatic techniques, as well as information obtained from real
systems for the prediction of design problems according to the proposed definitions and
particularities of each project.

• P4: Lack of a domain-specific language for specifying bad smells. Today, the lit-
erature still lacks approaches that help developers to more rigorously specify such bad
smells. Furthermore, and lacks a technical component to measure understanding of a
specific definition of bad smells, which is an important resource in the software design
and maintenance process. Understanding and specifying a bad smell becomes an error-
prone task.

1.2 Research Questions

This general section presents the research question that will be explored in the work, which
seeks investigator how to propose a machine learning-based approach predict design problems?.
To answer this research question, it is necessary to review the current literature related to pre-
dicting design problems, identify an intelligible workflow for predicting design problems, pro-
pose a machine learning model for predicting design problems, as well as propose a domain-
specific language to specify bad smells.

General Research Question: How to propose an approach based on machine learning
to predict design problems?

After presenting the general research question, to explore different facets of this general
research question 04 (four) specific questions were formulated to investigate the problems pre-
sented in Section 1.1.

• RQ1: How to propose a mapping of literature that has a new approach or techniques to
identify design problems?

• RQ2: How to propose an approach that defines an intelligible workflow for predicting
design problems?

• RQ3: How do build a machine learning model to predict design problems?

• RQ4: How to propose a domain-specific language for specifying bad smells?

17

1.3 Objectives

Section 1.1 presented the problem statement and emphasized the research questions, this
section presents the objectives explored throughout this study. In addition, the main objective
of this study is described below:

General Objective: To support the prediction of software design problems, based on
machine learning techniques

Thus, to answer the research questions, it is identified specific objectives (OS), derived from
the main objective, and they are:

• Obj1: Identify in the literature possible techniques for predicting design problems.
This objective aims to propose the use of machine learning techniques to evaluate the data
catalog of the use case proposed in this work, this objective will be detailed in Chapter 3.

• Obj2: Propose an intelligible workflow for predicting design problems. This objec-
tive aims to present an overview of an approach that can present the main steps regarding
the prediction of design problems. This objective will be detailed Chapter 4.

• Obj3: Propose a catalog that defines design problems that can influence code smells.
This objective aims to make information obtained from real systems available for the
prediction of design problems using machine learning techniques. This objective will be
detailed in Chapter 4 and evaluation in Chapter 5.

• Obj4: Propose a domain-specific language to define bad smells according to the
needs of each software project and its possible variations. This objective aims to
propose a DSL to define bad smells already cataloged. This objective will be detailed in
Chapter 4 and evaluation in Chapter 5.

1.4 Methodology

This section details the study methodology adopted to achieve the objectives described in
Section 1.3. To explore the established objectives, the following research methods were defined:

The first phase of this study carried out a literature review on understanding design problems
and code smells, techniques currently used to detect these problems based on work carried
out between 2005 and 2020, using a systematic mapping review to carry out the first research
question. This initial survey provided an overview of what was done, gathered information, and
also introduced new research opportunities. In addition, this step was essential to get to know
the area better.

The second phase, the creation of a predictive model that can be used to support the con-
struction of the software project and identify possible code smells with the support of reverse

18

engineering and identification of possible design problems. Early identification using machine
learning capabilities provides an enriched dataset that allows you to research the context behind
design changes and potential impacts during the analysis process, with aspects of software pro-
cesses. One of the main motivations for this early detection of impact changes in the project,
thus being able to predict possible bad smells in the software project. After a thorough analysis,
this step addressed the second and third research questions.

The third and final phase, a DSL was implemented to define bad smells. SmellDSL is a
domain-specific language to assist developers in specifying bad smells. SmellDSL benefits de-
velopers by introducing notations to define bad smells and rules to identify them. The support
tool, the SmellDSL tool, was implemented as an Eclipse Platform plugin. An exploratory em-
pirical study was carried out with 12 participants, who used the SmellDSL tool to specify 8 bad
smells, generating 96 evaluation scenarios, this step answered the fourth research question.

1.5 Outline

This work is organized into six chapters, as follows. After this first introductory chapter
is Chapter 2, which concepts are the basic concepts for understanding the research; Chap-
ter 3 presents a comparative analysis of the state of the art in smell detection and prediction;
Chapter 4 discusses the implementation of the SmellGuru approach; Chapter 5 addresses the
evaluation of the proposed approach and, finally, Chapter 6 presents a conclusion of this work,
as well as contributions, suggestions and suggestions for future work of this research.

19

2 BACKGROUND

This chapter presents the main concepts of the concepts used in this work. A theoretical
foundation of this research is organized into three sections. Section 2.1 defines the concepts
of Software design. Section 2.2 discusses the main concepts of design problems. Section 2.3
presents the prediction of design problems and its main problems.

2.1 Software design

Software design is considered the most challenging task in software development. For ex-
ample, it provides a bridge between satisfactions of system’s critical requirements to imple-
mentation of software (BASS; CLEMENTS; KAZMAN, 2003). Over many years, based on
their experience, software developers have encapsulated and suggested the proven solutions to
satisfy the recurring design problems (HUSSAIN; KEUNG; KHAN, 2017).

The core of every software system is its architecture. Designing software architecture is
a demanding task requiring much expertise and knowledge of different design alternatives, as
well as the ability to grasp high level requirements and piece them together to make detailed ar-
chitectural decisions. In short, designing software architecture takes verbally formed functional
and quality requirements and turns them into some kind of formal model that is used as a base
for code (RäIHä, 2010).

2.2 Design problems

A number of systematic literature reviews (SLRs) have been conducted in the area of bad
smells (SOUSA; BIGONHA; FERREIRA, 2018; CARAM et al., 2019; MUMTAZ; SINGH;
BLINCOE, 2021; ALJEDAANI et al., 2021). The bad smell detection process has motivated
many researchers to propose different methods to deal with the occurrence of code smells in
systems. Nowadays, machine learning techniques are utilized to address code smell issues with
promising results. A machine learning classifiers needs first to be trained using a set of code
smell examples to generate a model. The generated models are then used to identify or detect
code smells in unseen or new instances (AL-SHAABY; ALJAMAAN; ALSHAYEB, 2020).

Beck and Fowler describe twenty-two bad smells and associate them with refactoring strate-
gies to improve the design. Consequently, code smell analysis opens up the possibility for inte-
grating both assessment and improvement in the software maintenance process. Nevertheless, to
achieve accurate maintainability evaluations based on code smells, we need to better understand
the “scope” of these indicators, i.e. know their capacity and limitations to reflect software as-
pects considered important for maintainability. In that way, complementary means can be used
to address the factors that are not reflected by code smells. Overall, this will help to achieve
more comprehensive and accurate evaluations of maintainability of software (YAMASHITA;

20

MOONEN, 2012a).

Different sets of design problems are detected with different scopes at the code level. The
conceptual model part, describing the enumerated types, shows the scopes we considered (sys-
tem, subsystem, package, class, method, operation). Problems are latent in code; detection
usually occurs very late, and then, solutions are very complex. As a consequence, the software
quality is negatively affected and technical debt increases, so redoing the software becomes the
most realistic option. We believe, in a comparative perspective, that while refactoring has been
extensively adopted by the software industry (ALKHARABSHEH et al., 2019).

2.3 Prediction of design problems

Machine learning techniques are applied and widely used in various contexts and fields,
we can predict, sort, filter and group data (KAUR et al., 2021b; CHOUDRIE et al., 2021;
MORENO-INDIAS et al., 2021; HAJI; AMEEN, 2021).

Currently, we live in a time where we are surrounded by a large volume of generated data
for the advancement of collaborative development in software projects. The data produced by
social platforms for collaborative development, have data with significant values that can help
companies act preventively in relation to design problems and code smell, foreseeing certain
situations. In this way, predictive analytics can be used, to extract information from a software
project dataset in order to determine patterns and future results of the project.

The most popular learning approach in machine learning is supervised learning, in which
the output is graded based on the input using a qualified data set and a learning algorithm. Clas-
sification and regression learning are two types of supervised learning. While in Unsupervised
Learning, there are no output data for such input variables. Most data is unmarked, in which
the machine attempts to detect the correlations between this data collection. It classifies them
as clusters of various classes (STOIAN, 2020).

Predictive analytics can be understood as a process that allows you to discover the relation-
ship between the examples of a dataset, described by a series of features (descriptive attributes),
and the labels associated with them (class attributes). The clearest way to understand the pre-
diction method is starting from two situations: if we are wanting to carry out a characterized
prediction as a regression, from numerical data, or if we are wanting to perform a prediction of
the type of classification, which starts from categorical data.

Predictive modeling is performed through a series of analytical and statistics, used to de-
velop models that can predict future events from daily behaviors, including series analysis tem-
poral or regression models. There are different forms of predictive models that vary according
to the event or behavior being predicted. Almost all predictive models produce a score. a higher
score indicates that a given event or behavior is very likely to occur. In order to bring assertive
information, this approach uses large repository mining to support prediction of design prob-
lems and code smells. These statistical tools serve to build a classification model and regression

21

model based on information from a large mass of historical data, enabling the view of stronger
scores for each modeling performed, in order to identify a model with predictive values.

The prediction goal is to predict which components on the next version of the software can
have design problem. Given a particular software component, the classification problem of
defect prediction is to determine what is the state of the said component (JIARPAKDEE et al.,
2020; LUJAN et al., 2020; ZHANG et al., 2021; KOKOL; KOKOL; ZAGORANSKI, 2021).

The prediction of design problems is an attempt to anticipate design problems based on
metrics using specific techniques. Some techniques analyze software project histories, trying
guessing the behavior of the software in the future with respect to its coding. Predicting the
location will increase the chances of identifying possible anomalies in the source code, in ad-
dition to assisting in testing activities, which aim to identify possible problems with the quality
of the software. There are several benefits of prediction, such as support and planning for soft-
ware testing, identification of code snippets where improvements are needed, reduction of code
defects and mainly planning of future efforts within the software project (THOTA et al., 2020;
KANG; RYU; BAIK, 2021; GIRAY, 2021).

The problems reported by (FENTON; NEIL, 1999), still persist to the present day. Even if
we knew exactly the number of residual defects in our system we have to be extremely wary
about making definitive statements about how the system will operate in practice. It is thus
difficult to predict which defects are likely to lead to failures.

In more recent work, an attempt to improve defect prediction by taking smell information
into account was presented by (PALOMBA et al., 2017). The authors found that prediction
models that used smell information as an additional predictor variable had increased accuracy
compared to other baseline models. A similar approach was proposed in (LIU et al., 2018)
to predict change-prone files, where different smell-based metrics for effort-aware structural
change-proneness prediction were examined.

22

23

3 RELATED WORK

In this chapter, a comparative analysis of the related works used in this research is carried
out. This analysis aims to identify common criteria among related works raised from a study
on the state of the art in the theme of predicting source code design problems. Therefore, this
chapter is organized as follows: in the section 3.1 an analysis of the state of the art in the selected
context of this work is presented; In this Section 3.2 describes related works identified in digital
repositories, such as Google Scholar, Scopus (Elsevier) and arXiv, by applying the search string
“DSL AND BAD SMELLS”.

3.1 Mapping of Literature

In the scope of this work, a systematic mapping study was applied, a methodology proposed
through the evidence-based paradigm that guides the analysis and development of a research
topic (KITCHENHAM; BUDGEN; BRERETON, 2011), aiming to present an overview of a
specific research area, identifying the type of research, its results and the number of publications
available (GONÇALES et al., 2019).

Current studies pay close attention to empirical studies’ elaboration to produce evidence-
based knowledge and use purely statistical methods to predict the quality of the source code.
However, little has been done to create a systematic map of studies published in recent decades.
There are studies in the literature that also point to problems that impact the final quality of the
software, (ALENEZI et al., 2016), (BOEHM; ROSENBERG; SIEGEL, 2019), (CHEN et al.,
2018), (IBARRA; MUÑOZ, 2018), (MARTÍNEZ-FERNÁNDEZ et al., 2019), (WONG; YU;
TOO, 2018), these studies mainly deal with the final quality of the software. The team in-
volved in the software design must have version control of the artifacts and the software itself,
a prerequisite for its modeling and construction to identify possible failures that may occur.

Besides, research is being developed in the area using software analytics (ABBES et al.,
2011) and (BOUSSAA et al., 2013), tooling supports, and good development practices with im-
proved source code quality. Barbosa et al. (BARBOSA et al., 2020) report that software design
quality degradation can be avoided, reduced, or accelerated depending on the developers’ com-
munication dynamics and on specific roles performed within the software project. Understand-
ing the role of communication dynamics and the content involved in the discussion is important
to avoid software design anomalies. Certain social metrics can also be indicators of design de-
cay when analyzing the two aspects together. Thus, it is important to define new approaches
to spot them whenever possible. A number of systematic literature reviews (SLRs) have been
conducted in the area of bad smells (PAULO SOBRINHO; DE LUCIA; ALMEIDA MAIA,
2018; FERNANDES et al., 2010, 2016; RASOOL; ARSHAD, 2015; LACERDA et al., 2020;
SANTOS et al., 2018; SABIR et al., 2019).

Unfortunately, the authors focus on two categories of symptoms: low level and high level

24

structural bad smells. These symptoms occur in large and complex classes possibly due to the
accumulation of responsibilities. These symptoms of such categories can be detected automat-
ically using code analysis tools. Since the code review also aims to improve the quality design
It is possible to observe many social aspects around a discussion such as: different roles of par-
ticipants (central development of the organization and employees and users); temporal aspects
(the time interval of the pull request); and the size and content of comments (snippets being
used). It is suggested that even in situations where the number of comments is low but the num-
ber of words per comment is high there is a large volume of information that can be related to
complexity of the change in the software. In general the content of the discussion can indicate
the increase (number of words under discussion) and decrease (number of words per comment
under discussion)possible decadence of software design.

It is appointed in (Uchôa et al., 2020) that existing studies tend to analyze the degradation
of the software design and considering only unique events like introducing a single design
problem or simply analyzing the degradation frequent. However understanding how design
degradation evolves over time between reviews and in reviews of major importance. The impact
of modern code review on the evolution of project degradation is analyzed. Since the code
review also aims to improve the quality design and evaluations can be expected to gradually
reduce over time various symptoms of software degradation. To this end, they were investigated
retrospectively 14.971 code reviews of seven software systems belonging to two large open
source communities.

To overcome these limitations (AZEEM et al., 2019) the adoption of a broader set of metrics
that explore different types of information as textual and historical and dynamic and separation
of interests aspects can be beneficial in devising more effective solutions that are also closer
to the way developers perceive and identify code problems .The need for targeted methods so
that the developer be guided to make predictions about code issues that are relevant. The lack
of research is highlighted as the approaches based on machine learning that can be adapted for
prioritization purposes and notes on design problems. So a closer look at how machine learning
techniques is discussed and your settings are necessary to correctly interpret your results. There
is still a lack of understanding of the role of cluster technology in predicting code anomalies.

Providing an overview and discussing the use of machine learning with approaches in the
field of bad smells work (AZEEM et al., 2019) presents a Systematic Literature Review (SLR)
on Machine Learning Techniques for Smell Detection Code. It is considered articles published
between 2000 and 2017. Starting from an initial set of 2.456 articles only 15 of them actu-
ally took machine learning approaches. These studies address four different perspectives: (i)
code smells considered, (ii) configuring machine learning approaches, (iii) design of the eval-
uation strategies, and (iv) a meta-analysis of the performance achieved by the models hitherto
proposed.

The analyzes carried out show that God Class and Long Method and Functional Decom-
position and Spaghetti Code have been widely considered in the literature. Decision trees and

25

support vector machines are more machine learning algorithms commonly used to code smell
detection. Models based on a large set variables had a good performance. JRip and Random
Forest are the classifiers more effective in terms of performance. The analyzes also reveal the
existence of several open questions and challenges that the research community should focus on
the future. Providing an overview and discussing the use of machine learning with approaches
in the field of design problems.

3.1.1 Planning

Figure 1 introduces the planning followed to run our study. This protocol addresses the steps
and guidelines for conducting systematic mapping studies in software engineering (KEELE
et al., 2007; KITCHENHAM; BUDGEN; BRERETON, 2011). Moreover, the defined protocol
was inspired by previously published studies (GONÇALES et al., 2015; MENZEN; FARIAS;
BISCHOFF, 2021; GONÇALES; FARIAS; SILVA, 2021).

3.1.2 Objective and research questions

This work aims to provide an overview of the current literature by filtering (Section 3.1.7)
and classifying the articles currently available (Section 3.1.8), identifying potential gaps, chal-
lenges, opportunities, and promising directions for further research (Section 3.1.15). To address
this objective, six research questions were formulated and motivated (Table 1). Answering these
questions, this study seeks to investigate six research questions, including the types of design
problems most commonly investigated, the prediction aspects considered to predict design prob-
lems, the prediction techniques used to anticipate the future occurrence of design problems, the
main contribution reported in each selected study, the research methods applied to run the re-
search and the research venue chosen to publish the articles.

Table 1: Research questions that were investigated in this article

Research Questions Motivation Variable

RQ1: What are the design problems Reveal the most common types of design Types of design
explored by prediction techniques? problems that have been most explored. problems
RQ2: What aspects are considered for Understand the different aspects considered Prediction aspect
predicting design problems? for predicting software design problems.
RQ3: Which techniques have been used Reveal the most commonly used Prediction technique
to predict design problems? comparison techniques.
RQ4: What is the main contribution of Identify the main contributions of Main contribution
the primary study? the current literature.
RQ5: What are the empirical methods Identify the research methods used to
used to evaluate the prediction of evaluate the prediction Research method
design problems?
RQ6: Where have the studies been Reveal the target venues used to report Research venue
published?

the results.

26

Figure 1: The systematic mapping process used in our study (adapted from (PETERSEN et al.,
2008)).

3.1.3 Search strategy

After defining the research questions, the next step is to determine the set of main terms in
the research questions to search for potentially relevant articles. The key terms were defined
base on well-known empirical guidelines (WOHLIN et al., 2012; KITCHENHAM, 2012; PE-
TERSEN; VAKKALANKA; KUZNIARZ, 2015; AL-QUDAH; MERIDJI; AL-SARAYREH,
2015). Table 2 shows the main terms and their alternative ones. The selection of these terms
considered their relevance to the research field.

Table 2: A description of the major terms and their alternative terms.

Main Term Alternative Term

Design problem bad smell, code smell, code anomaly
Predict forecast, foresee, anticipate
Maintenance Evolution, Development, Review, Refactoring

3.1.4 Elaboration of the Search String

Steps to define search strings. The main steps followed to define the search string were: (1)
Identify candidate keywords, reading studies (e.g., (SHARMA; SPINELLIS, 2018; PALOMBA
et al., 2017; OIZUMI et al., 2016; FOWLER et al., 1999; SURYANARAYANA; SAMARTHYAM;

27

SHARMA, 2014)) chosen by relevance and convenience to pinpoint the main terms; (2) Iden-
tify closely related words and alternative terms or synonyms related to the candidate keywords;
(3) Check through an initial search if the terms are in articles widely known in the field an
interactive and incremental process run by the authors; and (4) Join the alternative terms us-
ing logical operator “OR”, and the the main terms using logical operators “AND”. Previous
works (WOHLIN et al., 2012; PETERSEN; VAKKALANKA; KUZNIARZ, 2015) were also
considered to formulate the search string. The combinations that produced the most significant
results are shown as follows:
(design problem OR bad smell OR code smell OR code anomaly) AND (prediction OR forecast

OR foresee OR anticipate) AND (maintenance OR evolution OR development OR review OR
refactoring)

Electronic databases. After determining our search string, the next step was to identify
the electronic databases and retrieve potentially relevant studies. Table 3 details the electronic
databases used to search for studies for the preparation of systematic mapping. These electronic
databases were selected for three reasons. First, these databases have a large and representative
number of articles published related to the research topic explored in our mapping. Second, they
have been used extensively in systematic mapping studies, pointing out their usefulness and ef-
fectiveness. Third, previous studies (EL KOUTBI; IDRI; ABRAN, 2016), (KITCHENHAM,
2012), (KITCHENHAM; BUDGEN; BRERETON, 2011), (PETERSEN; VAKKALANKA; KUZ-
NIARZ, 2015), (KUUTILA et al., 2020), have demonstrated the effectiveness of such electronic
databases used to perform literature reviews.

Table 3: List of the used search engine.

Source Electronic Address

ACM DL dl.acm.org
IEEE ieeexplore.ieee.org
Science Direct www.sciencedirect.com
Scopus www.scopus.com
Elsevier www.elsevier.com
Google Scholar scholar.google.com

3.1.5 Exclusion and inclusion criteria

These criteria prescribe rules to make the process filtering as objective and auditable as pos-
sible, avoiding bias generally found in manual tasks performed by humans. For this systematic
mapping, the inclusion criteria were applied directly to the electronic databases. For filtering
studies, the inclusion (IC) and exclusion (EC) criteria are defined as obtaining significant re-
sults to filter studies that are not relevant to obtain answers to research questions. The inclusion
criteria (IC) considered were:

• IC1: Published articles, journals, in an event or periodical that deals with the evaluation

28

of prediction techniques, or source code design problems, whether general-purpose or
not;

• IC2: Studies published between January 2005 and March 2021;

• IC3: Studies published in Portuguese or English;

• IC4: Studies that contain key terms: Prediction, Bad Smell, Software, or Design.

The exclusion criteria (EC) considered were:

• EC1: The title, summary or even its content without relation to the search string;

• EC2: Short studies (up to 4 pages) written in another language, other than Portuguese or English;

• EC3: Duplicate studies;

• EC4: Abstract did not address any aspect of the research questions;

• EC5: Older versions of published studies prior to 2005;

• EC6: Studies that are narrowly related to Software Engineering, Software Development and/or

contrary to research questions;

• EC7: The full text did not address issues considering the prediction of design models;

3.1.6 Data extraction

The data extraction procedures consist of a careful reading of each selected work and storing
the extracted data in an on-line Google Spreadsheet. This spreadsheet served as a basis for the
collection and synchronization of data extraction actions by the authors. Each primary study
was carefully read and its data extracted to answer the research questions formulated. The
extraction process was iterative and incremental, aiming that the authors could collect and audit
the data. This made it possible to align the way data was collected and to detect any incorrect
collection procedures.

In particular, the articles were classified according to the type of study performed (PE-
TERSEN; VAKKALANKA; KUZNIARZ, 2015): (1) Evaluation study: a specific problem is
defined, proposing a solution and conducting an empirical analysis, to point out the advantages
and disadvantages; (2) Philosophical studies: a taxonomy or conceptual framework is proposed
as a way to outline a research area; (3) Experience article: An experience report on the theme
of prediction of design problems. Typically, these studies explain what and how something
was done in practice; (4) Opinion article: Someone’s personal opinion about predicting design
problems. The report does not have a clear methodology, nor related work, focusing on the
opinion itself; (5) Solution proposal: A proposed solution for a given problem is presented.
The evaluation sticks to the execution of examples or the elaboration of prototypes, rarely to the

29

execution of robust empirical studies.; and (6) Validation search: Studies that typically perform
experimental studies to evaluate solutions, approaches, techniques or processes that have not
yet been used in real-world settings.

3.1.7 Study Filtering

The filtering process was made up of five steps performed sequentially. The focus was on
selecting a sample of representative studies from a sample of potentially relevant ones. Fig-
ure 2 illustrates the results collected from the execution of each step. Each step is described as
follows:

Step 1: Initial

Search

Step 2: Impurity

Removal

(CE1, CE2, CE3)

Step 3: Filter

by Similarity

(EC5 & EC6)

Step 4: Filter

by Abstract

(EC4 & EC7) Combination

Step 5: Addition

Snowballing
Representative

Work

Selection

IEEE

Explore

Scopus

ACM Digital

Library

Science

Direct

Amount

50.00%

filtered

11.75%

filtered
13.33%

filtered

22.45%

filtered

61.36%

filtered

21.92%

filtered

14.72%

filtered

57.89%

filtered

14.43%

filtered

25.53%

filtered

15.38%

filtered

10.96%

filtered

20.13% filtered 38.33% filtered 43.47% filtered

105 14 7

196 44 27

129 19 11

98 26 4

4

17

6

1
30 35 35

43.47%

filtered

16.66%

Addition Snowballing

894 180 69 30

Amount

96.08%

filtered

Elsevier

Google

Scholar

40.00%

filtered

25.92%

filtered

15.10%

filtered

135 54 14 2
9.95%

filtered

20.08%

filtered

25.84%

filtered

231 23 6 0

Figure 2: The selected studies throughout the filtering process.

• Step 1: Initial search. It gathers the initial results obtained after applying the search
string in the electronic databases (Table 3). In total, 894 candidate studies were recovered.

• Step 2: Exclusion criteria. Three exclusion criteria (EC1, EC2, and EC3) were applied
to remove impurities. Some studies were withdrawn due to the absence of any seman-
tic relationship to its title, abstract, or even content, considering the theme investigated
in this research (that is, out of scope). In addition, studies that were not written in En-
glish or Portuguese were also discarded. In total, 180 studies (20.13%) continued in the

30

next stage, while 714 works were discarded. Calls for conference articles, special issues
of journals, patent specifications, research reports, and no peer-reviewed material were
examples of discarded materials.

• Step 3: Filter by similarity. This step also discarded the studies that were selected by
the search string, however, their content was not closely related to the research questions,
or they had no close relationship with the study area, e.g., software development and
prediction of design problems. The EC5 and EC6 were applied. For that, 38.33% (69 out
of 180) of the studies were filtered.

• Step 4: Filter by abstract. Exclusion criteria (EC4 and EC7) were applied to remove
the studies considering their abstract, and after their full text. In total, 39 studies were
removed, leaving 30 studies (43.47%) for the next step.

• Step 5: Addition by snowballing. Some studies may not have been located, although the
search engines used are widely qualified. To mitigate this threat, studies have been added
using the snowballing method (both backward and forward) (WOHLIN, 2014; JALALI;
WOHLIN, 2012). After selecting the studies in step 04, a manual analysis of the ref-
erences and citations of the hitherto filtered studies was performed. Five studies were
incorporated.

Finally, 35 studies were filtered as the most representative, hereinafter called primary studies

(Table 4).

3.1.8 Results

This section presents the results obtained after classifying the primary studies (Table 4) to
answer the formulated research questions (Table 1).

3.1.9 RQ1: What are the design problems explored by prediction techniques?

Table 5 presents the design problems investigated by the primary studies. The main feature
is that the majority of the primary studies explored Bloaters (62.86%, 22/35), Architectural
Problems (54.29%, 19/35), and Couplers (42.86%, 15/35). Note that the primary studies usually
explored more than one design problem. In total, the problems were explored 79 times.

There are two interesting findings when comparing this result with studies already pub-
lished. First, there may be a relationship between the most frequently explored design problems
with the diffuseness of design smells. Previous empirical studies (PALOMBA et al., 2018;
SJØBERG et al., 2012) revealed a relationship between diffusion of bad smells and the size and
complexity of the source code. Palomba et al. (PALOMBA et al., 2018) point out that the smelly

31

Table 4: List of the selected studies.

ID Title Year #Citations #References

A1 Identifying Architectural Problems through Prioritization 2016 17 25
of Code Smells (VIDAL et al., 2016a)

A2 Are SonarQube Rules Inducing Bugs? (LENARDUZZI et al., 2020) 2020 02 32
A3 Do Code Smells Impact the Effort of Different Maintenance 2016 28 40

Programming Activities? (SOH et al., 2016)
A4 Code smells detection 2.0: Crowdsmelling and visualization (REIS; ABREU; CARNEIRO, 2017) 2017 3 50
A5 Code-Smell Detection as a Bilevel Problem (SAHIN et al., 2014) 2014 56 73
A6 LDFR: Learning deep feature representation for software 2019 0 118

defect prediction (XU et al., 2019)
A7 Static Code Analysis of IEC 61131-3 Programs: Comprehensive 2017 20 25

Tool Support and Experiences from
Large-Scale Industrial Application (PRÄHOFER et al., 2016)

A8 BDTEX: A GQM-based Bayesian approach for the detection 2011 106 33
of antipatterns (KHOMH et al., 2011)

A9 Schedule of Bad Smell Detection and Resolution: A New Way 2012 106 54
to Save Effort (LIU et al., 2011)

A10 Improving Design Smell Detection for Adoption in Industry (ALKHARABSHEH et al., 2018) 2018 02 28
A11 Detecting Code Smells using Deep Learning (DAS; YADAV; DHAL, 2019) 2019 0 27
A12 Deviance from perfection is a better criterion than closeness 2010 73 28

to evil when identifying risky code (KESSENTINI; VAUCHER; SAHRAOUI, 2010)
A13 Evolution of legacy system comprehensibility through 2011 13 30

automated refactoring (GRIFFITH; WAHL; IZURIETA, 2011)
A14 Automatically classifying source code using tree-based 2016 8 42

approaches (PHAN et al., 2018)
A15 Detecting Android Smells Using Multi-Objective Genetic 2017 13 36

Programming (KESSENTINI; OUNI, 2017)
A16 A hierarchical method for detecting codeclone (DEVI; PUNITHAVALLI, 2011) 2011 1 20
A17 Are automatically-detected code anomalies relevant to 2012 93 49

architectural modularity?: an exploratory analysis
of evolving systems (MACIA et al., 2012b)

A18 On the Relation between External Software Quality and 2008 14 19
Static Code Analysis (PLOSCH et al., 2008)

A19 Do code smells reflect important maintainability aspects? (YAMASHITA; MOONEN, 2012a) 2012 165 40
A20 Adaptive Detection of Design Flaws (KREIMER, 2005) 2005 50 47
A21 Detecting code smells using machine learning techniques: 2018 43 90

Are we there yet? (DI NUCCI et al., 2018)
A22 An empirical study to improve software security through the application of code 2018 12 86

refactoring (MUMTAZ et al., 2018)
A23 Automatically identifying code features for software defect prediction: Using AST 2019 8 81

N-grams (SHIPPEY; BOWES; HALL, 2019)
A24 Code smell severity classification using machine learning 2017 34 42

techniques (FONTANA; ZANONI, 2017)
A25 Change Prediction through Coding Rules Violations (TOLLIN et al., 2017) 2017 6 12
A26 Visual Indicator Component Software to Show Component 2010 2 11

Design Quality and Characteristic (IRWANTO, 2010)
A27 Iterative software fault prediction with a hybrid approach (ERTURK; SEZER, 2016) 2016 28 64
A28 Using (Bio)Metrics to Predict Code Quality Online (MULLER; FRITZ, 2016) 2016 32 77
A29 Less is more: Minimizing code reorganization using XTREE (KRISHNA; MENZIES; LAYMAN, 2017) 2017 15 68
A30 Bad-smell prediction from software design model using 2011 40 14

machine learning techniques (MANEERAT; MUENCHAISRI, 2011)
A31 On the criteria for prioritizing code anomalies to identify 2016 8 9

architectural problems (VIDAL et al., 2016b)
A32 Software Defect Prediction via Convolutional 2017 84 50

Neural Network (LI et al., 2017)
A33 A Hybrid Approach To Detect Code Smells using 2018 5 37

Deep Learning (HADJ-KACEM; BOUASSIDA, 2018)
A34 Predicting Design Impactful Changes in Modern 2021 0 76

Code Review: A Large-Scale Empirical Study (UCHÔA et al., 2021)
A35 JSpIRIT: A Flexible Tool for the Analysis of Code (VIDAL et al., 2015) 2015 47 20

diffuseness is associated with the size and complexity of the source code. This smelly diffuse-
ness typically addresses bloater smells, including Long Method, Large Class, Primitive Obses-
sion, Long Parameter List, among others. Typically, these smells appear gradually throughout
the source code, as the source code undergoes frequent evolution or maintenance tasks, remain-
ing in the absence of a refactoring effort to eradicate them. Sjoberg et al. (SJØBERG et al.,
2012) reveal that the size of classes often impacts maintainability more than the presence of bad
smells. The result highlights a higher frequency of studies concerned with predicting the ap-
pearance of Bloaters. This concern makes sense when empirical findings have already revealed
their harmful effect on maintainability.

The second finding would be that unlike exploring specific design problems, the primary
studies explored more than one. On average, the primary studies investigated at least two
design problems. Previous empirical findings already point out that the presence of multi-

32

ple code smells in classes tends to increase the change- and fault-proneness (KHOMH et al.,
2012; PALOMBA et al., 2018), and design problems can arise from this clustering of code
smells (OIZUMI et al., 2016). In this sense, exploring more than one design problem makes
sense and would be supported by the findings already reported in the literature.

Table 5: Classification of the primary studies based on their design problems (RQ1).

Classification Amount Percentage List of primary studies

Bloaters 22/35 62.86% [A4], [A5], [A8], [A9], [A11-15], [A17-18],
[A20-22], [A24-25], [A28-30], [A32-33], [A35]

Architectural 19/35 54.29% [A1], [A3-7], [A9], [A11-20], [A31], [A33],
Problems [A20-22], [A24-25], [A28-30], [A32-33], [A35]
Couplers 15/35 42.86% [A3], [A5-6], [A9], [A15], [A17-18], [A20-22],

[A29-30], [A32-33], [A34]
Dispensables 12/35 34.29% [A5], [A16], [A19], [A21-23], [A29-30],

[A32-33], [A34-35]
Object-Orientation 6/35 17.14% [A1], [A23], [A26-27], [A30], [A35]
Abusers
Change Preventers 4/35 11.43% [A5], [A19], [A22], [A29]
Technical Debt 1/35 2.86% [A2]

3.1.10 RQ2: What aspects are considered for predicting design problems?

Table 6 presents the commonly used aspects for predicting design problems in the primary
studies. Understanding the considered aspects of the source code is essential to pinpoint which
features are relevant, for example, to anticipate design problems.

The collected results indicate to a tendency to use structural property that can be calcu-
lated by metrics, including Code complexity (77.14%, 27/35), Size (77.14%, 27/35), Inheri-
tance (60%, 21/35), Coupling (51.43%, 18/35), Cohesion (40%, 14/35), and Agglomerations
(8.57%, 3/35) in a smaller amount. These results corroborate with previous studies, reveal-
ing that such structural properties can be predictors of design problems and bugs (PALOMBA
et al., 2017; MOHA et al., 2009; ZIMMERMANN; PREMRAJ; ZELLER, 2007; NAGAPPAN;
BALL; ZELLER, 2006). Palomba et al. (PALOMBA et al., 2017) use structural properties
of source code to propose a smell-aware bug prediction model, including code complexity,
coupling, cohesion, lines of code, coupling dispersion, among others. Zimmerman et al. (ZIM-
MERMANN; PREMRAJ; ZELLER, 2007) indicate a positive correlation between code com-
plexity and bugs. Nagappan et al. (NAGAPPAN; BALL; ZELLER, 2006) also examined the
use of metrics to predict buggy components across 5 Microsoft projects.

Moreover, the primary studies explored source code design problems computed from pure
object-oriented code, e.g., pure Java code. However, real-world applications rarely have pure
object-oriented code. Typically, software systems are built from the composition of pure object-
oriented code together with numerous annotations of frameworks and architectural styles, such
as @RestController and @PostMapping from Spring Platform — i.e., annotations for REST
web controller and mapping HTTP requests onto specific handler methods, respectively. Thus,
computing and predicting design problems from semantically enriched code would require un-

33

derstanding the meaning of annotations. For example, predicting design problems in source
code with Spring Boot platform annotations would require dealing with semantic and struc-
tural aspects — a challenging and ever-present problem, since semantic information related to
annotations is rarely formally specified.

Table 6: Classification of the primary studies based on their prediction aspects (RQ2).

Classification Amount Percentage List of primary studies

Code complexity 27/35 77.14% [A2], [A5], [A7-9], [A11-15], [A17],
[A19-30], [A32-33], [A34-35]

Size 27/35 77.14% [A2], [A5], [A7-9], [A12-25], [A27-30],
[A32-33], [A34-35]

Inheritance 21/35 60% [A5], [A7-9], [A11-13], [A15], [A17-18]
[A21-24], [A26-27], [A29-30], [A32-33], [A35]

Coupling 18/35 51.43% [A1], [A3], [A5], [A15-18], [A20-24]
[A26-27], [A29-30], [A32], [A35]

Cohesion 14/35 40% [A11-13], [A15], [A18-22], [A24]
[A27], [A29], [A32], [A35]

Agglomerations 3/35 8.57% [A1], [A31]
Others 11/35 31.43% [A4-8], [A10], [A12-14], [A28], [A34]

3.1.11 RQ3: Which techniques have been used to predict design problems?

Table 7 introduces the collected data related to the techniques used to predict bad smells
problems investigated by the selected studies. The main feature is that most primary studies use
Machine Learning techniques (54.29%, 19/35), Decision Tree (20%, 7/35) and Random Forest
(20%, 7/35), followed by Rules/Heuristics (17.14%, 6/35) and Prioritization Criteria (17.14%,
6/35) and Linear Regression (11.43%, 4/35) and Logistic Regression (8.57%, 3/35) and Bagging
(5.71%, 2/35) and Others (20%, 7/35). Note that primary studies generally explored Machine
Learning and used algorithms for training problem prediction models. It is extremely important
to highlight and compare this result with the published study that notes that further studies are
needed to consider the use of cluster learning, multiclassing and resource selection technique
for code smells detection (AL-SHAABY; ALJAMAAN; ALSHAYEB, 2020).

In an attempt to anticipate the location of defects in an application through the use of spe-
cific techniques, the primary studies explored more than one bad smells according to the clas-
sification of Table 6, evaluating the results present in Table 7, we can say that apprenticeship
is proposed to improve the performance of software problem classifiers, combining different
classifiers and methods in defect prediction.

The results indicate that the use of Learning Techniques is part of an in-depth analysis
of the performance index of software bug prediction models. Therefore, future efforts will be
dedicated to analyzing the contribution of information related to the detection of bad smell in the
context of models. Prediction of local learning bug. Finally, the future research agenda includes
the definition of new factors that influence the performance of forecasting models (PALOMBA
et al., 2017).

The vast majority of selected primary studies use the practice prioritizing bad smell, that is,

34

Table 7: Classification of the primary studies based on their prediction techniques (RQ3).

Classification Amount Percentage List of primary studies

Machine Learning 19/35 54.29% [A2-4], [A6], [A8], [A11-12], [A14],
[A20-21], [A23-25], [A27-28], [A30],
[A32-33], [A34]

Decision tree 7/35 20% [A2], [A6], [A14], [A23-25], [A34]
Random forest 7/35 20% [A2], [A6], [A21], [A24-25], [A30], [A35]
Rules/Heuristics 6/35 17.14% [A5], [A8], [A11-12], [A14-15]
Prioritization Criteria 6/35 17.14% [A1-2], [A6], [A12], [A24], [A31]
Linear regression 4/35 11.43% [A2], [A24], [A11]
Logistic regression 3/35 8.57% [A2-3], [A24], [A30]
Bagging 2/35 5.71% [A2], [A8]
Others 7/35 20% [A1], [A5-7], [A10], [A34]

prioritizing the groups of anomalies in the code of according to his criticism of the system’s ar-
chitecture, that is, its ability to point out architectural problems. Several automated approaches
are proposed to generate rules that can detect bad smells in static software codes. A rule is
a combination of quality metrics and their threshold values to detect a specific type of Bad
Smells. The use of static code analysis tools coupled with machine learning is used to compare
the power of prediction of failure propensity for software quality violations, applying several
models for comparing the predictive power of bad smells or possible violations software quality
related to the pre-defined metrics in each selected primary study.

3.1.12 RQ4: What would be the contributions?

The collected results indicate a tendency to use static code analysis tools that can be cal-
culated by metrics, use the practice of prioritizing bad smells as described in Table 6, the use
of analysis tools static code combined with machine learning is used to compare the power of
prediction of failures of software quality violations according to the results present in Table 8
where the main contributions of the selected primary studies are classified in Process (34.28%
12/35), Method (31.42% 11/35), Model (28.57% 10/35), Metric (2.85% 1/35) and Tool (2.85%
1/35). We can affirm that the results are directly linked to the results present in the subsection
3.1.13, since a classification of contribution adopted in its great majority by the selected pri-
mary studies are linked to the links that propose a solution to a given problem, whether it is
a new solution or a significant reference from previous studies. Petersen et al. (PETERSEN;
VAKKALANKA; KUZNIARZ, 2015) highlight small examples are typically used to demon-
strate the potential benefits and the applicability of the proposed solution.

3.1.13 RQ5: What research methods were used?

Table 9 shows the relation between the primary studies and six empirical methods (PE-
TERSEN et al., 2008; WIERINGA et al., 2006). Most studies (48.57%, 17/35) focused on
proposing new solutions. This result indicates that the primary studies were chiefly concerned

35

Table 8: Study classification by contributions (RQ4).

Classification Amount Percentage List of primary studies

Process 12/35 34.28% [A9], [A17-18], [A23],
[A25], [A28], [A29], [A31-35]

Method 11/35 31.42% [A4], [A10], [A12], [A15-16],
[A19-20], [A22], [A24], [A27], [A30]

Model 10/35 28.57% [A2-3], [A5-6], [A8], [A11],
[A13], [A14], [A21], [A26]

Metric 1/35 2.85% [A1]
Tool 1/35 2.85% [A7]

with bridging research gaps by proposing techniques to deal with design models. The primary
studies predominantly sought to propose a new solution, instead of significantly extending an
existing technique. The potential benefits and applicability of these solutions have been demon-
strated through small examples or initial empirical studies supported by discussions and im-
plications. Robust and practical studies that brought evidence about the effectiveness of the
solutions have not been identified. Case studies in the industry considering context variables
have not been reported. This may be indicative of an area still maturing and expanding.

Some studies (25%, 9/35) were classified as validation research, which proposed some new
techniques, but have not yet been implemented in practice, being evaluated through empirical
studies in laboratories. Müller and Fritz [A28] show through an empirical study that biometrics
can be used to predict quality concerns of parts of the code while a developer is working on.

The results indicate that little has been done to discuss the problems identified with pre-
diction techniques. Most studies make only notes for identifying anomalies, security, and vul-
nerability issues as examples. Finally, the lack of a massive amount of empirical studies may
indicate that the evaluation of prediction techniques may be based mainly on experts’reflection,
not on empirical evidence.

Table 9: Study classification by research methods (RQ5).

Classification Amount Percentage List of primary studies

Solution Proposal 17/35 48.57% [A4-9], [A12], [A14-16], [A20], [A23],
[A26-27], [A29], [A32], [A35]

Evaluation 9/35 25.71% [A1-3], [A18-19], [A21-22], [A25], [A34]
Validation 9/35 25.71% [A10-11], [A13], [A17], [A24], [A30-31], [A33]

3.1.14 RQ6: Where have the studies been published?

This section investigates when and where primary studies were published to accurately pin-
point trends in publication. Figure 3 presents the primary studies chronologically, organizes
them by type of publication and shows the number of studies published per year.

Number and venue of publications. The blue dashed line in Figure 3 counts the number
of articles published per year. The results indicate that 62.86% (22/35) of the primary studies
were published in conferences, while 34.29% (12/35) in journal, showing a predominance of

36

publications in venues that encourage synchronous discussion by researchers. Based on the
premise that articles published in journals are more robust, this may indicate a new or maturing
area of research. The publications were more concentrated from 2016 to 2019. Such research
on prediction of design problems may have gained momentum for two reasons: (1) the matu-
ration of the research area itself. that brought well-established concepts about catalogs of code
anomalies and refactorings, as well as empirical knowledge about how certain code or social
characteristics impact the incidence of design problems; and (2) machine learning techniques
are being widely explored to solve practical software development problems.

Trends. Although there is not yet a consistent upward trend, the number of published studies
has been growing. After the first publication in 2005, four and seven articles were published
in 2011 and 2017, respectively, representing the tops reached over the years. This growth is
accompanied by strong fluctuations, alternating with periods with a maximum of two published
articles (2005 to 2009 and 2013 to 2015) to nine or more published articles (2010 to 2012 and
2016 to 2019). In addition, 2017 stood out with a greater number of articles produced than other
years. Articles published in premier conferences and journals, such as SANER, ICSE, ASE,
MSR, ICSM, JSS, IST, TOSEM, IEEE TSE, show that robust research has already been carried
out. Although many studies have been published, there are still challenges worth exploring,
which are discussed in the following section.

2005 2008 2010 2011 2012 2014 2016 2017 2018 2019 2020

A20 2 A18 1 A12 1

A26 1

A8 2

A13 3

A16 1

A30 1

A9

A17 1

A19 1

2 A5 2 A1 1

A3 1

A14 2

A27 2

A28 1

A31 1

A4 1

A7 2

A15 1

A24 2

A25 1

A29 2

A32 1

A10 1

A21 1

A22 2

A33 1

A6 2

A11 1

A23 2

A2 1

1 1

2

4
3

1

6

7

4

3

1

2015

A35 1

1

2021

34 1

1

Legend:

Type Amount Percent(%)

1 – Conference 22 62.85%

2 – Journal 12 34.28%

3 – Workshop 01 2.85%

Figure 3: Distribution of the primary studies based the explored research topics over the years.

37

Technical
Debt

12/35
(34.28%)

11/35
(31.42%)

35(100%)
RQ4 - Contribution

PS
0/35
(0%)

35(100%)

Couplers

Dispensables

Change
Preventers

Object-Orientation
Abusers

Bloaters

RQ5- Research Methods

Architectural
Problems

ER PP EPMT MD MH
9/35

(25.71%)
17/35

(48.57%)

SP VR OP
1/35

(2.85%)
1/35

(2.85%)

TL
9/35

(25.71%)
0/35
(0.0%)

0/35
(0.0%)

10/35
(28.57%)

1

1

1

1

2 2

2

3

4

4

4

4

4

5

6

7

8

10

11

Legend:

MT: Metric TL: Tool MD: Model

MH: Method PS: Process ER: Evaluation Research

SP: Solution Proposal VR: Validation Research PP: Philosophical Papers

OP: Opnion Papers EP: Experience Papers

1

1

6

1

6

1

1

2

4

2

2

4

5

9

2

1

6

7

6

7

4

RQ1 - Design Problems

Figure 4: Bubble chart that shows the relationship among three variables.

Table 10: Place of publication of studies (RQ6).

Classification Amount Percentage List of primary studies

Journal 12/35 34.29% [A5-9], [A14], [A15-19], [A20], [A22-24],
[A27], [A29]

Conference 12/35 34.29% [A1-4], [A10-12], [A21], [A25-26], [A28],
[A30-35]

Workshop 12/35 34.29% [A13]

3.1.15 Discussion and future directions

Discussions about the data collected, seeking to explore the main point of RQ5 and RQ6,
that is, reveal where the selected studies are being published over the years through the repre-
sentation of a graph shown in Figure 4. The classification of selected studies was based on the
year of publication, type of publication (workshops, conferences, newspapers, and magazines),
and the number of studies published per year. Figure 3 presents the data obtained based on the
35 selected studies, showing quantitatively the results presented by RQ6.

38

3.1.16 Distribution of primary studies

Figure 4 introduces a bubble chart that organizes primary studies in three dimensions (d1,
d2, d3), where d1 represents the main contributions (RQ4), d2 is the adopted research method
(RQ5), and d3 is the explored design problems (RQ1). Each bubble has values assigned to d1,
d2, and d3. This bubble chart helps grasp relations among the main contributions (RQ4), the
research methods (RQ5) and the design problems (RQ1). That is, it shows how primary studies
have made a triangulation between RQ1, RQ4 and RQ5.

It is observed that prediction techniques for source code design, even though it is a recent
research area, have many studies published since 2014 and continue to grow. This result shows
that this area of research has been very active in recent years. After identifying the type of
publication of these studies, it is revealed that the researchers who contributed most to the
subject made their publications in recent years at conferences, represented by a total of 51.35%
of the selected studies.

The results did not present statistical qualifiers and were not compared with other results
studied since research on this topic has not been developed by other researchers previously.
Some recommendations for future research would be: increase the breadth of analysis of se-
lected studies, refine research on fundamental software quality issues; conduct a systematic
review literature to examine best practices related to source code analysis approaches, technolo-
gies or tools, comparative analysis information; Also, this work may be the first step towards an
ambitious agenda on how to advance the current literature on techniques for predicting source
code design problems.

3.1.17 Future challenges

(1) Good quality management in software projects. It is important to identify the main
software quality guides most used in the current market. The search for quality to meet customer
needs is no longer a differential competitive, but an obligation for any business to survive in
the market. The increase in quality in a company generates positive effects on the company’s
processes, management, customer service, and strategic planning. Therefore, it is imperative to
know which quality tools will provide an effective and clear improvement in software projects.

(2) How to quantify software metrics and their quality. Learning analysis appears as a
possibility to address this challenge, recognize the difficulties in generating quantitative secu-
rity, vulnerability, and design metrics. It will be possible to quantify the impacts on the final
quality of the software. It is not easy to quantify the maintainability of software. This mea-
sure’s primary metric is the time spent on maintenance, considering the time of recognition of
the problem, analysis of the problem, specification of changes, modification, tests, and the total
time. Current studies that explore the granularity related to syntactic, structural, and semantic
similarities are still scarce.

39

(3) How to extract critical features for knowledge discovery. Machine learning is es-
sential for predicting source-code problems. Training machine learning models demand well-
designed datasets. The construction of a dataset is challenging due to the various sources and
lack of structured data. Moreover, source code only may not be sufficient to obtain good re-
sults. Therefore, another challenge is how to consider the developers’ experience in the training
process of the machine learning models. Current literature fails to deal with these challenges,
leading to great researching opportunities.

3.1.18 Threats to validity

The validity of the results achieved in the systematic mapping depends on some factors
present in its structure. The main threats to the validation of this study and the factors used to
mitigate them are presented and analyzed:

Selection and quality of primary studies: To guarantee an impartial and comprehensive
systematic mapping process and the quality of studies considered relevant, research questions,
inclusion criteria, and exclusion criteria were defined by a group of researchers.

The researchers and responsibilities: To review the process of carrying out systematic
mapping, conducted by the master student, and to clarify his doubts, while he performed the
data extraction process. In this way, studies with a broad overview were obtained.

Number of studies selected: To obtain a wide range of results and necessary data, the
search for primary studies was carried out in six repositories of widely known scientific studies
(IEEE Explorer, ACM Digital Library, Scopus, Science Direct, Scopus and Google Scholar).

Possibility of a relevant study to be ignored: Although it is plausible that possible rele-
vant studies were ignored in the survey of primary studies, we opted only to read the abstract,
title, and keywords in the application of the criteria inclusion and exclusion. However, in step
05, manual search procedures were performed using snowballing techniques to find possible
relevant studies in the references of the studies selected in the previous step.

3.2 Analysis of the Literature on Domain-Specific Languages for Specifying Bad Smells

This section presents the analysis of the literature on domain-specific languages for specify-
ing bad smells, described in Section 4.2, SmellDSL, a proposal for a domain-specific language
to specify bad smells is implemented. SmellDSL was defined from design decisions made based
on three assumptions that improve the specification of bad smells. SmellDSL benefits devel-
opers when developing notations bad smells and rules to define them. Support tool, it was a
SmellDSL tool, as a tool an Eclipse Platform plugin.

Related works were identified in digital repositories, such as Google Scholar, Scopus (Else-
vier) and arXiv, by applying the search string "DSL AND BAD SMELLS". In total, 05 (five)
works were selected.

40

3.2.1 Analysis of related works

(BETTINI et al., 2022). This article presents the new version of Edelta. Several im-
provements and new features in the compiler and IDE were implemented, thus providing a
development environment for real-time metamodel evolution. Edelta 2.0 is supported by an
Eclipse-based IDE. Your DSL focuses on a lot of static checks to catch most problems during
program compilation. Your DSL was implemented with Xtext, a popular Eclipse framework for
developing programming languages and DSL. Xtext, in addition to generating the infrastructure
for the compiler, also generates complete Eclipse-based IDE support. This work proposes a
meta model that can still be evolved in a code refactoring context, The SmellDSL is different
because it is a DSL and not a metamodel as proposed, the meta-model does not identify the
possible impacts on the understanding of bad smells, in wrong encoding.

(RAJKOVIC; ENOIU, 2022). This work presents NALABS, a desktop application that
relies on .NET standards and packages. The tool was developed in C# for the Windows oper-
ating system and has three layers: (i) the pre-processing of requirements documents stored as
excel spreadsheets, (ii) the configuration and application of bad smell metrics, and (iii) presents
the results to the user. As it is an experiment still in its initial phase, it is proposed as future
activities to focus on exploring and proposing new specifications of bad smells, combining the
existing specifications into a single quality and complexity index. This work tries to identify
possible problem specifications in natural language but based on metrics that do not make clear
their understanding of the problem specification.

(BARRIGA et al., 2021). In this article, an extension called PARMOREL is presented to
support bad smells detection. The approach is capable of selectively removing smells that im-
pact user-defined quality. For this, PARMOREL is integrated with a tool that allows modelers
to identify smells and refactor them. This extension is based on the integration of tools like
Edelta, allowing a model-based assessment. Currently, PARMOREL is limited to quantitative
user preferences and needs to obtain a set of actions to modify the support model for detecting
smells. This work does not specify the impacts of the proposed refactoring, as well as quan-
titatively limits the user’s actions as it needs to obtain a set of actions to modify the proposed
model, unlike SmellDSL for specifying the bad smells, as well as its variations according to
each software project and user definitions.

(RWEMALIKA et al., 2021). The purpose of this article is to identify smells that occur in
SUIT (System User Interactive Tests). For this, a literature review was carried out and specific
smells of SUIT were identified. This process led to a catalog of 35 SUIT-specific smells. Then,
an empirical analysis was performed to assess the prevalence and refactoring of this smells in
48 industrial test suites and 12 open source projects. It is shown that the same type of smell

tends to appear in industrial and open source projects, but the symptoms are not treated in the
same way. In addition to using metrics to identify smells, it does not make clear the impacts that
it may cause on the project, as well as determining where maintenance should be performed.

41

(WŁODARSKI et al., 2019). This article describes the effort to modernize the system of
a central bank (CBS) of the corporate branch of mBank. In this effort, the decision was made
to first improve the quality of the code base and then start the modernization work. With this
initial quality improvement work and use of bad smells detectors and testing, frameworks are
in continuous daily use. It introduces language-specific bad smells detectors that are now run
on every software release, giving developers an incentive to continually improve source code
quality. This work, by using a catalog of smells between 1999 and 2016, may compromise
the identification of bad smells in your project as well as its classification, as this step must be
adapted based on the team dynamics and the context of each project.

3.2.2 Comparative analysis of the selected related works

This Section compares SmellDSL with selected studies. Based on criteria (C), serving to
identify similarities and differences between the works. The comparative analysis was per-
formed based on criteria, as other works already published (RUBERT; FARIAS, 2022) used
this approach, proving to be effective in generating a comparison between the works. By carry-
ing out the comparative analysis, it was possible to identify similar and different points between
the proposed SmellDSL and the selected related works.

The comparison criteria are presented below:

• DSL specification for bad smells (C01): this criterion seeks to assess whether the work
presents any method of specifying bad smells (text, languages, annotations, etc.).

• Proposes a DSL language (C02): this criterion aims to identify whether the work pro-
poses a language for specifying bad smells.

• Tool Support (C03): the work proposes a tool support for the proposed language.

• Empirical Evaluation (C04): the work carries out an empirical study to evaluate the
benefits of the proposed language together with the tool.

• Support of bad smell (C05): this criterion seeks to identify whether the works are able to
identify the catalogs of the various bad smells present in the literature (FOWLER, 2018;
SURYANARAYANA; SAMARTHYAM; SHARMA, 2014)

• Integration with the Eclipse Platform (C06): This criterion seeks to verify if there is
integration with the Eclipse IDE, widely used by the software industry.

Table 11 presents the comparison of works according to defined criteria. It is emphasized
that SmellsDSL meets all criteria, highlighting its contributions and limitations. Therefore,
this work also identifies as a research opportunity a proposal for a domain-specific language to
specify bad smells, which is explored in the Chapter 1, with the research question (RQ4) How
to propose a language domain specific for specifying bad smells?.

42

Table 11: Comparative analysis of related works

Comparison criteria
Related Work

C01 C02 C03 C04 C5 C6
SmellDSL

(BETTINI et al., 2022) # # #
(RAJKOVIC; ENOIU, 2022) # # G# #

(BARRIGA et al., 2021) G# G# G#
(RWEMALIKA et al., 2021) # # G# #
(WŁODARSKI et al., 2019) # # # G# #
Legend: () Support (G#) Partially Support (#) Not Support

43

4 PROPOSED APPROACH

In this chapter, the proposed SmellGuru approach is presented, which is a machine learning-
based approach to predicting design problems. For this, the approach proposes an intelligible
workflow (Section 4.1). (Section 4.2) presents a domain-specific language for specification of
bad smells. Finally, (Section 4.3) presents details about the implementation aspects of a machine
learning model for identification and classification of design problems already cataloged by the
current literature.

4.1 Overview of the SmellGuru approach

Figure 5 presents an overview of proposed approach through an intelligible workflow. Note
that it is made up of four steps. The initial step starts with data acquisition. In this step, data
can be collected in a traditional way with software metrics or with the use of a DSL, detailed
in the next section, receiving input data models to define bad smells. In step 2, the activity
performed is the identification and analysis of the input data collected to be used in the machine
learning model. Initially, the definition of the analysis characteristics of the source code related
to bad smells is carried out, each type of characteristic is identified as a possible element of the
composition of bad smells already cataloged. Then, the prediction and classification model is
executed, with the aid of a set of chosen ML algorithms, it calculates the degree of similarity(S)
for each input data of the model present in our database for identification, classification and
prediction of possible bad smells. Finally, step four presents a breakdown of the processed data
visually. The main contribution of this work is in the initial step 1 of overview, in which we
identified the need for a DSL to specify the most relevant characteristics in the definition of bad
smells. Each step of the intelligible workflow is described below:

• Step 1: Data collection. This step aims to collect data for the integration of steps 2-
4, of the proposed approach SmellGuru, has as main objective to collect the data that
serve as input parameters for the execution of the classification algorithm of the ML
model. This step consists of three essential processes for data collection: definition of the
target project; identify project metrics and evaluate information related to project metrics
with potential impacts related to design problems. During the execution of this activity
and based on the authors’ statements already reported in (Section 4.2), there is still no
consensus on which metrics to apply to identify design problems and define a bad smell.
To explore objective 4 of this work, a domain-specific language is proposed to define bad
smells according to the needs of each software project and its possible variations.

Define target project. In this activity, we select open source projects available on
GitHub, choose projects that can be evaluated by supporting tools that measure design
quality, and can thus be decomposed for evaluation through reverse engineering. To
choose these open source projects, there are some requirements that must be fulfilled,

44

Figure 5: An overview of the proposed approach.

45

such as: the chosen project must be implemented with development techniques based on
object orientation.

Measure design metrics. In this activity, is need the support of a tool that checks
design rules to collect software design metrics from your source code. With the support
of the Astah UML tool, a reverse engineering tool that produces XMI files from selected
project source code, it is possible to collect software metrics. The aim is to ensure that we
can visualize the software design ideas for the selected project based on the information
obtained through the XMI files which contains information about the project model to be
evaluated. From the data generated by this tool, it is necessary to use SDMetrics to iden-
tify which classes and methods break design rules. The identification of inconsistencies
in the source code is not a simple task, the collected software metrics focus on metrics
that characterize the code (Lines of Code - LOC, Number of Attributes - LOA, Number of
Methods NOM), complexity metrics (decisions and coupling) such as Weighted Method
per Class (WMC), Lack of Cohesion in Methods (LCOM) and finally inheritance metrics
such as Depth of Inheritance Tree (DIT) and Number of Children (NOC). Each release of
the analyzed project has its metrics collected, and the track of variations and design rule
breaks reported are stored for classification of the model. This information is needed as
input parameters of the ML model used by the SmellGuru approach.

• Step 2: Data processing. The second step of the SmellGuru approach, its objective
is to run the ML algorithm using the input parameters provided in the data collection
process. Machine learning algorithms typically accept parameters that can be used to
control certain properties of the training process and the resulting ML model. This activity
is essential for classifying and identifying design problems proposed by the approach.

Running the machine learning model. In this activity, the approach runs the ML
algorithm with the input parameters collected in the previous step. The purpose performs
a classification according to the selected project metrics to identify the project problems
from the code smells. It needs to run a subroutine in its mainstream data processing. The
subroutine is used to transform the data from the algorithm’s input parameters into the
algorithm’s internal data structure. Briefly, the algorithm converts the evaluation resource
files of the project to be evaluated according to each selected property as input parameters,
based on the lines defined in the evaluation file of the selected project.

• Step 3: Classification and prediction

At this moment, the collected raw data has already been converted into indicators of pos-
sible source code anomalies, using machine learning techniques to train, test and validate
the data model. These indicators are sent to a storage engine, giving rise to a supposed
data set for the next step. Briefly, this step aims to use data from previous releases already
analyzed to predict future design problems, through statistics based on the learning of the
proposed model.

46

• Step 4: Visualization and observability

The availability of results is the fourth step of the approach SmellGuru, its objective is
to display the results related to the recommendation of possible design problems based
on code smells. This step can be composed by generating a step defined as Machine
Learning as Service, as can be seen in Figure 5.

Generate design problems recommendation. The design problem recommenda-
tions are reported based on the information provided from the previous step, these data
are made available through SmellGuru dashboards, this step is composed of statistical
data processing for the provision of results. In this step, the last SmellGuru subroutine is
executed, which is responsible for generating the information in the form of indicatives
for the possible design problems that were recommended. In this step, SmellGuru intro-
duces which features are part of each design problem and indicates for each functionality
which classes and methods may possibly have problems at the design stage before they
are committed to the source code. Basically, the result available in a panel, lists the rec-
ommended design problems, the names of the features that are part of that smell, and the
classes and methods that are part of each affected functionality. Through this final result
that the user can initiate an action to avoid potential design problems from the beginning.
Predict relevant design qualities such as failure proneness or maintainability to better fo-
cus your review and testing efforts based on reported data, so you can find failures sooner
and save development costs.

4.1.1 Component-based architecture

Figure 6 presents a component-based architecture to support the implementation of the
SmellGuru approach. Together, the components are responsible for implementing each step
of the proposal process in Figure 5. For a better understanding of the proposed architecture,
each module is described in an abstract point of view, in relation to their behavior rather than
the technology applied as follows:

• Data connector: This component allows for integration between systems and applica-
tion compatibility. Web Services allow for integration between systems and application
compatibility. Thus, new applications can efficiently interact with those that already ex-
ist, and systems developed on different platforms are compatible. So new applications
can efficiently interact with those that already exist on different platforms to make them
compatible, the connector receives data through Web Services that use standard protocols
such as HTTP, XML, and SOAP (Simple Object Access). This communication layer can
analyze data in a high-level format such as JavaScript Object Notation (JSON), or Ex-
tensible Markup Language (XML). A Web Service in JSON format is developed for the
simulation of values. As for the confirmation of the HTTP request data: in the POST,

47

the values sent and a message of sending success are returned (in JSON format); in GET,
values are returned according to the standard established by the protocol to be used by
the approach;

• Data adapter: Provides diagnostic format interaction and evaluation between the Data
Connector and Data Processor components to reduce architectural friction in the case of
the Data Connector change. Python supports handling JSON native. An alternative is
to use one of your libraries that parses a string in JSON, or optionally makes an HTTP
call using a component that evaluates a JSON string returned by this call according to the
needed parameters of validation for the data in this approach composition step;

• Data processor: Data transfer between applications is done through an API — Appli-
cation Programming Interface — which, among other formats, uses JSON notation to
structure the information transmitted. The simplicity with which the data is structured in
the JSON format allows it to be used in any type of programming language.

• Machine learning model: This component abstracts information according to the ma-
chine learning model already trained and evaluated for the classification of data in the
process. At this point, artificial intelligence techniques are introduced to evaluate the col-
lected data and classify the smells found. This analysis can be performed by a machine
learning model or tool, which the behavior and interests of these data, generating a pat-
tern with information about the types of smells found or classified. From these models,
recommendations are made to support the prediction of smells. One of our challenges is,
through artificial intelligence, to find patterns and similarities between different informa-
tion artifacts to increase the efficiency of smell prediction.

• Data server: Acts as the main component of the architecture. Receive data from
Data Connector, processes using the Data Processor, and sends it to be displayed by the
SmellGuru. This component also receives information from the trained machine learning
model, relating artifacts to their metrics and persisting them across the database engine
for data evaluation process.

• IDE plug-in: Communication with the data server is your main responsibility, the han-
dling and presentation of changed data within the IDE will be just a panel, with the
objective of providing better visualization of the data capable of allowing insights into
the presented data and related bad smells parts. The plug-in’s goal is to simplify the data
collection process and enable rapid development of integrated machine learning solutions.

Software artifacts information that is processed and evaluated by the approach will not be
stored at any time during processing, information issues pertaining to the software project ar-
tifacts will be encrypted and later discarded after the dashboard is presented. Faced with this
problem, the approach can be adapted to store and group project information to be evaluated. In

48

this way, the information about possible problems in the software project is preserved, guaran-
teeing the privacy of the project available. After presenting an overview of the proposed process
Section 4.1 and presenting the architectural components, the following section discusses the im-
plementation aspects of the SmellGuru approach.

Figure 6: A component-based architecture for the proposed SmellGuru approach

4.2 Domain-Specific Language for Specification of Bad Smells

This Section introduces SmellDSL, which is a language, domain-specific specific language
for specification of bad smells. The SmellDSL was defined from project decisions taken based
on three premises that enhance the specification of bad smells. SmellDSL benefits developers by
introducing notations to define bad smells and rules to identify them. A support tool, SmellDSL
tool, was implemented as an Eclipse Platform plugin. An exploratory empirical study was
carried out with 12 participants, who used the SmellDSL tool to specify 8 bad smells, generating
96 evaluation scenarios.

4.2.1 Language Design Decisions

SmellDSL was designed with some assumptions in mind: (1) it supports the specification of
bad smells already cataloged (in an informal way) in the literature, enhancing wider adoption;
(2) uses notation and concepts found in object-oriented languages, facilitating the adoption of
developers already familiar with object-oriented languages; and (3) separate the definition of
bad smells characteristics and the rules for identifying them, allowing bad smells to be identi-
fied differently by different development teams. For example, a class with 50 methods and 30
variables can be considered as God Class for one team, while not for another. In the following
paragraphs, language design decisions are presented.

49

Allow to specify the bad smells cataloged in the literature. The language was designed
in such a way that developers could specify the bad smells already cataloged in the literature
(FOWLER, 2018; SURYANARAYANA; SAMARTHYAM; SHARMA, 2014; ALKHARAB-
SHEH et al., 2019), as well as how to specify new bad smells. For this, the language project
sought to contemplate the main elements commonly used in the specification and characteri-
zation of bad smells. Examples of such elements would be: features would be attributes that
characterize the bad smell; symptoms, perceptions or consequences generated by the occurrence
of a bad smell; and treatments, recommendations for actions to mitigate unwanted symptom

Use of reuse concepts found in object-oriented languages The language brings the con-
cept of inheritance to allow bad smells to share features, symptoms, and treatments, as well as
establish a semantic relationship of the type "is a ". Inheritance (or generalization) is a tax-
onomic relationship between a more generic bad smell and a more specific bad smell. Each
instance of the specific bad smell will also imply the occurrence of the generic bad smell. The
more specific bad smell inherits the characteristics of the more generic bad smell. The inheri-
tance relationship is owned by the more specific bad smell.

Separate the definition of the characteristics of bad smells and the rules for their oc-
currence. The bad smells cataloged in the literature are specified informally. Researchers and
professionals end up having difficulty understanding the characteristics of a bad smell, including
its properties (or metrics), symptoms, and treatments, as well as the logical rules that guide the
occurrence of bad smell. SmellDSL seeks to exactly mitigate this problem by allowing a sepa-
ration between the definition of a bad smell, including its properties, symptoms, and treatments,
and the specification of rules for the occurrence of bad smells. For example, the literature de-
fines smell God Class (SURYANARAYANA; SAMARTHYAM; SHARMA, 2014; FOWLER,
2018; PALOMBA et al., 2014) as being a class that contains many variables, methods, or lines
of code. However, the clarity of this definition is somewhat questionable, especially consider-
ing the elements that characterize bad smells, as well as the criteria to objectively define their
occurrence.

4.2.2 Language Grammar

The grammar of SmellDSL was defined using BNF notation and incorporated into the Xtext
framework. Figure 7 represents the railroad syntax of the main elements of SmellDSL. The
language has three core elements: smelltype, smell and rule. A smelltype is an abstract type of
bad smell that cannot be detected. That is, there are no rules to detect them, being used only
to express a concept. On the other hand, a smell is a concrete type of design problem that can
be detected. That is, it is possible to define a rule to detect a bad smell. Thus, each instance
of a smelltype is an instance of smell (concrete subtype). An abstract type may provide no
implementation or incomplete implementation. A smell is composed of one (or more) feature,
a symptom and a treatment. A feature represents a measurable feature used to detect a smell.

50

Each feature must have at least one threshold, which defines a measurable measure reached by
the feature that requires attention. For example, a feature could be the number of methods in
a class with limits of 50 and 80, where 50 would indicate a point of attention and 80 the need
for immediate refactoring. A smell also has a symptom and a treatment, which represent the
code’s perceptions of something unwanted and actions to reduce such unwanted perceptions,
respectively.

Figure 8 presents a code example, representing grammar sentences. smell LongMethod

is defined as a subtype of smelltype Bloaters. LongMethod has three features, nlin, comp and
nparm , with three limits each. The rule rule 3 indicates that when the featuyre LongMethod.nlin

is greater than the threshold nlin.maior100 or the feature LongMethod.comp is equal to comp.

Baixo, then something must be done, which is represented by the message "Reevaluate the
encoding due to its complexity".

Figure 7: Diagram of railroad of the syntax of the language.

4.2.3 Implementation Aspects

This Section proposes the SmellDSL tool, which is a support tool for the proposed language.
It is integrated into the Eclipse platform and implemented using the Xtext 1 framework. Xtext
is a framework for developing programming languages and domain-specific languages. The
SmellDSL tool offers a set of resources to facilitate the elaboration of the code that defines the
bad smells, as well as the specification of their occurrence rules represented in Figure 9. The
main features or characteristics of the SmellDSL tool would be:

1XText framework: http://www.eclipse.org/Xtext

51

Figure 8: Code example of SmellDSL.

• Syntax Coloring: keywords, comments, strings, and other basic language elements are
colored according to the syntax definition.

• Error checking: the tool identifies and marks errors in the elaborated code. Examples of
errors would be language syntax violations or references to undefined elements.

• Autocomplete: This feature allows autocompletion, making it easier to specify bad
smells.

• Formatting: Code formatting rules (eg line breaks, spacing, and tabs) can be defined and
automatically applied to code.

• Rename refactoring: When you rename a code element, all its references are automati-
cally updated.

• Proposed quick fixes: Problems found by the bug checker can be resolved through pro-
posed automatic fixes.

• Information when hovering the cursor: Displays additional information when the
mouse hovers over a specific language element, for example the comments associated
with that element.

4.3 Machine Learning Model for Predicting Design Problems

This Section explores Step 3: Classification and Prediction. It is important to point out
that the steps at this moment are not discussed with SmellDSL. Unfortunately, bad smells are
typically informally defined and specified, hampering understanding and refactoring tasks. Data
processing is transversal in several domains related to design problems, and requires techniques
for analyzing such data. In this sense, machine learning was used to offer us a new option of
tools to support decision making in identifying bad smells.

52

Figure 9: SmellDSL tool integrated into the Eclipse platform.

There are two main tasks that machine learning problems fall into: predictive and descrip-
tive. In predictive tasks, the goal is to find a function, also called a model or hypothesis, from
training data. Such data is described by the input attributes. The possible label values form a set
that defines the output attribute of the function. Such an output attribute is commonly known
as a class. In descriptive tasks, the goal is to explore or describe a set of data. In general, in
this type of problem, there is no class attribute, that is, the data was not labeled. Thus, the
learning algorithms used in these tasks do not use the class attribute and, therefore, follow the
unsupervised learning approach.

In this section, the focus is on supervised learning only. With that, the objective of this
section is to present some scenarios of using machine learning to forecast demand in the iden-
tification of design problems. Is describe how the assessment of the knowledge extracted by
the learning algorithms is carried out, as well as the tools used in the demonstration of the
assessment process.

4.3.1 Methodology

The study is guided by tree research questions (RQs).

RQ1: Is the design impacted due to the presence of code smells? Evaluate the impact
in terms of process and technical based on metrics that can identify possible code smells that

53

influence Design? Process, social and technical aspects may be preventing or amplifying design
degradation. To capture these aspects, we used a set of metrics detailed in Section III - RQ 1
aims to investigate which metrics can distinguish between projecting impact and non-impacting
changes.

RQ2: How well do ML algorithms perform in predicting design-impacting changes?
As soon as we show empirical evidence that distinguishes impact and non-impacting changes,
RQ2 aims to investigate the use of supervised ML Techniques to help those involved in the
software project to automatically make notes and their decisions.

In practice, some prediction algorithms perform better than others, depending on the task.
Thus, we compared the performance of two interpreter ML algorithms: SVM and Random
Forest. We chose these algorithms since they provide an intuitive and easy-to-explain model
(SHARMA; MISHRA; TIWARI, 2016; KOTSIANTIS; ZAHARAKIS; PINTELAS, 2006). To
this end, we apply the ML algorithm using two sets of resources: one set using only process
resources, one set using only the technicians. By answering RQ2, we will be able to identify
which types of resources are the best predictor, as well as the effectiveness of the combination
of process and technical characteristics. In addition, we also assessed the effectiveness of a
selection step feature for both sets.

RQ3: What features are the best indicators of change that impact design? RQ3 aims
to underestimate which characteristics are considered the most relevant by the models. Such
knowledge is essential because, in practice, a model should be as simple as possible and require
as little data as possible. By answering RQ3, we will be able to provide insights to professionals
and researchers as to the factors that best indicate impact changes in the project.

4.3.2 Classifier - Random Forest Algorithm

In this implementation step, the Random Forest classifier is selected, for training our pre-
diction model, as it is a statistical method of supervised learning, which can be used in clas-
sification problems and in making predictions. From an existing dataset, the method creates a
representation of the knowledge embedded therein, in tree format.

There are two main reasons for using these methods in Random Forest, firstly they increase
the accuracy of the results by decreasing the correlation of each tree, and, in addition, they
provide estimates of the generalization errors of the trees on a continuous basis.

In this algorithm, a large number of decision trees are built as they operate together. Decision
trees act as pillars in this algorithm. Random forest is defined as the group of decision trees
whose nodes are defined at the pre-processing step (BOUAZIZ et al., 2014). After constructing
multiple trees, the best feature is selected from the random subset of features (BREIMAN,
2001; KABIR et al., 2021). To generate a decision tree is another concept that is formed using
a decision tree algorithm. So, a random forest consists of these trees which are used to classify
a new object from the input vector. Each decision tree built is used for classification in (SHAH

54

et al., 2020).

4.3.3 Predictive model

The literature covers a wide variety of ML techniques, each with specific characteristics
and applications. The focus of this section is the application of these models for the predictive
identification of design smells. We intend to highlight the commonly used ML techniques and
the reasons for selecting specific techniques.

Predictive models are usually data-driven models that require a variety of data streams pro-
vided by multiple real-time and offline sources. Data also comes from Computerized Mainte-
nance Management Systems (CMMS). Failure-related data is also necessary to build and test
the predictive models (DALZOCHIO et al., 2020).

The works present architectures, strategies, principles, and tools that seek each step of the
systems implementation process to allow predictive maintenance (BOUSDEKIS et al., 2019;
ANSARI; GLAWAR; SIHN, 2020; SARAZIN et al., 2019; HEGEDŰS; VARGA; MOLDOVÁN,
2018).

Several authors use Artificial Neural Networks (ANN) to tackle problems related to predic-
tive maintenance. (LI; WANG; WANG, 2017) proposed a framework for fault detection and
prediction, which is capable of performing error correction regardless of machine or process
type.

Other solutions involve the implementation of Recurrent Neural Networks (RNN) which are
a type of ANN capable of incorporating memory. (RIVAS et al., 2019) adopted Long Short-
Term Memory (LSTM) RNN model for failure prediction. The authors focused on creating an
LSTM model to identify a possible future malfunction using two models. (CACHADA et al.,
2018) also used LSTM along with a second technique called Gated Recurrent Unit (GRU) for
a similar purpose. Both models were applied because they implement the ability to consider
historical data to predict future behavior. Several authors (SCHMIDT; WANG, 2018; ZHOU;
THAM, 2018) assess the performance of ANN and compare it with other techniques like Sup-
port Vector Machine (SVM) and Randon Forest (RF). Yet in the area of ANN, some works
consider the implementation of Auto-Associative Neural Networks (AANN).

4.3.4 Description of Dataset

The dataset referring to the design smells was obtained with the support of the tool SDMet-
rics. The Table 12 presents the design metrics used in our ML training model. To speed up
the data collection process due to the unavailability of open source models for the software, the
authors used a reverse engineering Tool (Reengineer) if necessary to be compatible with SD-
Metric software quality tools, which is an optional step. The software quality analysis tool uses
XMI file type. During the execution of step 1, the SDMetrics tool is used to support data col-

55

lection. This tool works with all UML design tools that support XMI. By using object-oriented
metrics of project size, coupling and complexity, in addition to establishing quality benchmarks
to identify potential design problems from the beginning of software production, it has become
a necessary tool for the other steps of the approach to be executed.

Table 12: Description of Class level Design Metrics with categorization.

Metric Category Description

NumOps Size The number of operations in a class.
NumPubOps Size The number of public operations in a class.
Setters Size The number of operations with a name starting with ’set’.
Getters Size The number of operations with a name starting with ’get’, ’is’, or ’has’.
Nesting Outros The nesting level of the class (for inner classes).
NOC Inheritance The number of children of the class (UML Generalization).
NumDesc Inheritance The number of descendents of the class (UML Generalization).
NumAnc Inheritance The number of ancestors of the class.
DIT Inheritance The depth of the class in the inheritance hierarchy.
CLD Inheritance Class to leaf depth.
OpsInh Inheritance The number of inherited operations.
AttrInh Inheritance The number of inherited attributes.
NumAssElssc Coupling The number of associated elements in the same scope

as the class.
NumAssElsb Coupling The number of associated elements in the same scope branch

as the class.
NumAssElnsb Coupling The number of associated elements not in the same scope branch

as the class.
ICAttr Coupling (import) The number of attributes in the class having another

class or interface as their type.
ECPar Coupling (export) The number of times the class is externally used

as parameter type.
ICPar Coupling (import) The number of parameters in the class having

another class or interface as their type.
DepOut Size The number of dependencies where de class is the client.
DepIn Size The number of dependencies where the class is the supplier.

4.3.5 Implementation Aspects

This section aims to present the implementation aspects, reporting the decisions taken to
enable the development of prototype 1. Section 4.3.6 of the proposed approach presents an ini-
tial proposal from the SmellGuru dashboard discussing how the main architectural components
were implemented in terms of the technology used. Section 4.3.7 introduces the extension of
the approach prediction model.

4.3.6 A Proposal of SmellGuru Dashboard

Figure 10 presents an initial proposal for a smells dashboard. The metrics of possible code
smells with greater relevance in the analysis will be presented randomly to simulate the real
data collected by SmellGuru through integration via Web Services, information regarding the

56

prediction of smells will be presented, according to the features sent and represented by the real
state of any software project. The approach was adopted for illustrative purposes only, as the
main objective of this study is to assess the tool’s acceptance and the impact of presenting on
code smell prediction.

The SmellGuru Data Connector component (Figure 6) was performed using the WSDL,
which stands for Web Services Description Language, it is an industry standard to describe
Web Services to eliminate as much as possible the need for communication between the parties
involved in data integration, the documentation tag allows us to include our documentation,
dispensing with an auxiliary document, to explain the objectives of the Web Service or what
each field is for. This not only ensures that information is centralized, but also makes it easier
for others to read. The data server, that is, Smell Server, was developed using Anaconda to
simplify the management and deployment of packages. The distribution includes data science
packages suitable for Windows, Linux, and macOS.

All transactions between IDE and the data server were performed through JSON and CSV
over hypertext transport protocol (HTTP), managed by Python’s JSON library and CSV. As
a storage mechanism for processed data, MYSQL Workbench, a once series database, was
adopted. This type of database allows for a high rate of insertion operation, in addition to
the analysis of fluctuating values over time. The data stored in MYSQL was consumed by
the Power Bi dashboard engine, which was responsible for presenting the processed data in an
easy-to-use way (Figure 10). This choice was made over the native integration between Power
Bi and MYSQL.

Figure 10: Visualization SmellGuru

4.3.7 An extension of the approach

SmellGuru evaluated data prediction, in a machine learning model, made available by our
collaborators, in Python, that is, after data processing, they will be categorized and grouped

57

according to the smell characteristics to be classified. In this way, the data is contextualized,
providing visual feedback on the control panel. The SmellGuru prediction approach used the
Anaconda Python code editor, which provides a high-level API for development (or plug-ins).
The tests were all run using the Jupyter Notebook 2 environment with Python version 3.7.7 and
manipulate the dataset using the Python Data Analysis Library 3. We generate the graphics
using the matplotlibrary 4. The learning algorithm selected for the classification task was RF,
and the SVM was selected for comparison. The implementation of these algorithms is provided
by the library scikit-learnig 5 using version 0.23.1.

Data collection with artifact metrics tools: For database consolidation in this step we use
three tools to collect artifact metrics:

(1) SonarQube6 has GitHub integration and raises issues whenever a piece of your code
breaks a coding rule, be an error that will break your code (bug), a point in your open source to
attack (vulnerability) or a maintenance issue (code smell). To make sure that SonarQube results
are relevant, it is necessary to narrow the focus or configure what to analyze for each project.

(2) Astah7 is a modeling and diagramming software, helps engineers and developers plan,
create, communicate, and understand. The software was used for the integration of artifacts
(source code), reverse engineer data from models to learn the impact of development in the real
world.

(3) SDMetrics8 was used to collect information from artifacts related to design rules, this
tool automatically detects incomplete designs, incorrect, redundant or inconsistent, styling is-
sues like circular dependencies, violating naming conventions, and so on.

4.3.8 Experimental Design

This phase was characterized by: (1) a selection of GitHub projects, real software to be
adopted by the approach SmellGuru, (2) the execution of the experimental process, and (3) the
post-experiment data collection. The selected software projects must use development criteria
based on object orientation, in different programming languages, were selected for convenience
and ease of access. For the execution of the experimental process, the following steps were
taken:

• Step 1: GHTorrent information collection and evaluation using the SDMetrics tool, de-
sign quality measurement, analyzes the structure of your UML models;

• Step 2: Building a Prediction Model, prediction models try to estimate the future qual-

2https://jupyter.org/
3https://pandas.pydata.org/
4https://matplotlib.org/
5https://scikit-learn.org/stable/
6https://www.sonarqube.org/
7https://astah.net/
8https://www.sdmetrics.com/

58

ity of a system from internal quality attributes that are measurable at present. This is
achieved by empirically exploring the relationships between internal and external quality
from systems developed in the past, and applying these findings to new systems. In the
following, we describe how to build and use a prediction model for class fault-proneness
from the structural properties of a class. Figure 11 depicts the steps involved in building
the prediction model;

• Step 3: Perform an analysis based on your own perception;

• Step 4: In Python, the information for the code will be consumed beforehand. imple-
mented and interpreted, present the metrics based on your own perceptions;

Building a Prediction Model SmellGuru
A prediction model for the proposed SmellGuru approach

SDMETRICS

INSPECTIONS

CLASS DESIGN

STRUCTURAL
PROPERTIES

DATA

FAULT DATA

PER
CLASS

STATISTICAL
ANALYSIS

PREDICTION
MODEL

Figure 11: Building a Prediction Model SmellGuru

4.3.9 Operation

All tests are run the Jupyter Notebook9 environment with the Python version 3.7.7 and ma-
nipulate the dataset using the Python Data Analysis Library10. Graphs are generated using the
matplotlibrary11. Two learning algorithms were used to the classification task:Random Forest

9https://jupyter.org/
10https://pandas.pydata.org/
11https://matplotlib.org/

59

(RF) and Support Vector Machine (SVM). This work used the implementation of these algo-
rithms found in scikit-learnig12 library (version 0.23.1).

As this is a multi-class classification problem, is adopt two training approaches for RF. In
the first approach, is used the dataset (Section 4.3.4) without any manipulation. In the second
approach, is binarize 13 the labels and use the One-Vs-Rest14 (OvR) strategy to training the
model. Since is consider SVM only for comparison, in this algorithm, not apply binarization.

By training the RF model without the binarize step, we created 960 models through the
hyper parameterization method. As the standard 5 times cross validation is used, a total of
4,800 models were trained. The model with the best accuracy reached the value of 96% with
the following parameters: maximum depth as 13, number of features as the square root of
feature number, the minimum number of samples required to be at a leaf node as 2, and the
number of trees in the forest as 375. Figure 12 shows the confusion matrix for this scenario.

ConcreteSuper DepCycle DescendentRef
Predicted label

ConcreteSuper

DepCycle

DescendentRef

Tr
ue

 la
be

l

18 0 0

1 0 0

0 0 6

0

2

4

6

8

10

12

14

16

18

Figure 12: Confusion matrix results of best RF model

However, when trained the model using the standard parameters, without the hyper param-
eterization method, the accuracy achieved was also 96%. The confusion matrix resulting was
the same as show in the Figure 12. When trained the RF model with an OvR strategy, both the
accuracy and the confession matrix were the same as the default model, with 96% of accuracy
and the same confusion matrix that Figure 12 shows.

By using the RF algorithm, you have the possibility to identify which features are most
relevant to the classification task. Figure 15 shows the weight of each characteristic for the
model, with the maximum possible value and the sum of the importance of all characteristics
equal to 1. As can be seen, several features that are present in the dataset have zero relevance,

12https://scikit-learn.org/stable/
13https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.label_binarize.html
14https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html

60

and do not appear in the bar graph. The X-axis represents the metrics (features) used to collect
design data. The Y-axis represents the importance of the metric to the result. The metrics from
Dep_Out and Dep_In were the ones that most contributed to the results.

Nu
m

Op
s

Nu
m

Pu
bO

ps

Se
tte

rs

Ge
tte

rs

Ne
st

in
g

IF
Im

pl

NO
C

Nu
m

De
sc

Nu
m

An
c

DI
T

CL
D

Op
sIn

h

At
trI

nh

De
p_

Ou
t

De
p_

In

Nu
m

As
sE

l_s
sc

Nu
m

As
sE

l_s
b

Nu
m

As
sE

l_n
sb

Features

0.00

0.05

0.10

0.15

0.20

Im
po

rta
nc

e

Figure 13: Feature importance to the RF algorithm

As the confusion matrix generated was the same in the tested scenarios, is started to analyze
other metrics. Table 13 presents the metrics of f1-score, precision, and recall for both micro
and macro averages. The difference in values between micro and macro average may indicate
imbalance data, with one or a few classes significantly more present when compared to the total
of existing classes in the dataset.

Table 13: Metrics of the RF model with the highest accuracy

Macro | Micro
Precision Recall F1 - Score | Precision Recall F1 - Score

0.32 0.33 0.32 | 0.96 0.96 0.96

o finalize the tests is compared the results obtained with the RF using the SVM algorithm.
We carry out the training of models with the standard values, with that we have a comparison
with the value obtained by the standard model of the RF. We use two of the kernels provided
by the implementation of SVM in the library sklearn, the Radial Basis Function (RBF) and
the Linear kernel. In the first test with the RBF kernel for the classification task, we reached
an accuracy of 72%. In the test using the linear kernel, we reached an accuracy of 88%. The
confusion matrix resulting from each SVM training is shown in Figure 14. In all tests, the
database was split in two, with 80% for training and 20% for the test.

61

ConcreteSuper DepCycle DescendentRef
Predicted label

ConcreteSuper

DepCycle

DescendentRef

Tr
ue

 la
be

l

18 0 0

1 0 0

6 0 0

0

2

4

6

8

10

12

14

16

18

Figure 14: Confusion Matrix - SVM with RBF Kernel

ConcreteSuper DepCycle DescendentRef
Predicted label

ConcreteSuper

DepCycle

DescendentRef

Tr
ue

 la
be

l

17 1 0

1 0 0

1 0 5

0

2

4

6

8

10

12

14

16

Figure 15: Confusion Matrix - SVM with Linear Kernel

Table 14 presents all results of accuracy obtained in this work. The results obtained by the
RF achieve a higher accuracy when compared to the SVM. However, according to the metrics
presented in the Table 13, more tests are needed with a larger and more heterogeneous dataset.

62

Table 14: Accuracy of trained models

RF SVM
RF RF OvR RBG Linear

96% 96% 72% 88%

63

5 EVALUATION

This chapter details the evaluation carried out during the development of the proposed
SmellGuru approach. To this end, the text will sequentially address the following topics: (Sec-
tion 5.2) Presentation and discussion, in a previous phase, of the results obtained through the
implementation and simulation through proposed scenarios through a DSL for specifying bad
smells; (Section 5.3) Presentation and discussion of experimental data related to the design
problem prediction model.

5.1 Evaluation SmellDSL

This Section evaluates the implementation of SmellDSL..

5.1.1 Research Objective and Questions SmellDSL

This Section evaluates the effects of SmellDSL on three variables: the correct rate of the
specified smells, the error rate in the specification, and the time required to specify smells. These
effects are investigated from concrete smell specification scenarios so that empirical results
can be generated. With that in mind, the purpose of this Section is established based on the
GQM (WOHLIN et al., 2012) model as follows:

To analyze a SmellDSL for the purpose of investigating its effects with respect to cor-
rectness rate, error rate and time from the point of view of developers in the context of smells
specification elaboration.

In particular, this Section aims to make an initial analysis of the impact on correctness rate,
error rate, and time invested by developers when using SmellDSL to specify bad smells. In this
sense, three research questions (RQ) were formulated:

• RQ1: What is the correctness rate in using SmellDSL to define bad smells?

• RQ2: What is the error rate when using SmellDSL to define bad smells?

• RQ3: How long does it take to define bad smells using SmellDSL?

5.1.2 Study Variables

Correctness Rate (CT). Study participants performed eight experimental tasks. The cor-
rectness rate represents the average of correct answers for an experimental task, assuming values
from 0 (zero) to 1 (one), where zero represents that no one answered the question correctly and
1 indicates that all participants answered the question correctly. This variable is the average rate
of experimental tasks performed correctly.

64

Error Rate (ET). This metric seeks to measure the error rate when defining a bad smell. As
well as the correctness rate, it assumes values from 0 (zero) to 1 (one), where zero represents
that no one got the question wrong and 1 indicates that all the participants got the question
wrong. In scenario 1 (Table 15), each participant needs to create a Smelltype Bloater, a Smell

LargeClass that contains a feature. If a participant misses the Smelltype definition, then the
error rate for the question will be 1/3 (number of errors divided by the number of elements in
the activity).

Time (T). This metric seeks to measure the time required to specify bad smells using
SmellDSL for each proposed scenario (described in Table 15). The study quantifies the average
time taken to complete each question.

5.1.3 Hypotheses and Analysis Procedure

Three hypotheses were formulated from the research questions to allow an initial evaluation
of SmellDSL. It is conjectured that participants using SmellDSL will be able to obtain a correct-
ness rate per experimental task of equal to or greater than 0.5 (50%), error rate greater than or
equal to 0.5 (50%), and a maximum time of 15 minutes during the realization of the proposed
scenarios. Thus, this initial assessment compares the results obtained with such hypothesized
values. To test the hypotheses, the one sample t-test method was used. The Winks and IBM

SPSS Statistics tools were used to calculate the t-test. The formulated hypotheses helped us to
make decisions about SmellDSL based on the collection of information from each participant, it
is important to note that the results may vary according to the samples obtained as it is still an
experiment in its initial phase.

5.1.4 Experimental Tasks

Table 15 presents the evaluation scenarios or experimental tasks defined to evaluate the
SmellDSL. In total, eight scenarios were specified. Each participant performed each task, to-
taling 96 cases of evaluation of the use of SmellDSL. For example, Scenario 01 contains a task
in which the participant must specify a Smelltype Bloater and a Smell LargeClass containing a
feature.

5.1.5 Context and Selection of Participants

The evaluation was conducted with 12 participants, four students, and eight professionals
from Brazilian companies with professional experience in software development. An email
was sent to undergraduate and graduate students at the University of Vale do Rio dos Sinos
and the Federal Institute of Mato Grosso (IFMT), selecting those who have experience with
software development and modeling. Some participants had a master’s and bachelor’s degree

65

Table 15: Evaluation scenarios of SmellDSL

SmellType Smell

Sc
en

ar
io

s

B
lo

at
er

s

D
is

pe
ns

ab
le

s

C
ou

pl
er

s

L
ar

ge
C

la
ss

L
on

gP
ar

am
et

er
L

is
t

D
up

lic
at

eC
od

e

L
on

gM
et

ho
d

Fe
at

ur
eE

nv
y

Fe
at

ur
es

Sy
m

pt
om

Tr
ea

tm
en

t

R
ul

e

M
ai

nt
en

ce

C01 # # # # # # # # # #
C02 # # # # # # # # #
C03 # # # # # # #
C04 # # # # # # #
C05 # # # # # # #
C06 # # # # # #
C07 # # # #
C08 # # #

Legend: () Support (#) Not Support

(or equivalent), as well as knowledge in software modeling and programming. The selected
participants, including students, have different profiles and levels of expertise. The experiment
was carried out similarly to a practical laboratory exercise. Each participant received the same
training on the proposed technique and the experimental procedures to be performed. The
profile of each participant is represented in Table 16.

5.1.6 Results SmellDSL

Table 17 presents the initial results for the formulated hypotheses. The bold value of p-

value indicates that the value was less than 0.05. Figure 16 shows the average time invested per
scenario.

Hypothesis 1 (QP1): The result of the t-test shows that the mean correctness rate [Mean =
0.6875, SD = 0.16517] was statistically significant at a level of 0.05 of significance (t = 3.21,
df = 7, p = 0.015) for the test value equal to 0.5, with a mean difference of 0.015 and 95%
Confidence Interval (0.54939, 0.82561) . The null hypothesis that suggested a correctness rate
lower than 0.5 can be rejected.

Hypothesis 2 (QP2): The result of the t-test also shows that the mean error rate [Mean
= 0.3125, SD = 0.16517] was statistically significant at a level of 0, 05 of significance (t =
-3.21, df = 7, p = 0.015) for the test value equal to 0.5, with a mean difference of 0.015 and
95% Confidence Interval (0.17439, 0, 45061)]. The null hypothesis that suggested an error rate
greater than 0.5 can be rejected.

Hypothesis 3 (QP3): The result of the t-test also shows that the time mean [Mean =
9.08333, SD = 2.51346] was statistically significant at a 0.05 significance level (t = -6.66,
df = 7, p < 0.001) for the test value equal to 15, with a mean difference of 0.001 and 95%
Confidence Interval (0.17439, 0.45061). The null hypothesis that suggested a specification time
equal to or greater than 15 minutes can be rejected.

66

Table 16: Participants profile

Features Description %

Age from 18 to 25 years 30%
from 26 to 35 years 10%
from 36 to 45 years 52%
More than 45 years 8%

Academic education Eng. of Computing 10%
Information System 30%
Systems Analysis 40%

Others 20%
Education Technical 10%

Graduation 40%
Master 10%
Others 40%

Current Position Programmer 40%
Analyst 30%
Manager 20%
Others 10%

Time in office less than 2 years 30%
from 2 to 4 years 20%
from 5 to 6 years 10%
more than 8 years 40%

Experience Time less than 2 years 50%
Software modeling 2-4 years 20%

from 7 to 8 years 10%
over 8 years 20%

Software development less than 2 years 50%
from 2 to 4 years 10%
from 7 to 8 years 10%

over 8 years 30%

Table 17: Initial results for the tested hypotheses.

Variable Value N Mean Deviation t Degree of p-value
Freedom(DF)

H1: Correction 0.5 8 0.6875 0.16517 3.21 7 0.015
H2: Error 0.5 8 0.3125 0.16517 -3.21 7 0.015
H3: Time 15 8 9.08333 2.51346 -6.66 7 0.001

5.1.7 Conclusion and Future Works

This Section introduced SmellDSL, a domain-specific language for specifying bad smells,
along with a supporting tool, the SmellDSL-tool. An exploratory study was carried out to un-
derstand the impact of SmellDSL on three variables, the correctness rate of the specifications

67

Sc
e
n
ar
io
s

Minutes

121086420

CN1

CN2

CN3

CN4

CN5

CN6

CN7

CN8

14

Figure 16: Average time invested per scenario in minutes (RQ3)

created, the error rate and the time invested. The initial results obtained, supported by statis-
tical tests, point to encouraging results when revealing a correctness rate above 50%, an error
rate below 30%, and an effort less than 15 minutes to specify a bad smell. SmellDSL showed
promise, but more studies need to be carried out to better evaluate the benefits of the language.

5.2 Evaluation of Model SmellGuru for Predicting Design Problems

This section presents the results obtained after sorting the dataset according to design met-
rics represented in Section 4.3.4) to answer the formulated research questions in Section 4.3.1).

5.2.1 RQ1: Can the presence of code smells impact the design?

After training the ML model, the Random Forest (RF) algorithm identifies which features
are most important related to design smells. This information is collected from smells features
with higher incidences correlated to RQ1, the results can be shown in Figure 13, the analyzed
data, as well as the metrics, refer to the content present in Table 12.

The number of dependencies where the class is the client and the class is the supplier is
featured with greater importance. The catalog of recurring problems can be used as a specific
part to identify a possible smell according to the code quality level. Finally, it is important to
note that the proposed approach can be applied in virtually any type of software lifecycle. For
example, in an agile development environment, the proposed assessment of the practices can be
applied at the end of each sprint to identify possible smells.

68

Cyclically-dependent - This smell arises when two or more abstractions depend on each
other directly or indirectly creating a tight coupling between the abstractions. When a set of
abstractions are coupled together in a tangle, a change in one of these abstractions may lead
to a ripple effect across all the coupled classes. Hence, it is difficult to understand as well
as introduce new features or changes to the classes belonging to the tangle. This smell can
be refactored by breaking the cycle by moving some of the fields or methods to another class
(SURYANARAYANA; SAMARTHYAM; SHARMA, 2014).

5.2.2 RQ2: What is the performance of ML algorithms for predicting impact and non-impact
design changes?

When using the RF algorithm, it is a have the possibility to identify which features are most
relevant to the classification task. Figure 15 shows the weight of each characteristic for the
model, with the maximum possible value and the sum of the importance of all characteristics
equal to 1. As can be seen, several features that are present in the dataset have zero relevance
and do not appear in the bar graph. The X-axis represents the metrics (features) used to collect
design data. The Y-axis represents the importance of the metric to the result. The metrics from
Dep_Out and Dep_In were the ones that most contributed to the results.

5.2.3 RQ3: What features are the best indicators of change that impact design?

The features importance which has been obtained by the training samples using the RF
algorithm is illustrated in Figure 15. This figure displayed the result for each feature when
all features are used as input in the RF. In this study, the feature importance is determined by
the mean decrease permutation accuracy. The result shows that The number of dependencies
where the de class is the client (Dep_Out) and the number of dependencies where the class is
the supplier (Dep_In) sizes appear to be the most relevant features. The result also indicates
that the number of operations in a class (NumOps), plays a significant factor in determining the
presence of smells. This finding is aligned with results that have been reported by (BRIAND;
WÜST, 2002; AL DALLAL, 2017). Therefore, coupling metrics greatly help to identify small
parts of a design that contain a large number of faults.

5.2.4 Discussion

This section discusses findings with regard to the projects analyzed. Furthermore, models
are built and evaluated using community-aware metrics based on design smells.With the anal-
ysis made by this work, it was possible to find evidence that the occurrences of known code
smells had a positive impact on the identification of design smells. It seems worthwhile to in-
vestigate different dimensions of coupling: import and export coupling. In general, the possible

69

implications can be related to the standards established in the project and in the process. Some
of these standards and their applications are detailed in the next paragraphs. There are few
works that analyze the relationships between code smells and their implications for software
design. This behavior, discovered in this empirical study, can be used to optimize the detection
of design smells. In general, we can use the possible smells, and through traceability in the use
of these objects with possible code anomalies, we can help developers in future software fixes,
prioritizing their demands related to smells.

Another possible practical implication concerns the planning of refactoring activities. From
the discussion, it is observed that most of the smells occur in the coupling category in entities
affected by smells. This identification can aid in the strategy and prioritization of software fixes
and maintenance. This implies that the removal of these smells can impact the use of software
refactoring techniques, established in the project.

5.2.4.1 Conclusions

Design smells arise from poor design decisions that make the design fragile and difficult to
maintain. Classification or quantification of smells that impact design is important to help in
pointing out deeper systemic problems that lead to negative outcomes. Therefore, is presented
a study on using machine learning to identify design impact. Predicting, and classifying de-
sign smells types using RF algorithm. The algorithm has been tested on secondary data that
contained several features. Approximately 10.000 datasets have been used in this study and
the performance of the proposed method has been measured. The obtained accuracy of the
proposed method was 96% (RF). It can be concluded that RF can accurately classify smells,
however further research is required to analyze and determine the impact on design. Further-
more, for future work, this study attempts to compare various types of methods in determining
the accuracy and effectiveness of the RF algorithm as well as verify the results that have been
obtained.

5.3 Evaluation SmellGuru Proposed Model

This section highlights the results of the approach SmellGuru evaluation. For this, it is
applied a questionnaire that aims to investigate the usefulness of the SmellGuru approach for
predicting Bad Smells. In this sense, the answers to the questions elaborated were based on the
experience of the 23 participants, acquired during the presentation of the SmellGuru approach.
The questionnaire has two parts: (1) The first search characterizes the participant and can be
represented in Table 18; and (2) The second part seeks to collect information about the percep-
tion of the practical usefulness of SmellGuru and is represented in Table 19. Both parties are
anonymous.

70

5.3.1 Context and Selection of Participants

The evaluation was conducted with 23 participants, students, and professionals from Brazil-
ian companies with professional experience in software development. An email was sent to
undergraduate and graduate students at the University of Vale do Rio dos Sinos and the Federal
Institute of Mato Grosso (IFMT), selecting those who have experience with software develop-
ment and modeling. Some participants had a master’s and bachelor’s degree (or equivalent), as
well as knowledge in software modeling and programming. We chose participants, including
students, so that we could have different profiles and levels of expertise. The questionnaire
was carried out in a similar way to a practical laboratory exercise. Each participant received
the same training on the proposed SmellGuru approach and the experimental procedures to be
performed. The profile of each participant is represented in Table 18.

Table 18 presents the results collected after the application of the TAM questionnaire. Par-
ticipant profile. After the application of the experimental and feedback collection phases, in a
group of twenty-three participants, it was possible to verify that half was composed of individ-
uals aged between 26 and 35 years old, while the second half consisted of aged between 36 and
45 years. Mainly with training in Information Systems (30.4%), followed by Systems Analyst
(21.7%) and Computer Science (8.7% each). Regarding professional experience, the majority
(47.8%) had more than 2 years of experience in software development. When asked about their
perception that if the identification of bad smells had more formalism in the software design,
developers would start to use it more frequently, there was (56.52%) agreement.

Emphasize the results described in Table 19 the information related to the use of software for
the identification of bad smells in the companies where the participants work. This information
characterizes the experience with the identification of smells by each participant as described
below:

• I use software to detect bad smells (R1);

• Bad smell identification is not yet universally accepted as a standard in software develop-
ment projects (R2);

• Bad smell identification models help during discussions about how to maintain applica-
tions (R3);

• Is the identification of bad smells growing? (R4)

• There is no “role” (e.g., programmer, analyst, etc) that particularly requires standards for
identifying bad smells (R5);

• The cost of promoting the correct understanding for the identification of bad smells
among different people with different levels of training/experience and ways of think-
ing is high in software design (R6);

71

Table 18: Participants profile

Features Description %

Age from 18 to 25 years 8,7%
from 26 to 35 years 47.8%
from 36 to 45 years 26.1%
More than 45 years 17.4%

Academic education Eng. of Computing 8.7%
Information System 30.4%
Systems Analysis 21.7%

Others 39.1%
Education Technical 8.7%

Graduation 30.4%
Specialization 39.1%

Master’s 17.4%
Others 4.3%

Current Position Programmer 17.4%
Analyst 26.1%
Others 56.5%

Time in office less than 2 years 13%
from 2 to 4 years 26.1%
from 5 to 6 years 8.7%
from 7 to 8 years 13%
more than 8 years 39.1%

Experience Time less than 2 years 43.5%
Software modeling 2-4 years 8.7%

from 5 to 6 years 8.7%
from 7 to 8 years 13%

over 8 years 26.1%

• Bad smells identification processes tend to be used either in the design phase or in the
implementation phase, never in both (R7);

• Those who use the different ways of identifying bad smells during the design phase tend
to use it selectively and informally (R8);

• The developer tends to use the identification of bad smells to express abstractions and
the most critical cases. But they stop using it when they start thinking more concretely,
especially when they’re implementing (R9);

• Bad smells identification tools are not usual (R10);

• If the identification of bad smells had more formalism in the software project, developers
would use it more frequently (R11);

• The identification of bad smells is not necessary for the needs that software development

72

projects present (R12);

Table 19: Participants Experience

Description I agree Part. Neutral Part. Strongly
agree Disagree Disagree

Regarding the use of software to
identify bad smells in companies:

R1. 43.47% 13.04% 21.73% 8.69% 13.04%
R2. 34.78% 39.13% 21.73% 4.34% 0
R3. 43.47% 39.13% 13.04% 0 4.34%
R4. 34.78% 39.13% 21.73% 4.34% 0
R5. 30.43% 21.73% 26.08% 21.73% 0
R6. 52.17% 13.04% 8.69% 21.73% 4.34%
R7. 34.78% 30.43% 8.69% 8.69% 17.39%
R8. 34.78% 21.73% 30.43% 4.34% 8.69%
R9. 34.78% 17.39% 39.13% 4.34% 4.34%

R10. 17.39% 39.13% 21.73% 13.04% 8.69%
R11. 56.52% 4.34% 21.73% 13.04% 4.34%
R12. 13.04% 21.73% 21.73% 26.08% 17.39%

Through the application of the TAM, it was possible to evaluate the perceived ease of use,
perceived usefulness, and behavioral intent of using the proposed SmellGuru approach. As
shown in Table 20, respondents agree that SmellGuru is easy to interpret (43.47%) and inno-
vative (60.86%) . SmellGuru would make it easier to maintain software (78.26%). There was
unanimously in pointing out that the purpose of SmellGuru was clear to me.

Table 20 presents the results related to the acceptance of the SmellGuru technology, for that,
questionnaires were prepared for the participants regarding the 03 (tree) items described below:

• Perceived ease of use (Q1)

– I found SmellGuru easy to interpret (Q1.1);

– I found SmellGuru easy to integrate with other technologies (Q1.2.);

– I found SmellGuru innovative (Q1.3)

• usefulness perception (Q2)

– SmellGuru would make software maintenance easier (Q2.1);

– SmellGuru would help with productivity (Q2.2)

– SmellGuru would reduce code anomaly identification time (Q2.3);

• Behavior Intent (Q3)

73

– I would use the SmellGuru approach as a support tool in automatic software main-
tenance (Q3.1);

• Clarity of the Proposed Approach (Q4)

– SmellGuru’s purpose became clear to me (Q4.1);

– The SmellGuru steps were properly understood (Q4.2);

Table 20: TAM (Technology Acceptance)

Description I agree Part. Neutral Part. Strongly
agree Disagree Disagree

Q1. Perceived ease of use
Q1.1. 43.47% 47.82% 8.69% 0 0
Q1.2. 30.43% 47.82% 21.73% 0 0
Q1.3. 60.86% 21.73% 13.04% 0 4.34%

Q2. Usefulness perception
Q2.1. 78.26% 13.04% 8.69% 0 0
Q2.2. 65.21% 26.08 8.69% 0 0
Q2.3. 73.91% 17.39% 8.69% 0 0

Q3. Behavior intention
Q3.1. 65.21% 30.43% 0 0 4.34%

Q4. Clarity of the approach
Q4.1. 95.65% 0 0 0 4.35%
Q4.2. 95.65% 0 0 0 4.35%

According to the results of the information contained in Table 21, two important particu-
larities are highlighted about the proposed approach by SmellGuru: (1) SmellGuru steps have
been properly understood, and (2) clarity of the proposed approach. For this, participants who
have different professional specialties, experiences, and training help to answer the problem
(P2) lack of an overview of approaches to predict design problems, as seen in the Introduction
of this work.

Table 21: TAM (Clarity)

Description Percentage

Steps have been properly understood 95.65%
Clarity of the proposed approach 95.65%

74

75

6 CONCLUSION AND FUTURE WORK

Different types of software design problems were analyzed and identified according to the
bibliographic references, there are many, each with its own motivation and different character-
istics. Thus causing more and more types of code problems to arise according to the individual
differences of each software project. We verified that the libraries used for model validation
can be one of the available options of computational tools, ideal for us to identify the types of
anomalies, according to the artifact information of each software project. When implementing
this work, is shown that the use of intelligent machines is a topic that is increasingly studied and
implemented in everyday reality, ceasing to be something purely academic. There is the use of
artificial intelligence in turnstile software for shopping malls, stock exchanges, aviation, etc.

And for that, currently, in the identification of source code anomalies, the so-called static
code analysis tools are used. These carry information like the human expert, and in the decision-
making process, all psychologism is eliminated. Because it does not carry human subjectivity
and sentimentality, it does not allow for a better interpretation of reality, in particular, the metric
tools used to identify smells, our implemented model allows a better judgment about the types of
code smells, as we are not locked into a single problem identification database. Demonstrating
in this model that it was possible to carry out tests, training, and evaluation in order to have a
good statistic about its efficiency.

During the development of this work, it is essential to understand the concept of bad smells
and design smells. As highlighted in Chapter 1, the definition of smells presented for Software
Engineering due to the dynamics related to software production. In addition, we implemented
a tool to automate problem definition, as we consider that the design tool seeks a manual of
the source code of these problems is cumbersome, complex, and prone to failure. The tool was
validated with the elaboration of experimental scenarios. SmellDSL became efficient according
to the resources for defining and understanding bad smells according to their need to define and
adapt the project to be developed.

However, when executing the prototype and modeling the proposed model scenarios, it is
shown that it can cover any necessary needs related to possible behavioral changes arising from
the new bad smells. When analyzing software projects using the model trained to identify bad
smells, potential benefits from defined and already cataloged features related to Bad Smells,
detected occurrences, for example, reduced coupling, increased cohesion, greater code reuse,
encapsulation of features, and reduction of code complexity, can influence the occurrence of
design smells.

Some future works are proposed aiming at the evolution of the proposed approach and
support in the prediction of design problems. Therefore, the following works are suggested:

• DSL integration with the machine learning model.

• Evaluate the DSL implemented with other bad smells specification scenarios.

76

• To analyze the bad smells relationships and their implications for software design.

6.1 Contribuitions

The main contribution brought by this dissertation is the presentation of a approach to help
identify and predict design problems using machine learning techniques. Implementation of a
DSL to specify bad smells. In addition, the specific contributions brought by the approach are:

Intelligible workflow to assist those involved in software design, providing clear guidance
and facilitating the inclusion of new strategies for predicting design problems.

DSL implementation for specifying bad smells was designed with some assumptions in
mind: (1) support for the specification of bad smells already cataloged (in an informal way)
in the literature, enhancing a broader characterization; (2) use of notation and concepts found
in object-oriented languages, facilitating their use by developers already familiar with object-
oriented languages; and (3) separate the definition from the characteristics of bad smells and the
rules to identify them, allowing bad smells to be identified differently by different development
teams.

Design problem prediction model was implemented using machine learning techniques.
It is important to note that the steps at this time are not integrated with DSL. Unfortunately,
bad smells are typically defined and specified informally, making it difficult to understand and
refactor tasks. The focus is only on supervised learning.

6.2 Limitations

This study investigated in its course questions essentially about the detection and predic-
tion of Design Smells problems. Although the contributions of this study are noticeable, its
approach needs improvement, since the development time of this study is not enough to cover
all the existing gaps. Thus, the main limitations identified in this study are presented, as well as
suggestions for future work in order to cover these points.

Experimental limitations. There is a need to expand the number of participants as well as
increase the participation of professionals linked to the industrial software sector in the surveys.
The scenarios presented have a reduced number of elements, that is, they are small models that
for the most part do not match the current situation in the industrial scope for the identification
and definition of bad smells. Therefore, in future work, there is a need to implement richer
models, which present the largest number of elements and characteristics for the definition of
bad smells.

Limitations of the prototype. However, the participants used a prototype and carried out
the implementation and definition of bad smells. The SmellDSL tool is 100% functional as an
Eclipse platform plugin. The three main limitations: (1) it allows specifying bad smells, but
does not generate code to automate the quantification of bad smells; (2) integrated only with

77

the Eclipse platform, and can be supported in other IDEs, such as VS code, Spring Tool Suite,
among others; (3) it has a well-defined grammar using BNF, but language documentation and
creating examples for developers are limitations;

Limitations of the technique. Although the SmellGuru approach is semi-automatic for
the integration of a prediction model of design problems, being effective about the manual
technique, there is a need to expand and deepen the phase of studies, this is because decisions
suffer human interference and are subject to error, as demonstrated in the experiment, that is,
some of the models for training may have been produced incorrectly. Thus, in future work, it
is observed the need for new experiments in view of the execution of the automatic SmellGuru
approach, having emphasis on analyzing its precision and accuracy in relation to the proposal of
anticipating Design Smells, and finally coupling other techniques to the prototype, such as the
use of artificial intelligence to define variations of Bad Smells, given the challenge of making
better and more accurate decisions about the feature models needed to define the occurrence of
Bad Smells is still not well defined by software development teams.

78

79

REFERENCES

ABBES, M. et al. An empirical study of the impact of two antipatterns, blob and spaghetti
code, on program comprehension. In: EUROPEAN CONF. ON SOFTWARE
MAINTENANCE AND REENGINEERING, 15., 2011. Anais. . . . p. 181–190.

AL DALLAL, J. Predicting move method refactoring opportunities in object-oriented code.
Information and Software Technology, v. 92, p. 105–120, 2017.

AL-QUDAH, S.; MERIDJI, K.; AL-SARAYREH, K. T. A comprehensive survey of software
development cost estimation studies. In: OF THE INTERNATIONAL CONFERENCE ON
INTELLIGENT INFORMATION PROCESSING, SECURITY AND ADVANCED
COMMUNICATION, 2015. Proceedings. . . . p. 1–5.

AL-SHAABY, A.; ALJAMAAN, H.; ALSHAYEB, M. Bad smell detection using machine
learning techniques: a systematic literature review. Arabian Journal for Science and
Engineering, v. 45, n. 4, p. 2341–2369, 2020.

ALENEZI, M. et al. Test suite effectiveness: an indicator for open source software quality.
2016. 1–5 p.

ALJEDAANI, W. et al. Test smell detection tools: a systematic mapping study. Evaluation
and Assessment in Software Engineering, p. 170–180, 2021.

ALKHARABSHEH, K. et al. Improving design smell detection for adoption in industry.
2018. 213–218 p.

ALKHARABSHEH, K. et al. Software design smell detection: a systematic mapping study.
Software Quality Journal, v. 27, n. 3, p. 1069–1148, 2019.

ANSARI, F.; GLAWAR, R.; SIHN, W. Prescriptive maintenance of cpps by integrating
multimodal data with dynamic bayesian networks. Machine Learning for Cyber Physical
Systems, Technologies for Intelligent Automation, v. 11, p. 1–8, 2020.

AZEEM, M. I. et al. Machine learning techniques for code smell detection: a systematic
literature review and meta-analysis. Information and Software Technology, v. 108,
p. 115–138, 2019.

BARBOSA, C. et al. Revealing the social aspects of design decay: a retrospective study of pull
requests. In: _____. Proceedings of the 34th brazilian symposium on software
engineering. p. 364–373.

BARRIGA, A. et al. Addressing the trade off between smells and quality when refactoring
class diagrams. J. Object Technol, v. 20, n. 3, p. 1, 2021.

BASS, L.; CLEMENTS, P.; KAZMAN, R. Software architecture in practice.

BETTINI, L. et al. Supporting safe metamodel evolution with edelta. Int. Journal on
Software Tools for Technology Transfer, v. 24, n. 2, p. 247–260, 2022.

BOEHM, B.; ROSENBERG, D.; SIEGEL, N. Critical quality factors for rapid, scalable,
agile development. 2019. 514–515 p.

80

BOUAZIZ, A. et al. Short text classification using semantic random forest. In:
INTERNATIONAL CONFERENCE ON DATA WAREHOUSING AND KNOWLEDGE
DISCOVERY, 2014. Anais. . . . p. 288–299.

BOUSDEKIS, A. et al. A unified architecture for proactive maintenance in manufacturing
enterprises. In: Enterprise interoperability viii. p. 307–317.

BOUSSAA, M. et al. Competitive coevolutionary code-smells detection. In: INT.
SYMPOSIUM ON SEARCH BASED SOFTWARE ENGINEERING, 2013. Anais. . . .
p. 50–65.

BREIMAN, L. Random forests. Machine learning, v. 45, n. 1, p. 5–32, 2001.

BRIAND, L. C.; WÜST, J. Empirical studies of quality models in object-oriented systems.
Advances in computers, v. 56, p. 97–166, 2002.

CACHADA, A. et al. Maintenance 4.0: intelligent and predictive maintenance system
architecture. In: IEEE 23RD INTERNATIONAL CONFERENCE ON EMERGING
TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2018., 2018. Anais. . . . v. 1,
p. 139–146.

CARAM, F. L. et al. Machine learning techniques for code smells detection: a systematic
mapping study. International Journal of Software Engineering and Knowledge
Engineering, v. 29, n. 02, p. 285–316, 2019.

CHEN, C. et al. How do defects hurt qualities? an empirical study on characterizing a
software maintainability ontology in open source software. 2018. 226–237 p.

CHOUDRIE, J. et al. Machine learning techniques and older adults processing of online
information and misinformation: a covid 19 study. Computers in Human Behavior, v. 119,
p. 106716, 2021.

DALZOCHIO, J. et al. Machine learning and reasoning for predictive maintenance in industry
4.0: current status and challenges. Computers in Industry, v. 123, p. 103298, 2020.

DAS, A. K.; YADAV, S.; DHAL, S. Detecting code smells using deep learning. In: TENCON
2019-2019 IEEE REGION 10 CONF. (TENCON), 2019. Anais. . . . p. 2081–2086.

DEVI, D. G.; PUNITHAVALLI, M. A hierarchical method for detecting codeclone. 2011.
126–128 p. v. 1.

DI NUCCI, D. et al. Detecting code smells using machine learning techniques: are we there
yet? In: 2018 IEEE 25TH INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS,
EVOLUTION AND REENGINEERING (SANER), 2018. Anais. . . . p. 612–621.

DINAN, E. et al. Anticipating safety issues in e2e conversational ai: framework and tooling.
arXiv preprint arXiv:2107.03451, 2021.

EL KOUTBI, S.; IDRI, A.; ABRAN, A. Systematic mapping study of dealing with error in
software development effort estimation. In: EUROMICRO CONFERENCE ON SOFTWARE
ENGINEERING AND ADVANCED APPLICATIONS (SEAA), 2016., 2016. Anais. . . .
p. 140–147.

81

EMDEN, E. van; MOONEN, L. Java quality assurance by detecting code smells. In: NINTH
WORKING CONFERENCE ON REVERSE ENGINEERING, 2002. PROCEEDINGS., 2002.
Anais. . . . p. 97–106.

ERTURK, E.; SEZER, E. A. Iterative software fault prediction with a hybrid approach.
Applied Soft Computing, v. 49, p. 1020–1033, 2016.

FARD, A. M.; MESBAH, A. Jsnose: detecting javascript code smells. In: IEEE 13TH
INTERNATIONAL WORKING CONFERENCE ON SOURCE CODE ANALYSIS AND
MANIPULATION (SCAM), 2013., 2013. Anais. . . . p. 116–125.

FENTON, N.; NEIL, M. A critique of software defect prediction models. IEEE Transactions
on Software Engineering, v. 25, n. 5, p. 675–689, 1999.

FERNANDES, E. et al. A review-based comparative study of bad smell detection tools. , 2010.

FERNANDES, E. et al. A review-based comparative study of bad smell detection tools. In:
INTERNATIONAL CONFERENCE ON EVALUATION AND ASSESSMENT IN
SOFTWARE ENGINEERING, 20., 2016. Proceedings. . . . p. 1–12.

FONTANA, F. A.; BRAIONE, P.; ZANONI, M. Automatic detection of bad smells in code: an
experimental assessment. J. Object Technol., v. 11, n. 2, p. 5–1, 2012.

FONTANA, F. A. et al. Arcan: a tool for architectural smells detection. In: IEEE
INTERNATIONAL CONFERENCE ON SOFTWARE ARCHITECTURE WORKSHOPS
(ICSAW), 2017., 2017. Anais. . . . p. 282–285.

FONTANA, F. A.; ZANONI, M. Code smell severity classification using machine learning
techniques. Knowledge-Based Systems, v. 128, p. 43–58, 2017.

FOWLER, M. Refactoring: improving the design of existing code.

FOWLER, M. et al. Refactoring: improving the design of existing code, ser.

GARCIA, J. et al. Identifying architectural bad smells. In: EUROPEAN CONFERENCE ON
SOFTWARE MAINTENANCE AND REENGINEERING, 2009., 2009. Anais. . . .
p. 255–258.

GIRAY, G. A software engineering perspective on engineering machine learning systems:
state of the art and challenges. Journal of Systems and Software, p. 111031, 2021.

GONÇALES, L. J. et al. Comparison of design models: a systematic mapping study.
International Journal of Software Engineering and Knowledge Engineering, v. 25,
n. 09n10, p. 1765–1769, 2015.

GONÇALES, L. J. et al. Comparison of software design models: an extended systematic
mapping study. ACM Computing Surveys, v. 52, n. 3, p. 1–41, 2019.

GONÇALES, L. J.; FARIAS, K.; SILVA, B. C. da. Measuring the cognitive load of software
developers: an extended systematic mapping study. Information and Software Technology,
v. 136, p. 106563, 2021.

GRIFFITH, I.; WAHL, S.; IZURIETA, C. Evolution of legacy system comprehensibility
through automated refactoring. 2011. 35–42 p.

82

HADJ-KACEM, M.; BOUASSIDA, N. A hybrid approach to detect code smells using deep
learning. 2018. 137–146 p.

HAJI, S. H.; AMEEN, S. Y. Attack and anomaly detection in iot networks using machine
learning techniques: a review. Asian Journal of Research in Computer Science, p. 30–46,
2021.

HEGEDŰS, C.; VARGA, P.; MOLDOVÁN, I. The mantis architecture for proactive
maintenance. In: INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND
INFORMATION TECHNOLOGIES (CODIT), 2018., 2018. Anais. . . . p. 719–724.

HERMANN, M.; PENTEK, T.; OTTO, B. Design principles for industrie 4.0 scenarios. In:
HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES (HICSS), 2016.,
2016. Anais. . . . p. 3928–3937.

HUSSAIN, S.; KEUNG, J.; KHAN, A. A. Software design patterns classification and selection
using text categorization approach. Applied soft computing, v. 58, p. 225–244, 2017.

IBARRA, S.; MUÑOZ, M. Support tool for software quality assurance in software
development. In: INT. CONF. ON SOFTWARE PROCESS IMPROVEMENT, 7., 2018.
Anais. . . . p. 13–19.

IRWANTO, D. Visual indicator component software to show component design quality and
characteristic. In: SECOND INT. CONF. ON ADVANCES IN COMPUTING, CONTROL,
AND TELECOMMUNICATION TECHNOLOGIES, 2010. Anais. . . . p. 50–54.

JALALI, S.; WOHLIN, C. Systematic literature studies: database searches vs. backward
snowballing. In: ACM-IEEE INT. SYMPOSIUM ON EMPIRICAL SOFTWARE
ENGINEERING AND MEASUREMENT, 2012., 2012. Proceedings. . . . p. 29–38.

JIARPAKDEE, J. et al. An empirical study of model-agnostic techniques for defect prediction
models. IEEE Transactions on Software Engineering, p. 1–1, 2020.

KABIR, M. et al. An empirical research on sentiment analysis using machine learning
approaches. International Journal of Computers and Applications, v. 43, n. 10,
p. 1011–1019, 2021.

KANG, J.; RYU, D.; BAIK, J. Predicting just-in-time software defects to reduce post-release
quality costs in the maritime industry. Software: Practice and Experience, v. 51, n. 4,
p. 748–771, 2021.

KAUR, A. et al. A review on machine-learning based code smell detection techniques in
object-oriented software system (s). Recent Advances in Electrical & Electronic
Engineering (Formerly Recent Patents on Electrical & Electronic Engineering), v. 14,
n. 3, p. 290–303, 2021.

KAUR, J. et al. Machine learning techniques for 5g and beyond. IEEE Access, v. 9,
p. 23472–23488, 2021.

KEELE, S. et al. Guidelines for performing systematic literature reviews in software
engineering.

KESSENTINI, M.; OUNI, A. Detecting android smells using multi-objective genetic
programming. 2017. 122–132 p.

83

KESSENTINI, M.; VAUCHER, S.; SAHRAOUI, H. Deviance from perfection is a better
criterion than closeness to evil when identifying risky code. In: IEEE/ACM INT. CONF. ON
AUTOMATED SOFTWARE ENGINEERING, 2010. Proceedings. . . . p. 113–122.

KHOMH, F.; DI PENTA, M.; GUEHENEUC, Y.-G. An exploratory study of the impact of
code smells on software change-proneness. In: WORKING CONFERENCE ON REVERSE
ENGINEERING, 2009., 2009. Anais. . . . p. 75–84.

KHOMH, F. et al. Bdtex: a gqm-based bayesian approach for the detection of antipatterns.
Journal of Systems and Software, v. 84, n. 4, p. 559–572, 2011.

KHOMH, F. et al. An exploratory study of the impact of antipatterns on class change-and
fault-proneness. Empirical Software Engineering, v. 17, n. 3, p. 243–275, 2012.

KITCHENHAM, B. A. Systematic review in software engineering: where we are and where
we should be going. 2012. 1–2 p.

KITCHENHAM, B. A.; BUDGEN, D.; BRERETON, O. P. Using mapping studies as the
basis for further research–a participant-observer case study. Information and Software
Technology, v. 53, n. 6, p. 638–651, 2011.

KOKOL, P.; KOKOL, M.; ZAGORANSKI, S. Code smells: a synthetic narrative review.
arXiv preprint arXiv:2103.01088, 2021.

KOTSIANTIS, S. B.; ZAHARAKIS, I. D.; PINTELAS, P. E. Machine learning: a review of
classification and combining techniques. Artificial Intelligence Review, v. 26, n. 3,
p. 159–190, 2006.

KREIMER, J. Adaptive detection of design flaws. Electronic Notes in Theoretical
Computer Science, v. 141, n. 4, p. 117–136, 2005.

KRISHNA, R.; MENZIES, T.; LAYMAN, L. Less is more: minimizing code reorganization
using xtree. Information and Software Technology, v. 88, p. 53–66, 2017.

KUUTILA, M. et al. Time pressure in software engineering: a systematic review.
Information and Software Technology, v. 121, p. 106257, 2020.

LACERDA, G. et al. Code smells and refactoring: a tertiary systematic review of challenges
and observations. Journal of Systems and Software, v. 167, p. 110610, 2020.

LENARDUZZI, V. et al. Are sonarqube rules inducing bugs? 2020. 501–511 p.

LEW, S.-L. et al. Usability factors predicting continuance of intention to use cloud e-learning
application. Heliyon, v. 5, n. 6, p. e01788, 2019.

LI, J. et al. Software defect prediction via convolutional neural network. In: INT. CONF. ON
SOFTWARE QUALITY, RELIABILITY AND SECURITY, 2017. Anais. . . . p. 318–328.

LI, Z.; WANG, Y.; WANG, K.-S. Intelligent predictive maintenance for fault diagnosis and
prognosis in machine centers: industry 4.0 scenario. Advances in Manufacturing, v. 5, n. 4,
p. 377–387, 2017.

LIPOW, M. Prediction of software failures. Journal of Systems and Software, v. 1, p. 71–75,
1979.

84

LIU, H. et al. Schedule of bad smell detection and resolution: a new way to save effort. IEEE
transactions on Software Engineering, v. 38, n. 1, p. 220–235, 2011.

LIU, H. et al. Are smell-based metrics actually useful in effort-aware structural
change-proneness prediction? an empirical study. In: ASIA-PACIFIC SOFTWARE
ENGINEERING CONFERENCE (APSEC), 2018., 2018. Anais. . . . p. 315–324.

LUJAN, S. et al. A preliminary study on the adequacy of static analysis warnings with respect
to code smell prediction. In: ACM SIGSOFT INTERNATIONAL WORKSHOP ON
MACHINE-LEARNING TECHNIQUES FOR SOFTWARE-QUALITY EVALUATION, 4.,
2020. Proceedings. . . . p. 1–6.

MACIA, I. et al. On the relevance of code anomalies for identifying architecture degradation
symptoms. In: EUROPEAN CONF. ON SOFTWARE MAINTENANCE AND
REENGINEERING, 2012., 2012. Anais. . . . p. 277–286.

MACIA, I. et al. Are automatically-detected code anomalies relevant to architectural
modularity? an exploratory analysis of evolving systems. 2012. 167–178 p.

MANEERAT, N.; MUENCHAISRI, P. Bad-smell prediction from software design model
using machine learning techniques. 2011. 331–336 p.

MARTÍNEZ-FERNÁNDEZ, S. et al. Continuously assessing and improving software quality
with software analytics tools: a case study. IEEE access, v. 7, p. 68219–68239, 2019.

MENZEN, J. P.; FARIAS, K.; BISCHOFF, V. Using biometric data in software engineering: a
systematic mapping study. Behaviour & Information Technology, v. 40, n. 9, p. 880–902,
2021.

MOHA, N. et al. Decor: a method for the specification and detection of code and design
smells. IEEE Transactions on Software Engineering, v. 36, n. 1, p. 20–36, 2009.

MORENO-INDIAS, I. et al. Statistical and machine learning techniques in human
microbiome studies: contemporary challenges and solutions. Frontiers in Microbiology,
v. 12, p. 277, 2021.

MULLER, S. C.; FRITZ, T. Using (bio) metrics to predict code quality online. In: IEEE/ACM
38TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE), 2016.,
2016. Anais. . . . p. 452–463.

MUMTAZ, H. et al. An empirical study to improve software security through the application
of code refactoring. Information and Software Technology, v. 96, p. 112–125, 2018.

MUMTAZ, H.; SINGH, P.; BLINCOE, K. A systematic mapping study on architectural smells
detection. Journal of Systems and Software, v. 173, p. 110885, 2021.

NAGAPPAN, N.; BALL, T.; ZELLER, A. Mining metrics to predict component failures. In:
INT. CONF. ON SOFTWARE ENGINEERING, 28., 2006. Proceedings. . . . p. 452–461.

OIZUMI, W. et al. Code anomalies flock together: exploring code anomaly agglomerations for
locating design problems. In: IEEE/ACM 38TH INT. CONF. ON SOFTWARE
ENGINEERING (ICSE), 2016., 2016. Anais. . . . p. 440–451.

85

PAIVA, T. et al. On the evaluation of code smells and detection tools. Journal of Software
Engineering Research and Development, v. 5, n. 1, p. 1–28, 2017.

PALOMBA, F. et al. Do they really smell bad? a study on developers’ perception of bad
code smells. 2014. 101–110 p.

PALOMBA, F. et al. Toward a smell-aware bug prediction model. IEEE Transactions on
Software Engineering, v. 45, n. 2, p. 194–218, 2017.

PALOMBA, F. et al. On the diffuseness and the impact on maintainability of code smells: a
large scale empirical investigation. Empirical Software Engineering, v. 23, n. 3,
p. 1188–1221, 2018.

PAULO SOBRINHO, E. V. de; DE LUCIA, A.; ALMEIDA MAIA, M. de. A systematic
literature review on bad smells—5 w’s: which, when, what, who, where. IEEE Transactions
on Software Engineering, 2018.

PECORELLI, F.; Di Nucci, D. Adaptive selection of classifiers for bug prediction: a
large-scale empirical analysis of its performances and a benchmark study. Science of
Computer Programming, v. 205, p. 102611, 2021.

PETERSEN, K. et al. Systematic mapping studies in software engineering. In: INT. CONF.
ON EVALUATION AND ASSESSMENT IN SOFTWARE ENGINEERING (EASE) 12, 12.,
2008. Anais. . . . p. 1–10.

PETERSEN, K.; VAKKALANKA, S.; KUZNIARZ, L. Guidelines for conducting systematic
mapping studies in software engineering: an update. Information and Software Technology,
v. 64, p. 1–18, 2015.

PETRE, M. “no shit” or “oh, shit!”: responses to observations on the use of uml in
professional practice. Software & Systems Modeling, v. 13, n. 4, p. 1225–1235, 2014.

PHAN, A. V. et al. Automatically classifying source code using tree-based approaches. Data
& Knowledge Engineering, v. 114, p. 12–25, 2018.

PLOSCH, R. et al. On the relation between external software quality and static code analysis.
In: ANNUAL SOFTWARE ENGINEERING WORKSHOP, 32., 2008. Anais. . . . p. 169–174.

POPOOLA, S.; ZHAO, X.; GRAY, J. Evolution of bad smells in labview graphical models. J.
Object Technol., v. 20, n. 1, p. 1–1, 2021.

PRÄHOFER, H. et al. Static code analysis of iec 61131-3 programs: comprehensive tool
support and experiences from large-scale industrial application. IEEE Transactions on
Industrial Informatics, v. 13, n. 1, p. 37–47, 2016.

RAJKOVIC, K.; ENOIU, E. Nalabs: detecting bad smells in natural language requirements
and test specifications. arXiv preprint arXiv:2202.05641, 2022.

RASOOL, G.; ARSHAD, Z. A review of code smell mining techniques. Journal of Software:
Evolution and Process, v. 27, n. 11, p. 867–895, 2015.

RASOOL, G.; ARSHAD, Z. A lightweight approach for detection of code smells. Arabian
Journal for Science and Engineering, v. 42, n. 2, p. 483–506, 2017.

86

REIS, J. P. dos; ABREU, F. B. e; CARNEIRO, G. d. F. Code smells detection 2.0:
crowdsmelling and visualization. 2017. 1–4 p.

RIVAS, A. et al. A predictive maintenance model using recurrent neural networks. In:
INTERNATIONAL WORKSHOP ON SOFT COMPUTING MODELS IN INDUSTRIAL
AND ENVIRONMENTAL APPLICATIONS, 2019. Anais. . . . p. 261–270.

RUBERT, M.; FARIAS, K. On the effects of continuous delivery on code quality: a case study
in industry. Computer Standards & Interfaces, v. 81, p. 103588, 2022.

RWEMALIKA, R. et al. Smells in system user interactive tests. arXiv preprint
arXiv:2111.02317, 2021.

RäIHä, O. A survey on search-based software design. Computer Science Review, v. 4, n. 4,
p. 203–249, 2010.

SAAD, S. M.; BAHADORI, R.; JAFARNEJAD, H. The smart sme technology readiness
assessment methodology in the context of industry 4.0. Journal of Manufacturing
Technology Management, 2021.

SABIR, F. et al. A systematic literature review on the detection of smells and their evolution in
object-oriented and service-oriented systems. Software: Practice and Experience, v. 49, n. 1,
p. 3–39, 2019.

SAHIN, D. et al. Code-smell detection as a bilevel problem. Transactions on Software
Engineering and Methodology, v. 24, n. 1, p. 1–44, 2014.

SANTOS, J. A. M. et al. A systematic review on the code smell effect. Journal of Systems
and Software, v. 144, p. 450–477, 2018.

SARAZIN, A. et al. Toward information system architecture to support predictive
maintenance approach. In: Enterprise interoperability viii. p. 297–306.

SCHACH, S. R. et al. Maintainability of the linux kernel. IEE Proceedings-Software, v. 149,
n. 1, p. 18–23, 2002.

SCHMIDT, B.; WANG, L. Predictive maintenance of machine tool linear axes: a case from
manufacturing industry. Procedia manufacturing, v. 17, p. 118–125, 2018.

SHAH, K. et al. A comparative analysis of logistic regression, random forest and knn models
for the text classification. Augmented Human Research, v. 5, n. 1, p. 1–16, 2020.

SHARMA, T.; MISHRA, P.; TIWARI, R. Designite: a software design quality assessment
tool. In: INTERNATIONAL WORKSHOP ON BRINGING ARCHITECTURAL DESIGN
THINKING INTO DEVELOPERS’ DAILY ACTIVITIES, 1., 2016. Proceedings. . . . p. 1–4.

SHARMA, T.; SPINELLIS, D. A survey on software smells. Journal of Systems and
Software, v. 138, p. 158–173, 2018.

SHIPPEY, T.; BOWES, D.; HALL, T. Automatically identifying code features for software
defect prediction: using ast n-grams. Information and Software Technology, v. 106,
p. 142–160, 2019.

87

SJØBERG, D. I. et al. Quantifying the effect of code smells on maintenance effort. IEEE
Transactions on Software Engineering, v. 39, n. 8, p. 1144–1156, 2012.

SJøBERG, D. I. et al. Quantifying the effect of code smells on maintenance effort. IEEE
Transactions on Software Engineering, v. 39, n. 8, p. 1144–1156, 2013.

SOH, Z. et al. Do code smells impact the effort of different maintenance programming
activities? 2016. 393–402 p. v. 1.

SOMMERVILLE, I. Software engineering 9th edition. ISBN-10, v. 137035152, p. 18, 2011.

SOUSA, B. L.; BIGONHA, M. A.; FERREIRA, K. A. A systematic literature mapping on the
relationship between design patterns and bad smells. In: ANNUAL ACM SYMPOSIUM ON
APPLIED COMPUTING, 33., 2018. Proceedings. . . . p. 1528–1535.

SOUSA, L. et al. Identifying design problems in the source code. , 2018.

STOIAN, N.-A. Machine learning for anomaly detection in iot networks: malware analysis
on the iot-23 data set. 2020. B.S. thesis — University of Twente, 2020.

SURYANARAYANA, G.; SAMARTHYAM, G.; SHARMA, T. Refactoring for software
design smells: managing technical debt.

TAKAHASHI, A. et al. An extensive study on smell-aware bug localization. Journal of
Systems and Software, v. 178, p. 110986, 2021.

TAYLOR, R. N. Software architecture and design. In: Handbook of software engineering.
p. 93–122.

THOTA, M. K. et al. Survey on software defect prediction techniques. International Journal
of Applied Science and Engineering, v. 17, n. 4, p. 331–344, 2020.

TOLLIN, I. et al. Change prediction through coding rules violations. In: INT. CONF. ON
EVALUATION AND ASSESSMENT IN SOFTWARE ENGINEERING, 21., 2017, New
York, NY, USA. Proceedings. . . . p. 61–64. (EASE’17).

TSENG, M.-L. et al. Sustainable industrial and operation engineering trends and challenges
toward industry 4.0: a data driven analysis. Journal of Industrial and Production
Engineering, p. 1–18, 2021.

UCHÔA, A. et al. Predicting design impactful changes in modern code review: a large-scale
empirical study. In: IEEE/ACM 18TH INTERNATIONAL CONFERENCE ON MINING
SOFTWARE REPOSITORIES (MSR), 2021., 2021. Anais. . . . p. 471–482.

Uchôa, A. et al. How does modern code review impact software design degradation? an
in-depth empirical study. In: IEEE INT. CONF. ON SOFTWARE MAINTENANCE AND
EVOLUTION (ICSME), 2020., 2020. Anais. . . . p. 511–522.

VIDAL, S. et al. Jspirit: a flexible tool for the analysis of code smells. In: INT. CONF. OF
THE CHILEAN COMPUTER SCIENCE SOCIETY (SCCC), 2015., 2015. Anais. . . . p. 1–6.

VIDAL, S. et al. Identifying architectural problems through prioritization of code smells.
2016. 41–50 p.

88

VIDAL, S. et al. On the criteria for prioritizing code anomalies to identify architectural
problems. In: ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 31., 2016.
Proceedings. . . . p. 1812–1814.

WALTER, B.; ALKHAEIR, T. The relationship between design patterns and code smells: an
exploratory study. Information and Software Technology, v. 74, p. 127–142, 2016.

WANG, S.; BANSAL, C.; NAGAPPAN, N. Large-scale intent analysis for identifying
large-review-effort code changes. Information and Software Technology, v. 130, p. 106408,
2021.

WERNER, C. et al. The lack of shared understanding of non-functional requirements in
continuous software engineering: accidental or essential? In: IEEE 28TH INTERNATIONAL
REQUIREMENTS ENGINEERING CONFERENCE (RE), 2020., 2020. Anais. . . . p. 90–101.

WIERINGA, R. et al. Requirements engineering paper classification and evaluation criteria: a
proposal and a discussion. Requirements engineering, v. 11, n. 1, p. 102–107, 2006.

WŁODARSKI, L. et al. Qualify first! a large scale modernisation report. 2019. 569–573 p.

WOHLIN, C. Guidelines for snowballing in systematic literature studies and a replication in
software engineering. In: INT. CONF. ON EVALUATION AND ASSESSMENT IN
SOFTWARE ENGINEERING, 18., 2014. Anais. . . . p. 1–10.

WOHLIN, C. et al. Experimentation in software engineering.

WONG, W. Y.; YU, S. W.; TOO, C. W. A systematic approach to software quality assurance:
the relationship of project activities within project life cycle and system development life
cycle. In: CONF. ON SYSTEMS, PROCESS AND CONTROL, 2018. Anais. . . . p. 123–128.

XU, Z. et al. Ldfr: learning deep feature representation for software defect prediction. Journal
of Systems and Software, v. 158, p. 110402, 2019.

YAMASHITA, A.; MOONEN, L. Do code smells reflect important maintainability aspects?
In: INT. CONF. ON SOFTWARE MAINTENANCE, 28., 2012. Anais. . . . p. 306–315.

YAMASHITA, A.; MOONEN, L. Do code smells reflect important maintainability aspects?
In: IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE (ICSM),
2012., 2012. Anais. . . . p. 306–315.

ZHANG, L. et al. Odor prediction and aroma mixture design using machine learning model
and molecular surface charge density profiles. Chemical Engineering Science, v. 245,
p. 116947, 2021.

ZHOU, C.; THAM, C.-K. Graphel: a graph-based ensemble learning method for distributed
diagnostics and prognostics in the industrial internet of things. In: IEEE 24TH
INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS
(ICPADS), 2018., 2018. Anais. . . . p. 903–909.

ZIMMERMANN, T.; PREMRAJ, R.; ZELLER, A. Predicting defects for eclipse. In: THIRD
INT. WORKSHOP ON PREDICTOR MODELS IN SOFTWARE ENGINEERING
(PROMISE’07: ICSE WORKSHOPS 2007), 2007. Anais. . . . p. 9–9.

89

.3 Grammar SmellDSL

1 grammar org.smelldsl.SmellDsl with org.eclipse.xtext.common.

Terminals

2

3 generate \textit{SmellDSL} "http://www.smelldsl.org/SmellDsl"

4

5 Domainmodel:

6 (elements+=Type)*;

7

8 Type:

9 SmellType | Smell | Rule;

10

11 SmellType:

12 ’smelltype’ name=ID;

13

14

15 Smell:

16 ’smell’ name=ID (’extends’ superType=[SmellType])? ’{’

17 (smellcontent+=Feature)*

18 (symptom?=Symptom)?

19 (treatment?=Treatment)?

20 ’}’;

21

22 Feature:

23 ’feature’ name=ID (optscales?=Optscale)? ’with threshold’ (

measures+=Measure)* ;

24

25 Optscale:

26 ’is’ (scaletype=Scaletype);

27

28 enum Scaletype:

29 Nominal=’Nominal’ | Ordinal=’Ordinal’ | Interval=’Interval’ |

Ratio=’Ratio’;

30

31

32 Measure: name=ID | name=ID ’,’ (measure=Measure) ;

33

34 Symptom:

35 ’symptom’ name=ID;

36

90

37 Treatment:

38 ’treatment’ name=ID;

39

40 Rule:

41 ’rule’ name=ID ’when’ (logicExpression+=LogicExpression)* ’then’ (

result+=Result)*;

42

43 LogicExpression:

44 (expression=Expression) | (expression=Expression) (logicOperator

=LogicOperator) (logicExpression=LogicExpression);

45

46 enum LogicOperator:

47 AND=’AND’ | OR=’OR’;

48

49 Expression:

50 ID(’.’ID) (relationalOperator+=RelationalOperator) ID(’.’ID);

51

52 enum RelationalOperator:

53 GreaterThanOrEqualTo=’>=’ | LessThanOrEqualTo=’<=’ | NotEqualTo=

’!=’ | LessThan=’<’ | GreaterThan=’>’ | EqualTo=’==’;

54

55 Result:

56 name=ID;

57

58 }

59

Listing 1: Grammar SmellDSL

.4 Diagram SmellDSL

91

Figure 17: Diagram SmellDSL 01

	Introduction
	Problem Statement
	Research Questions
	Objectives
	Methodology
	Outline

	Background
	Software design
	Design problems
	Prediction of design problems

	Related Work
	Mapping of Literature
	Planning
	Objective and research questions
	Search strategy
	Elaboration of the Search String
	Exclusion and inclusion criteria
	Data extraction
	Study Filtering
	Results
	RQ1: What are the design problems explored by prediction techniques?
	RQ2: What aspects are considered for predicting design problems?
	RQ3: Which techniques have been used to predict design problems?
	RQ4: What would be the contributions?
	RQ5: What research methods were used?
	RQ6: Where have the studies been published?
	Discussion and future directions
	Distribution of primary studies
	Future challenges
	Threats to validity

	Analysis of the Literature on Domain-Specific Languages for Specifying Bad Smells
	Analysis of related works
	Comparative analysis of the selected related works

	Proposed Approach
	Overview of the SmellGuru approach
	Component-based architecture

	Domain-Specific Language for Specification of Bad Smells
	Language Design Decisions
	Language Grammar
	Implementation Aspects

	Machine Learning Model for Predicting Design Problems
	Methodology
	Classifier - Random Forest Algorithm
	Predictive model
	Description of Dataset
	Implementation Aspects
	A Proposal of SmellGuru Dashboard
	An extension of the approach
	Experimental Design
	Operation

	Evaluation
	Evaluation SmellDSL
	Research Objective and Questions SmellDSL
	Study Variables
	Hypotheses and Analysis Procedure
	Experimental Tasks
	Context and Selection of Participants
	Results SmellDSL
	Conclusion and Future Works

	Evaluation of Model SmellGuru for Predicting Design Problems
	RQ1: Can the presence of code smells impact the design?
	RQ2: What is the performance of ML algorithms for predicting impact and non-impact design changes?
	RQ3: What features are the best indicators of change that impact design?
	Discussion

	Evaluation SmellGuru Proposed Model
	Context and Selection of Participants

	Conclusion and Future Work
	Contribuitions
	Limitations

	References

