A DINÂMICA DE INOVAÇÃO TECNOLÓGICA NA AGROINDÚSTRIA NO RIO GRANDE DO SUL: UM CASO COMPARATIVO ENTRE A PRODUÇÃO E O BENEFICIAMENTO DE ARROZ E DE SOJA

São Leopoldo

2020
A DINÂMICA DE INOVAÇÃO TECNOLÓGICA NA AGROINDÚSTRIA NO RIO GRANDE DO SUL: UM CASO COMPARATIVO ENTRE A PRODUÇÃO E O BENEFICIAMENTO DE ARROZ E DE SOJA

Tese apresentada como requisito parcial para obtenção do título de Doutor em Engenharia de Produção, pelo Programa de Pós-Graduação em Engenharia de Produção e Sistemas da Universidade do Vale do Rio dos Sinos - UNISINOS

Orientador: Prof. Dr. André Korzenowski
Co-orientador: Prof. Dr. José Antônio Valle Antunes Júnior

São Leopoldo
2020
B333d Batista, Eduardo Roberto Soares.
A dinâmica de inovação tecnológica na agroindústria no Rio Grande do Sul: um caso comparativo entre a produção e o beneficiamento de arroz e de soja / Eduardo Roberto Soares Batista. – 2020.
326 f.: il.; 30 cm.

“Orientador: Prof. Dr. André Korzenowski; co-orientador: Prof. Dr. José Antônio Valle Antunes Júnior”.

CDU 63

Dados Internacionais de Catalogação na Publicação (CIP)
(Bibliotecário: Flávio Nunes – CRB 10/1298)
RESUMO

A inovação tecnológica está presente nas diferentes etapas da cadeia de valor do agronegócio. O crescimento da produção de grãos no Estado do Rio Grande do Sul nas últimas décadas estimulou a demanda e o lançamento de novos produtos que atendessem à crescente necessidade por mais produtividade e lucratividade. O objetivo principal do trabalho consistiu em analisar as inovações que ocorreram nos equipamentos relativos ao beneficiamento de arroz e de soja nos últimos 50 anos, comparando a dinâmica de inovações da unidade de análise de beneficiamento com a de produção de grãos. O método de pesquisa baseou-se em pesquisa documental e entrevistas. A pesquisa documental proporcionou, através da adoção do método histórico, uma visão sobre a sequência de inovações incorporadas na produção e beneficiamento de arroz e soja. As entrevistas com atores da cadeia produtiva do grão (produtores e fabricantes de equipamentos) identificaram de que forma as inovações ocorreram nesta cadeia, ressaltando os mecanismos de implementação, os aspectos motivadores e as restrições à adoção das inovações. Os resultados sugerem que o dinamismo da inovação tecnológica nos equipamentos de beneficiamento de grãos foi menor do que os relacionados ao de produção de grãos. A contribuição teórica dessa tese é a de mostrar quais foram esses aspectos e as razões pelas quais foram mais preponderantes em uma unidade de análise do que na outra. A pesquisa mostrou que a base em que as empresas competem, de que forma as inovações são dependentes umas das outras, e a necessidade de uma ação conjunta de empresas para apresentar uma solução ao produtor foram fatores fundamentais para o incentivo das inovações tecnológicas. Na unidade de análise de produção de grãos, a competição mais baseada na tecnologia do que no preço, com a presença de algumas inovações disruptivas, incentivou o aprimoramento dos equipamentos. Na produção de grãos, a maior dependência entre as inovações de insumos ou equipamentos resultou em um impulso de inovações associadas de diferentes empresas. A necessidade de ações conjuntas entre as empresas da unidade de produção para a proposta de soluções mais completas para os produtores incentivou a aproximação entre as empresas. Esses fatores foram menos relevantes na dinâmica de inovação da unidade de beneficiamento de grãos, na qual foi verificado um predomínio de inovações incrementais, individualizadas e reativas em relação ao aumento de produtividade decorrente das inovações na produção.

ABSTRACT

Technological innovation is present in different stages of the agribusiness value chain. The growth of grain production in the State of Rio Grande do Sul in recent decades has stimulated the demand and the launch of new products that meet the growing need for more productivity and profitability. The main objective of this work is to analyse the innovations that have occurred in the equipments related to the processing of rice and soybeans in the last 50 years, comparing the dynamic of innovations in the processing analysis unit with that of grain production. The research method is based on documentary research and interviews. Documentary research provided, through the adoption of the historical method, a view on the sequence of innovations incorporated in the production and processing of rice and soybeans. The interviews with actors in the grain production chain (producers and equipment manufacturers) identified how innovations occurred in this chain, highlighting the implementation mechanisms, the motivating aspects and the restrictions on the adoption of innovations. The results suggest that the dynamism of technological innovation in grain processing equipments was less than that related to grain production. The theoretical contribution of this thesis is to show what were these aspects and the reasons why they were more prevalent in one unit of analysis than in the other. The research showed that the basis on which companies compete, how innovations are dependent on each other, and the need for joint action by companies to present a solution to the producer were key factors in encouraging technological innovations. In the grain production analysis unit, competition based more on technology than on the price, with the presence of some disruptive innovations, encouraged the improvement of equipments. In grain production, the greater dependence on input or equipment innovation has resulted in a boost of associated innovations from different companies. The need for joint actions between companies in the production unit to propose more complete solutions for producers encouraged the approximation between the companies. These factors were less relevant in the grain processing unit’s innovation dynamic. In this analysis unit there were a predominance of incremental, individualized and reactive innovations in response to the increase in productivity resulting from the innovation in production.

Key words: Innovation dynamic. Agricultural technology. Rice processing. Soybean processing.
<table>
<thead>
<tr>
<th>Figura</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dimensões de um sistema setorial de inovação</td>
<td>57</td>
</tr>
<tr>
<td>2</td>
<td>Etapas do método de trabalho</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>Triangulação dos resultados</td>
<td>74</td>
</tr>
<tr>
<td>4</td>
<td>Crescimento da produção de soja e arroz no total de grãos colhidos no RS</td>
<td>76</td>
</tr>
<tr>
<td>5</td>
<td>Etapas da produção de grãos</td>
<td>85</td>
</tr>
<tr>
<td>6</td>
<td>Etapas do beneficiamento nas instalações do produtor</td>
<td>89</td>
</tr>
<tr>
<td>7</td>
<td>Instalações de recebimento, secagem armazenagem de grãos</td>
<td>89</td>
</tr>
<tr>
<td>8</td>
<td>Diagrama de boa conservação dos grãos</td>
<td>98</td>
</tr>
<tr>
<td>9</td>
<td>Produtividade (kg/ha) de arroz e de soja no RS</td>
<td>101</td>
</tr>
<tr>
<td>10</td>
<td>Ciclo da agricultura de precisão em três etapas</td>
<td>103</td>
</tr>
<tr>
<td>11</td>
<td>Durabilidade das pontas de pulverização</td>
<td>109</td>
</tr>
<tr>
<td>12</td>
<td>Máquina de pré-limpeza</td>
<td>122</td>
</tr>
<tr>
<td>13</td>
<td>Aberturas das chapas perfuradas</td>
<td>127</td>
</tr>
<tr>
<td>14</td>
<td>Sistema de amortecimento e espalhamento</td>
<td>130</td>
</tr>
<tr>
<td>15</td>
<td>Corte transversal de máquina de pré-limpeza</td>
<td>131</td>
</tr>
<tr>
<td>16</td>
<td>Máquina de pré-limpeza e filtro de mangas</td>
<td>132</td>
</tr>
<tr>
<td>17</td>
<td>Peneira rotativa</td>
<td>133</td>
</tr>
<tr>
<td>18</td>
<td>Secador estático de leito fixo</td>
<td>138</td>
</tr>
<tr>
<td>19</td>
<td>Fluxos de ar no processo de secagem</td>
<td>140</td>
</tr>
<tr>
<td>20</td>
<td>Secador com um plenum central</td>
<td>141</td>
</tr>
<tr>
<td>21</td>
<td>Secador com múltiplas colunas</td>
<td>142</td>
</tr>
<tr>
<td>22</td>
<td>Fluxo de ar em um secador de cavaletes</td>
<td>142</td>
</tr>
<tr>
<td>23</td>
<td>Módulo de montagem de secadores</td>
<td>143</td>
</tr>
<tr>
<td>24</td>
<td>Fluxo de ar quente por insuflamento e por exaustão</td>
<td>143</td>
</tr>
<tr>
<td>25</td>
<td>Secadores de fluxo intermitente e de fluxo contínuo</td>
<td>145</td>
</tr>
<tr>
<td>26</td>
<td>Distribuidor autotransportado de grãos</td>
<td>163</td>
</tr>
<tr>
<td>27</td>
<td>Distribuidor de grãos em um silo graneleiro</td>
<td>163</td>
</tr>
<tr>
<td>28</td>
<td>Ventilador com queimador de GLP</td>
<td>169</td>
</tr>
<tr>
<td>29</td>
<td>Distribuição de sensores em um silo</td>
<td>170</td>
</tr>
<tr>
<td>30</td>
<td>Elevador de canecas</td>
<td>173</td>
</tr>
<tr>
<td>31</td>
<td>Módulo superior do elevador de canecas</td>
<td>174</td>
</tr>
<tr>
<td>32</td>
<td>Módulo convencional do pé do elevador de canecas</td>
<td>175</td>
</tr>
</tbody>
</table>
Figura 33 – Módulo autolimpante do pé do elevador de canecas 175
Figura 34 – Canecas em paralelo .. 176
Figura 35 – Transportador helicoidal .. 180
Figura 36 – Transportador de correia ... 182
Figura 37 – Rolotes do transportador de correia .. 182
Figura 38 – Transportador de corrente ... 185
LISTA DE TABELAS

Tabela 1 – Palavras-chave e base de dados utilizadas………………………………………….. 67
Tabela 2 – Fabricantes entrevistados das duas unidades de análise 70
Tabela 3 – Produtores entrevistados ... 70
Tabela 4 - Participação do Rio Grande do Sul no total nacional safra 2016/2017 75
Tabela 5 - Produção de grãos no Rio Grande do Sul 1950 – 2015 76
Tabela 6 – Exportação e importação de arroz (Brasil e Rio Grande do Sul) 81
Tabela 7 – Volume de exportação de soja do Rio Grande do Sul para a China.......... 84
Tabela 8 – Teor máximo de umidade recomendado para armazenamento de grãos 93
LISTA DE QUADROS

Quadro 1 – Proposições da pesquisa... 59
Quadro 2 - Objetivos específicos e sua abordagem ... 65
Quadro 3 - Classificação dos silos.. 159
Quadro 4 – Comparação das constatações entre as duas unidades de análise.............................211
Quadro 5 – Objetivos, proposições e resultados... 228
LISTA DE ABREVIATURAS

<table>
<thead>
<tr>
<th>Abreviação</th>
<th>Descricao</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABIARROZ</td>
<td>Associação Brasileira da Indústria do Arroz</td>
</tr>
<tr>
<td>ABIAP</td>
<td>Associação Brasileira das Indústrias de Arroz Parboilizado</td>
</tr>
<tr>
<td>ABIMAQ</td>
<td>Associação Brasileira da Indústria de Máquinas e Equipamentos</td>
</tr>
<tr>
<td>ABNT</td>
<td>Associação Brasileira de Normas Técnicas</td>
</tr>
<tr>
<td>ANP</td>
<td>Agência Nacional do Petróleo</td>
</tr>
<tr>
<td>APROSOJA</td>
<td>Associação dos Produtores de Soja do Rio Grande do Sul</td>
</tr>
<tr>
<td>BDBTD</td>
<td>Biblioteca Digital Brasileira de Teses e Dissertações</td>
</tr>
<tr>
<td>CBAP</td>
<td>Comissão Brasileira de Agricultura de Precisão</td>
</tr>
<tr>
<td>CCR</td>
<td>Capacity Constraints Resources</td>
</tr>
<tr>
<td>CEPAN</td>
<td>Centro de Estudos e Pesquisas em Agronegócio</td>
</tr>
<tr>
<td>CEPEA</td>
<td>Centro de Estudos Avançados em Economia Aplicada</td>
</tr>
<tr>
<td>CNA</td>
<td>Confederação Nacional de Agricultura</td>
</tr>
<tr>
<td>COC</td>
<td>Composição Orgânica do Capital</td>
</tr>
<tr>
<td>CONAB</td>
<td>Companhia Nacional de Abastecimento</td>
</tr>
<tr>
<td>CT&I</td>
<td>Ciência, Tecnologia e Inovação</td>
</tr>
<tr>
<td>EMBRAPA</td>
<td>Empresa Brasileira de Pesquisa Agropecuária</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>FARSUL</td>
<td>Federação da Agricultura do Estado do Rio Grande do Sul</td>
</tr>
<tr>
<td>FEDERARROZ</td>
<td>Federação dos Arrozeiros do Rio Grande do Sul</td>
</tr>
<tr>
<td>FEE</td>
<td>Fundação de Economia e Estatística</td>
</tr>
<tr>
<td>GEPAI</td>
<td>Grupo de Estudos e Pesquisas Agroindustriais</td>
</tr>
<tr>
<td>GLP</td>
<td>Gás Liquefeito de Petróleo</td>
</tr>
<tr>
<td>GM</td>
<td>Geneticamente Modificado</td>
</tr>
<tr>
<td>GN</td>
<td>Gás Natural</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>IBGE</td>
<td>Instituto Brasileiro de Geografia e Estatística</td>
</tr>
<tr>
<td>ILP</td>
<td>Integração Lavoura Pecuária</td>
</tr>
<tr>
<td>INU</td>
<td>Inertial Navigation Unit</td>
</tr>
</tbody>
</table>
SUMÁRIO

1 INTRODUÇÃO ... 14
 1.1 OBJETO E PROBLEMA DE PESQUISA ... 15
 1.2 OBJETIVOS .. 18
 1.3 JUSTIFICATIVA ... 19
 1.3.1 Contexto da Prática ... 20
 1.3.2 Contexto Acadêmico ... 23
 1.4 DELIMITAÇÃO DA PESQUISA ... 25
 1.5 ESTRUTURA DO TRABALHO .. 26

2 FUNDAMENTAÇÃO TEÓRICA ... 28
 2.1 ECONOMIA DA INOVAÇÃO ... 28
 2.1.1 Os Primórdios do Estudo da Mudança Tecnológica .. 29
 2.1.2 Antecessores dos Neo-schumpeterianos ... 35
 2.1.3 Teorias da Inovação segundo os Neo-schumpeterianos 41
 2.1.3.1 Teoria Evolucionária ... 42
 2.1.3.2 Estímulos para a Inovação: Demanda e Oportunidade Tecnológica 43
 2.1.3.3 Inovações Disruptivas e Inovações Incrementais 48
 2.1.3.4 Trajetória da Inovações Tecnológicas .. 49
 2.1.3.5 Sistemas Setoriais de Inovação .. 55

3 PROCEDIMENTOS METODOLÓGICOS .. 60
 3.1 CLASSIFICAÇÃO DA PESQUISA ... 60
 3.2 MÉTODO DE TRABALHO ... 63

4 PRODUÇÃO E PROCESSAMENTO DE ARROZ E SOJA NO RIO GRANDE DO SUL ... 75
 4.1 PRODUÇÃO DE ARROZ E SOJA NO RIO GRANDE DO SUL 75
 4.1.1 Evolução do Plantio de Arroz e Soja no Rio Grande do Sul 78
 4.2 ETAPAS DA PRODUÇÃO DE ARROZ E SOJA ATÉ A COLHEITA 85
 4.3 ETAPAS DO BENEFICIAMENTO DE ARROZ E DE SOJA 88
 4.3.1 Pré-Limpeza dos Grãos .. 89
4.3.2 Secagem dos Grãos

4.3.3 Transporte dos Grãos e Dispositivos de Descarga

4.3.4 Armazenagem de Grãos

5 INOVAÇÕES TECNOLÓGICAS NAS DUAS UNIDADES DE ANÁLISE

5.1 EQUIPAMENTOS E INSUMOS PARA A PRODUÇÃO DE GRÃOS

5.1.1 Agricultura de Precisão

5.1.2 Internet e Transmissão de Dados

5.1.3 Defensivos Agrícolas, Fertilizantes e sua Aplicação

5.1.4 Irrigação

5.1.5 Sementes

5.1.6 Máquinas Agrícolas

5.1.6.1 Tratores

5.1.6.2 Plantadeiras

5.1.6.3 Pulverizadoras

5.1.6.4 Colheitadeiras

5.2 EQUIPAMENTOS PARA O BENEFICIAMENTO DE GRÃOS

5.2.1 Equipamento de Pré-Limpeza de Grãos

5.2.2 Equipamentos para Secagem de Grãos

5.2.2.1 Circulação de Ar

5.2.2.2 Capacidade de Secagem

5.2.2.3 Controle de Descarga dos Silos

5.2.2.4 Termometria e Malhas de Controle

5.2.2.5 Fornalhas e Combustíveis

5.2.2.6 Inovações nos Equipamentos de Secagem

5.2.3 Equipamentos de Armazenagem de Grãos

5.2.3.1 Aspectos Construtivos

5.2.3.2 Carregamento dos Silos e Armazéns

5.2.3.3 Descarga dos Silos
5.2.3.4 Sistemas de Aeração e Termometria ... 165
5.2.3.5 Inovação nos Equipamentos de Armazenagem .. 171
5.2.4 Equipamentos para a Movimentação de Grãos ... 172
5.2.4.1 Transportadores Verticais ... 172
5.2.4.1.1 Elevador de Canecas .. 172
5.2.4.1.2 Inovação dos Transportadores Verticais ... 178
5.2.4.2 Transportadores Horizontais ... 179
5.2.4.2.1 Transportador Helicoidal .. 179
5.2.4.2.2 Transportador de Correia .. 181
5.2.4.2.3 Transportador de Corrente .. 184
5.2.4.2.4 Inovações nos Transportadores Verticais .. 185
5.3 SÍNTESE DAS INOVAÇÕES TECNOLÓGICAS NAS UNIDADES DE ANÁLISE 186

6 ANÁLISE E DISCUSSÃO DOS RESULTADOS .. 188
6.1 ANÁLISE DAS ENTREVISTAS – FABRICANTES DE EQUIPAMENTOS 188
6.1.1 Síntese das Respostas dos Fabricantes ... 201
6.2 ANÁLISE DAS ENTREVISTAS – PRODUTORES DE ARROZ E SOJA 202
6.2.1 Síntese das Respostas dos Produtores ... 210
6.3 DISCUSSÃO DAS PROPOSIÇÕES ... 211
6.4 SÍNTESE E CONTRIBUIÇÃO TEÓRICA DA PESQUISA 224

7 CONSIDERAÇÕES FINAIS .. 227
7.1 LIMITAÇÕES DA PESQUISA ... 231
7.2 SUGESTÕES PARA TRABALHOS FUTUROS ... 232

REFERÊNCIAS .. 234

APÊNDICE A: PROTOCOLOS DE ENTREVISTAS ... 251
APÊNDICE B: RESPOSTAS DAS ENTREVISTAS ... 254
1 INTRODUÇÃO

O crescimento agrícola das últimas quatro décadas pode ser basicamente explicado pelo aumento da produtividade, esta entendida como a quantidade de grãos produzida por hectare. Segundo Chaddad (2017), o Brasil foi pioneiro no investimento pesado em tecnologias agrícolas e em sistemas de produção adaptados às condições tropicais. Um exemplo disso é a área do bioma cerrado, representando cerca de 200 milhões de hectares que, até algumas décadas atrás, era considerada de valor limitado para a agricultura devido à acidez de seu solo e escassez de nutrientes. Segundo esse autor, com Pesquisa e Desenvolvimento (P&D) de tecnologia apropriada, o cerrado foi responsável por grande parte do crescimento da produção agrícola no país. A produção de grãos teve um crescimento vertiginoso, principalmente em relação à soja, que passou a ser cultivada de forma cada vez mais intensa no Mato Grosso, atualmente o Estado com a maior produção agrícola nacional. (CHADDAD, 2017).

Entre os principais estados produtores agrícolas no Brasil, a posição do Rio Grande do Sul a nível nacional é de considerável importância. Ao longo do século XX, o Estado tornou-se um grande produtor dos principais grãos do país, como soja, arroz, milho e trigo, totalizando em 2019 34 milhões de toneladas. (CONAB, 2019). O Rio Grande do Sul é o maior produtor

\(^1\) Pelo critério metodológico do Cepea/Esalq-USP, o PIB do agronegócio é medido pela ótica do produto, ou seja, pelo Valor Adicionado (VA) total deste setor na economia. Ademais, avalia-se o VA a preços de mercado (consideram-se os impostos indiretos menos subsídios relacionados aos produtos). O PIB do agronegócio brasileiro refere-se, portanto, ao produto gerado de forma sistêmica na produção de insumos para a agropecuária, na produção primária e se estendendo por todas as demais atividades que processam e distribuem o produto ao destino final. (CNA/ESALQ-CEPEA).
nacional de arroz, o segundo maior produtor de trigo, o terceiro maior produtor de soja e o sexto produtor de milho. No Brasil, estes quatro grãos representam 95% do total da safra, tendo o Estado do Rio Grande do Sul uma participação de 15,2% desse total. (CONAB, 2019). O Estado também colabora com aproximadamente um décimo do Valor Adicionado Bruto (VAB)\(^2\) da agropecuária do Brasil. (IBGE, 2020).

1.1 OBJETO E PROBLEMA DE PESQUISA

Este trabalho insere-se no contexto do chamado agronegócio. Para uma maior precisão conceitual, deve-se ressaltar que existe uma substancial diferença entre agropecuária e agronegócio. O conceito de agronegócio deriva da expressão *agribusiness*, atribuída aos professores de Harvard, Davis e Goldberg, em 1957, e refere-se à soma total das operações de produção e distribuição de suprimentos agrícolas; das operações de produção na fazenda; do armazenamento, do processamento e da distribuição dos produtos agrícolas e itens produzidos a partir deles. (BATALHA; SILVA, 2007). Para Davis e Goldberg, o *agribusiness* moderno não pode ser visto como o resultado de um plano preconcebido. Ao invés disso, ele é o produto de forças complexas e evolutivas que atuam mais ou menos espontaneamente, sem uma coordenação central. Assim, enquanto a agropecuária está centrada nas atividades realizadas no âmbito da propriedade rural, o conceito de agronegócio, de base empresarial ou familiar, engloba toda a cadeia produtiva. (FEIX; LEUSIN, 2015).

Batalha e Silva (2007) entendem que agricultura não pode ser compreendida isolada de outros agentes que interferem nas atividades e que garantem produção, transformação, distribuição e consumo de alimentos. Somente uma abordagem sistêmica permite entender a dinâmica do processo que engloba desde a produção e fornecimento de insumos até o consumidor final, o qual é denominado Sistema Agroindustrial (SAI). O SAI é entendido como “o conjunto de atividades que concorrem para a produção de produtos agroindustriais, desde a produção dos insumos até a chegada ao produto final. Ele não está associado a nenhuma matéria-prima agropecuária ou produto final específico.” (BATALHA; SILVA, 2007, p. 10).

Segundo Araújo (2005), o agronegócio pode ser dividido em três segmentos: antes da portei, dentro da portei e depois da portei. O segmento antes da portei abrange os insumos necessários à produção agropecuária, o desenvolvimento de novas sementes e a

\(^2\) O Valor Adicionado Bruto (VAB) é o valor que cada setor da economia (agropecuária, indústria e serviços) acresce ao valor final de tudo que foi produzido em uma região. O Produto Interno Bruto (PIB) é a soma dos VABs setoriais e dos impostos, e é a principal medida do tamanho total de uma economia (FEE, 2017).
fabricação da maquinaria utilizada na lavoura. O segmento dentro da porteira refere-se à produção agropecuária propriamente dita, até o fornecimento do produto ao beneficiador. Por fim, o segmento depois da porteira compreende as etapas de processamento e distribuição dos produtos agropecuários até o consumidor final.

No crescimento produtivo destes três segmentos, a inovação tem um papel fundamental. A inovação é importante não apenas no empreendimento individual, mas cada vez mais como a fonte principal do crescimento econômico em proporções nacionais. (TIDD; BESSANT, 2015). A inovação tem sido um instrumento fundamental para a competitividade das firmas. (TERUYA; LIMA; WINTER, 2015). O crescimento da produção agrícola está fortemente ligado à adoção de um contínuo processo de inovação entre os diferentes atores da cadeia produtiva da agroindústria. (VIEIRA FILHO; FISHLOW, 2017; MENDES; BUAINAIN; FASIABEN, 2015). Avanços ocorridos no século XX, tais como a adoção de máquinas na lavoura, manipulação genética de sementes, fertilização do solo, novos métodos de irrigação e proteção de culturas, e a agricultura de precisão resultaram em um aumento da produtividade agrícola. (PHAM; STACK, 2018; MIRANDA et al., 2019).

Dentre os vários conceitos de inovação, a Organização para Cooperação e Desenvolvimento Econômico (OCDE), através do Manual de Oslo, procurou orientar e padronizar conceitos, metodologias e construção de estatísticas e indicadores de pesquisa de P&D de países industrializados. Esse manual tem sido uma das principais referências para as atividades de inovação na indústria brasileira que se quer cada vez mais competitiva. Segundo o Manual de Oslo (OCDE, 2018, p. 20),

Uma inovação é um processo ou produto novo ou melhorado (ou uma combinação deles) que difere significativamente dos processos ou produtos anteriores da unidade e que têm estado à disposição para potenciais usuários (produtos) ou colocados em uso pela unidade (processo) ³.

Segundo o Manual de Oslo (2018), há dois tipos de inovação: inovação de produto e inovação de processo de negócio. O presente trabalho analisa a dinâmica da inovação de produto nos equipamentos de produção e beneficiamento de grãos, mais especificamente de soja e de arroz. Segundo a OCDE (2018, p.34), “uma inovação de produto é um produto ou serviço novo ou melhorado que diferencia-se significativamente dos anteriores produtos ou

³ Tradução livre do autor. “An innovation is a new or improved product or process (or a combination thereof) that differs significantly from the unit’s products or processes and that has been made available to potential users (product) or brought into use by the unit (process)”.
serviços da firma e que já foi introduzido no mercado⁴. No caso da inovação de produto, a empresa pode ganhar uma vantagem competitiva, o que lhe confere a possibilidade de maior demanda e maiores margem sobre custos.

A inovação de produto está no âmbito da inovação tecnológica. As inovações de produto podem ocorrer em indústrias que se deparam com um forte aumento de demanda de seus produtos ou por demanda de maior qualidade. No caso de inovações que aumentam a produtividade, a empresa pode adquirir uma vantagem de custo sobre seus competidores. Isso permite uma margem mais elevada sobre custos para o preço de mercado prevalecente em relação a seus competidores. Isso é particularmente importante no caso de produção em grande escala de commodities⁵, onde o custo acaba diluindo-se com uma utilização mais efetiva dos equipamentos. O produtor agrícola depende tanto da produtividade quanto do preço das commodities. (WOLFERT; GE; BOGAARDT, 2017).

Jank e Nassar (2000), afirmam que a competitividade dos sistemas agroindustriais, está vinculada em três grandes blocos: a) capacidade produtiva/tecnológica, relacionada às vantagens de custos que são reflexos da produtividade dos fatores de produção e/ou logística; b) a capacidade de inovação, relacionada aos investimentos públicos ou privados em ciência, tecnologia e inovação, e formação de capital humano; c) capacidade de coordenação, capacidade de receber, processar, difundir e utilizar informações de modo a definir e viabilizar estratégias competitivas, efetuar controles e reagir às mudanças no meio ambiente.

Um dos fatores que impulsionam a adoção de inovações tecnológicas é a demanda. A demanda de mercado pode originar-se de firmas privadas, do governo ou de consumidores, mas, na sua ausência, por maior que seja o fluxo de invenções, nem todas poderão ser convertidas em inovações. (FREEMAN; SOETE, 2008). A decisão de inovar geralmente ocorre sob grande incerteza, mas, normalmente, são vistas como uma maior oportunidade de crescimento ou defesa daquilo que já obtiveram. A incerteza, no entanto, pode levar as empresas a hesitar em implementar mudanças significativas quando elas encontram um ambiente volátil. (ROSENBERG, 1994).

As empresas inovam em decorrência de diferentes fatores. Uma empresa pode ter um comportamento reativo e inovar para evitar perder mercado para um competidor inovador, ou pode ter um comportamento pró-ativo para ganhar posições de mercado estratégicas frente a

⁴ Tradução livre do autor. “A product innovation is a new or improved good or service that differs significantly from the firm’s previous goods or services and that has been introduced on the market”.

⁵ “Uma commodity caracteriza-se por atender a pelo menos três requisitos: i)-padronização em um contexto de comércio internacional; ii)-possibilidade de entregar nas datas acordadas entre comprador e vendedor; iii)-possibilidade de armazenagem ou de venda em unidades padronizadas.” (AZEVEDO, 2007).
seus competidores. (OCDE, 2018). Segundo Porter (1989), as mudanças tecnológicas sustentam os processos de reestruturação industrial e influenciam o posicionamento competitivo das empresas na estrutura setorial e em seus mercados. Adicionalmente, as empresas também inovam para aproveitar uma oportunidade de redução de custo, seja por um processo tecnológico novo, seja para o aproveitamento de uma fonte energética tornada mais barata. (ROSENBERG, 2006).

O crescimento da produtividade agrícola no Estado deve-se, em boa parte, à incorporação de tecnologia na agricultura. A agricultura de precisão e o plantio direto, por exemplo, tornam mais eficiente o manejo no campo. A utilização de sementes transgênicas (geneticamente modificadas, GM), principalmente na soja e no milho, responde pelo crescimento da produtividade. Principalmente no referente à soja, a produção de transgênicos cresceu muito nos últimos anos. Entre as principais razões para essa maciça mudança está na facilidade do manejo e na utilização mais efetiva de herbicidas e fungicidas que as variedades convencionais de soja não suportam. (BATISTA, 2015).

O crescimento da produção agrícola ecoa em outros segmentos industriais. Com o aumento da área cultivada e a crescente produtividade por hectare, é coerente pensar que equipamentos de maior capacidade e processamento mais rápido sejam necessários. Do mesmo modo, meios de transporte e fontes de energia de menor custo passam a ser mais demandados. Dessa forma, as empresas produtoras de equipamentos agrícolas, tanto para os produtores (para dentro de porteira), quanto para os processadores dos grãos (depois da porteira) tiveram que modernizar-se e incorporar tecnologia em seus produtos para acompanhar o fluxo do sistema.

Esse trabalho busca, através de uma análise histórica da inovação e incorporação tecnológica na agroindústria, entender quais foram os indutores da inovação tecnológica na produção e no beneficiamento de arroz e de soja. Dentro da abrangência de beneficiamento, o trabalho inclui as etapas de transporte, limpeza, secagem, e armazenagem dos grãos. Dessa forma, a pergunta que norteou o trabalho é “como ocorreu a dinâmica de inovações tecnológicas nos equipamentos de beneficiamento de arroz e soja, e de que forma ela se diferencia em relação à dinâmica de inovação na produção desses grãos?”

1.2 OBJETIVOS

O presente trabalho busca, através de uma análise histórica da inovação e incorporação tecnológica na agroindústria de grãos, entender quais foram seus determinantes, indutores e relações de complementaridade entre as inovações. Entender como se deu o processo de incorporação de tecnologia e inovação nesse setor auxilia a compreensão dos fatores que
alavancaram esse crescimento. Tendo essa situação presente, **o objetivo principal do trabalho é analisar as inovações que ocorreram nos equipamentos relativos ao beneficiamento de arroz e de soja nos últimos 50 anos, comparando essa dinâmica de inovações com as que ocorreram na produção desses grãos.**

São os seguintes os objetivos específicos:

a-) Descrever as inovações tecnológicas mais representativas nos equipamentos de beneficiamento de arroz e de soja (unidade de análise de beneficiamento de grãos);

b-) Descrever as inovações tecnológicas mais representativas nos insumos e equipamentos para a produção de arroz e de soja (unidade de análise de produção de grãos);

c-) Analisar e diferenciar entre as inovações tecnológicas aquelas que são incrementais das inovações disruptivas nas duas unidades de análise consideradas, de produção e de beneficiamento de arroz e de soja;

d-) Identificar os principais fatores que motivaram os fabricantes de máquinas e insumos agrícolas, e os fabricantes de equipamentos de beneficiamento na busca pela inovação tecnológica;

c-) Compreender de que forma os produtores se relacionam com a inovação tecnológica dos equipamentos e insumos de produção e de beneficiamento, e de que forma contribuem para a inovação tecnológica dos mesmos.

1.3 JUSTIFICATIVA

As empresas engajam-se em inovações em virtude de inúmeras razões. Seus objetivos podem envolver inovar produtos, desenvolver mercados, aumentar a eficiência, aumentar a qualidade ou desenvolver a capacidade de aprendizado e de implementação de mudanças. (ROSENBERG, 2006). Identificar os motivos que levam as empresas a inovar auxilia o exame das forças que conduzem as atividades de inovação, tais como a competição e as oportunidades de ingresso em novos mercados. (OCDE, 2018). Embora os processos envolvendo inovação tenham sido investigados em uma diversidade de ambientes organizacionais, a inovação na agroindústria dentro de uma perspectiva histórica e comparativa ainda é pouco explorada. Dessa forma, foi percebida uma oportunidade para se analisar a dinâmica tecnológica da agroindústria de arroz e de soja dentro de uma perspectiva sistemática e técnica. As justificativas para a execução dessa pesquisa baseiam-se em questões práticas e acadêmicas.
1.3.1 Contexto da Prática

O Estado do Rio Grande do Sul testemunhou um considerável aumento de sua produção de grãos ao longo das últimas décadas. (CONAB, 2019). Inserido dentro de seu sistema agroindustrial, o crescimento da produção teve efeito sobre as indústrias à montante e à jusante da produção agrícola. Na busca da compreensão de um processo de inovação tecnológica regional, não é suficiente saber se as empresas são inovadoras ou não. É necessário saber quais são os estímulos que as levam a inovar, e quais são os tipos de inovação que elas implementam. Identificar as variáveis-chave nesse modelo e sua importância relativa no todo auxiliará a entender o mecanismo de inovação tecnológica em importantes setores da economia gaúcha. A identificação e o entendimento dos determinantes e indutores da inovação tecnológica na produção, beneficiamento e armazenagem de grãos do Rio Grande do Sul é fundamental para que se compreenda os mecanismos que foram utilizados para dar sustentação a esse processo inovativo.

Na produção de arroz, além da expressiva participação no total da produção nacional (70,80%), o Rio Grande do Sul também apresenta eleva produtividade quando comparado com a produtividade nacional. (CONAB, 2019). Na safra de 2018/2019, a produtividade no estado foi de 7.381 kg/ha, enquanto que o total nacional foi de 6.156 kg/ha, incluindo o Rio Grande do Sul. Fazendo uma comparação da produção nacional, sem incluir os números do Estado, ela se reduz para 4.089 kg/ha. Isso explica o porquê de, se por um lado o estado contribuir com 70,86% da produção, ocupa somente 59,09% do total de área plantada. (CONAB, 2019; IRGA, 2019). Entre as causas dessa significativa diferença de produtividade está a utilização do sistema de produção por irrigação, predominante no Estado. Este sistema resulta em uma produtividade maior do que o sistema de produção de arroz de terras altas, também chamado de arroz de sequeiro, que predomina nas outras regiões do Brasil.

O Rio Grande do Sul é o terceiro maior produtor de soja do Brasil, com 16,68% do total. Sua produtividade é de 3.321 kg/ha, superior a do Paraná (2.989 kg/ha), segundo maior produtor nacional, e similar à do Mato Grosso (3.346 kg/ha), maior produtor nacional. (CONAB, 2019). Ao contrário do que ocorre com o arroz, no caso da soja não há uma grande diferença entre a produtividade por hectare no Rio Grande do Sul com os outros Estados. A participação no total produzido (16,68%) equivale à sua participação na área plantada (16,10%). (CONAB, 2019). Devido à importância dos grãos soja e arroz para o agronegócio do Rio Grande do Sul (78,37% do total de grãos) (CONAB, 2019), este trabalho focaliza as inovações em insumos e equipamentos relativas à produção ao beneficiamento desses dois produtos.
O crescimento da safra de grãos no Estado representa vários desafios, desde a colheita até o beneficiamento para o consumidor final. Os vários atores desse sistema agroindustrial têm suas razões para buscar equipamentos e técnicas que aprimorem suas operações tanto a um nível qualitativo quanto quantitativo. Segundo Elias, Oliveira e Vanier (2017), os investimentos na área de aumento de produtividade foram mais representativos do que os relacionados com a conservação dos grãos, como silos e secadores. Com procedimentos de plantio e colheita mais avançados tecnologicamente, como o uso de sementes de alto rendimento e utilização de agricultura de precisão para saber exatamente as condições de cada área do campo cultivado, houve um aumento de produtividade ao longo dos anos. As etapas seguintes da cadeia de valor tornaram-se restrições ao fluxo, gerando a necessidade de aprimoramento técnico. De acordo com a Teoria Das Restrições (TOC – Theory Of Constraints), esses equipamentos de beneficiamento tornaram-se CCRs (Capacity Contraints Resources), ou seja, embora em média eles apresentem uma capacidade superior à necessária, em função das variabilidades que ocorrem no sistema podem apresentar restrições de capacidade. (ANTUNES et al, 2008).

O período de safra caracteriza-se pelo foco de não perder tempo para realizar a colheita. O produtor tem pressa em colher o grão quando este atinge o estado de maturidade adequado. As condições climáticas podem tornar-se adversas, afetando a qualidade do grão ainda na planta, como chuvas torrenciais que podem destruí-la em seu estado maduro. Por essa razão, os agricultores buscam equipamentos que lhes proporcionem rapidez na colheita e secagem dos grãos. A tecnologia incorporada nos equipamentos de pós-colheita visa basicamente aumentar a rapidez de seu processo, como mais toneladas por hora, sem prejudicar a qualidade do produto. Os secadores têm um papel central nesse processo, pois o grão não deve ser armazenado com a umidade de colheita sob o risco de deterioração. Até algum tempo atrás era comum ver nas instalações dos produtores o descompasso entre colheita e secagem pois, sendo a primeira mais rápida do que a segunda, havia o acúmulo de cargas antes do secador por este ser uma restrição do processo. Isto não só representava um risco para o grão, como também imobilizava equipamentos carregados com grãos durante a espera de secagem. Os secadores aprimoraram-se com o tempo, otimizando o fluxo do ar quente em seu interior, e reduzindo, consequentemente, o tempo de residência do grão no processo. A capacidade estática também

6 Por quantitativo, entende-se a quantidade em unidade de massa processada por unidade de tempo no equipamento. Por qualitativo, entende-se as condições de operação do equipamento de forma a não prejudicar o grão (quebras, aumento de umidade e outros danos), mantendo-o dentro das características desejadas de qualidade.
foi aumentada, e os secadores volumosos e altos passaram a ser uma figura de realce nas instalações. (BROOK, 1992; WEBER, 2005; ELIAS, OLIVEIRA; VANIER, 2017).

Em relação à armazenagem, atualmente há um déficit no Rio Grande do Sul de 15,45% da armazenagem de grãos, ou seja, se tudo o que for colhido tiver que ser armazenado, cerca de 15% da produção não terá onde ser colocada. Em termos de número, a safra do Rio Grande do Sul em 2017 foi de 34,82 milhões de toneladas, mas a capacidade estática⁷ de armazenagem era de 28,78 milhões de toneladas. (CULOSSI, 2017). No cálculo do espaço disponível para armazenar a safra colhida deve ser levado em conta o chamado estoque de passagem, ou seja, a quantidade de grãos ainda no estoque ao iniciar a nova safra.

O armazenamento de grãos é uma das opções que o agricultor possui para tentar elevar seus ganhos com a venda com maior poder de barganha de seu produto (ELIAS; OLIVEIRA; VANIER, 2017). Caso o preço na safra não seja compatível com as necessidades do agricultor, como geralmente é o caso nos momentos de aumento da oferta, o agricultor que não tiver vendido antecipadamente seu produto tem a opção de armazená-lo para vendê-lo em um período mais propício, como na entressafra, quando o valor tende a aumentar. Isso exige o armazenamento de grãos em silos apropriados que conservem a qualidade do produto, o que significa dizer incorporação de tecnologia em um processo não tão simples.

O grão continua com suas atividades metabólicas depois de colhido, aumentando sua temperatura e liberando umidade. (ELIAS; OLIVEIRA; VANIER, 2017). O silo deve proporcionar um ambiente que contrabalance essa tendência, preservando o grão. Esse é um problema particularmente importante para os arrozeiros, pois o fornecimento para o mercado interno abrange a maior parte da produção, ficando as exportações e importações mais sujeitas à variação do dólar. Embora essa quantidade de estoque de passagem varie de ano para ano, ela já atingiu valores muito grandes, como em 2012, quanto cerca de 2,5 milhões de toneladas de arroz ainda estavam armazenadas quando iniciou a nova safra. (FEE, 2017).

Tendo em vista a importância econômica desses grãos para o Estado, é pertinente entender de que forma se diferenciam a dinâmica de inovação tecnológica entre a produção do grão e o seu posterior beneficiamento e armazenagem. A sistematização e o entendimento desse processo abrem possibilidades para que o acidental se torne um mecanismo institucionalizado,

⁷ Capacidade estática é o espaço disponível em silos. Ou seja, a quantidade de grãos que pode ser armazenada nas estruturas existentes no momento na região considerada, nesse caso, Rio Grande do Sul. A capacidade dinâmica é o giro de estoque, expressando, assim, a capacidade de armazenagem em um determinado período de tempo.
ou seja, reconhecer quais são os aspectos que devem ser reforçados e estimulados para que o processo de inovação tecnológica se aprimore e se prolongue.

1.3.2 Contexto Acadêmico

A relação entre crescimento econômico e progresso técnico tem sido pesquisada há diversas décadas em diferentes contextos e países. Artigos seminais de Abramovitz (1956) e Solow (1957) exploraram a importância quantitativa do progresso técnico no crescimento econômico de longo prazo na economia norte-americana. Esses autores se diferiam sob vários aspectos em itens como períodos de tempo, escopo e metodologia básica. Entretanto, concordavam em que somente uma parcela muito pequena do crescimento de longo prazo do produto per capita norte-americano podia ser explicada por um aumento dos insumos de capital e mão-de-obra. Ambos os artigos sugeriam de maneira vigorosa que o crescimento no produto per capita tem dependido muito mais do aumento da produtividade dos recursos do que do uso de mais recursos. O aumento da produtividade dos recursos está ligado diretamente à tecnologia incorporada a eles.

Desde os estudos de Schumpeter (1997, 2017) relacionando inovação e desenvolvimento econômico, a inovação tornou-se um objeto de pesquisa constante em diferentes áreas do conhecimento. Os chamados neo-schumpeterianos, provenientes principalmente da área da economia, procuraram entender como as inovações estão encadeadas (ROSENBERG, 2006); como ocorrem as rotinas de aprendizado (NELSON; WINTER, 2012); a importância do fluxo intersetorial de tecnologia (ROSENBERG; MOWERY, 2012); formas de difusão de novas tecnologias (ROSENBERG, 2006; LANDES, 2005); determinantes da introdução de inovações (SCHMOOKLER, 1962; ROSENBERG, 1969; DOSI, 2006; FREEMAN, 1979); paradigmas e trajetórias tecnológicas (DOSI, 2006; NELSON; WINTER, 1977; FREEMAN; LOUÇA, 2004); processos de implementação de inovações radicais e incrementais (ROSENBERG; MOWERY, 2012); inovações e revoluções tecnológicas (PÉREZ, 2004; FREEMAN; PEREZ, 1988); a importância de um Sistema Nacional de Inovação (SNI) para o desenvolvimento tecnológico do país (FREEMAN; SOETE, 2008); e análise da inovação em diferentes indústrias a partir do Sistema Setorial de Inovação em que estão inseridas (MALERBA, 2002; MALERBA, 2005).

Dosi (2006), definiu paradigma tecnológico como um modelo ou padrão de solução de problemas tecnológicos selecionados, baseado em uma tecnologia existente. Historicamente, a emergência e a difusão de novos paradigmas tecnológicos têm sido associadas com o
aparecimento de inovações radicais inter-relacionadas e com alto poder de inserção, com potencial de serem usadas em diferentes setores da economia, e capazes de direcionar novos avanços tecnológicos por várias décadas. (FREEMAN; LOUÇÃ, 2004). Dessa forma, o conceito de paradigma tecnológico não só descreve um conjunto de características técnico-econômicas em um sentido estático, mas está inerentemente relacionado com o comportamento dinâmico do sistema, isto é, com o potencial aparecimento de novas tecnologias relacionadas. A essa direção apontada pelo paradigma tecnológico do momento e a qual as inovações estão interligadas, é chamado trajetória tecnológica. (CASTELLACCI, 2008).

Alguns estudos empíricos focam vários aspectos de padrões setoriais de inovação, ou seja, características próprias do curso da inovação levando em conta um dado momento histórico, uma determinada região geográfica ou um setor industrial específico. Esses estudos procuraram investigar os estímulos, oportunidades e restrições que esses fluxos de inovação encontraram. (MALERBA, 2002; MARSILI; VERSPAGEN, 2002; CAYE, 2018; LIMA, 2004). Embora sejam reconhecidos os benefícios da inovação, existem barreiras que devem ser identificadas para que sejam criadas estratégias de modo a superá-las. (COAD; PELLEGRINO; SAVONA, 2014; GARCIA-QUEVEDO; PELLEGRINO; SAVONA, 2016; PELLEGRINO, 2015).

A abordagem neo-schumpeteriana muito pouco debruçou-se sobre processos produtivos na agroindústria. (BICALHO; NANTES, 2010; POSSAS; SALLES-FILHO; SILVEIRA, 1996; ZAMBERLAN et al., 2010; ZAMBERLAN, 2011). Este trabalho procura preencher essa lacuna, entendendo que o embasamento da economia da inovação vista pelos neo-schumpeterianos fornece uma estrutura teórica adequada para o entendimento do processo de inovação tecnológica nessa área. Os achados deste trabalho através da pesquisa de campo e da pesquisa documental contribuem para estabelecer essa ligação, apontando um novo viés pelo qual analisar a incorporação de tecnologia em uma área que movimenta boa parte da economia estadual.
1.4 DELIMITAÇÃO DA PESQUISA

Na busca em compreender como ocorreu a inovação tecnológica da agroindústria de arroz e soja, alguns recortes fazem-se necessário na pesquisa. O primeiro recorte será geográfico, com foco na produção de arroz e de soja do Estado do Rio Grande do Sul. Este recorte foi estabelecido pela importância do Estado na produção dos grãos escolhidos, pela familiaridade do autor com essa região e pela proximidade com os produtores e fabricantes de insumos e equipamentos. A maior parte das entrevistas realizadas foram realizando in loco, o que trouxe a vantagem ao pesquisador de ver pessoalmente os equipamentos estudados, tanto os mais antigos quanto os mais novos.

O segundo recorte refere-se aos produtos abordados. Embora grande parte dos insumos e equipamentos para os diferentes tipos de grãos sejam basicamente os mesmos, escolheu-se estudar os dois principais grãos colhidos no Rio Grande do Sul: a soja e o arroz. Juntos, representam 78% do total de grãos colhidos e 82% da área plantada no estado. (CONAB, 2019). O trigo e o milho não estão considerados neste estudo. As razões foram o seu menor volume de produção comparado aos outros dois grãos e as características próprias de seu beneficiamento. A experiência profissional do autor com o beneficiamento de arroz e soja foi outro fator que determinou sua escolha.

O terceiro recorte refere-se à abrangência dentro da sistema agroindustrial de arroz e de soja. Nesse trabalho é feita uma investigação acerca das inovações tecnológicas na indústria de insumos e de equipamentos de produção e de beneficiamento de arroz e de soja, chamadas daqui por adiante respectivamente de **unidade de análise de produção de grãos (UA1)** e **unidade de análise de beneficiamento de grãos (UA2)**. O foco das inovações é nos equipamentos de beneficiamento, nos quais são descritas com mais detalhes as inovações a eles incorporadas. Os equipamentos de beneficiamento estudados são somente os responsáveis pela limpeza de grãos (máquinas de limpeza), transporte (transportadores helicoidais, esteiras, elevadores), secagem (secadores) e armazenamento (sílos). A escolha recaiu sobre eles por serem os que tipicamente fazem parte das instalações de produtores de arroz e soja. O trabalho não inclui equipamentos de beneficiamento mais específicos das empresas que processam arroz e soja em suas diferentes modalidades de mercado. A razão dessa delimitação é a grande variedade de equipamentos e processos pelos quais passará o arroz, o farelo e o óleo de soja, aumentando muito a abrangência do trabalho e, consequentemente, sua objetividade. As inovações nos insumos, máquinas e implementos agrícolas (unidade de análise de produção de grãos) são descritas como um contra
exemplo para a diferenciar as dinâmicas de inovações nos dois momentos de produção e beneficiamento dos grãos.

O quarto recorte refere-se ao tipo de inovação que foi estudada. Neste trabalho considera-se somente as inovações de produto segundo o conceito da OCDE (2018), mais especificamente, inovações em equipamentos e insumos que possibilitaram um acompanhamento do crescimento da safra gaúcha. Sabe-se que inovação em produto também engloba, no caso do agronegócio, aquelas referentes ao produto para o consumidor final, como um novo produto oriundo de arroz ou outro tipo de proteína de soja. Para este trabalho, no entanto, essas inovações de produto são consideradas apenas caso exijam uma modificação nos equipamentos que as processam.

Este trabalho não tem a pretensão de determinar quais foram os limites/ fronteiras tecnológicas na trajetória tecnológica adotada pela inovação na agroindústria, ou até que ponto a competição por preço de venda influenciou a incorporação de tecnologia nos equipamentos para a agroindústria, aspectos estudados em contextos diferentes respectivamente por Dosi (1982) e por Rosenberg (2006). Também reconhecida como delimitação do trabalho está a identificação das causas das mudanças no ambiente econômico que estimularam o progresso técnico na agroindústria do Rio Grande do Sul.

1.5 ESTRUTURA DO TRABALHO

Este trabalho apresenta a seguinte estrutura. No Capítulo 1 são apresentados o contexto em que se situa a pesquisa, a apresentação do problema, os objetivos principal e específicos, a
justificativa, a delimitação e a estrutura do mesmo. O Capítulo 2 é composto pelo referencial teórico que dá base à pesquisa, envolvendo aspectos da teoria da inovação. No Capítulo 3 é apresentada a metodologia empregada na execução da pesquisa. O Capítulo 4 aborda a evolução do cultivo de soja e arroz no Estado e descreve as etapas seguidas na produção e no beneficiamento dos grãos dentro das instalações do produtor. No capítulo 5 são descritas as inovações tecnológicas que ocorreram nas duas unidades de análise examinadas, com uma maior ênfase na de beneficiamento de grãos. O Capítulo 6 analisa as respostas dos questionários submetidos aos fabricantes de equipamentos e produtores, e identifica as diferenças entre as dinâmicas de inovação nas duas unidades de análise. Este capítulo também apresenta a verificação das proposições levantadas através de uma triangulação das entrevistas e pesquisa documental nas duas unidades de análise, produção e beneficiamento. Por fim, o trabalho apresenta um último capítulo com considerações finais, limitações e sugestões de pesquisas futuras.
2 FUNDAMENTAÇÃO TEÓRICA

Tendo em vista os objetivos do trabalho, o capítulo 2 abrange o referencial teórico referente à economia da inovação. A teoria sobre economia da inovação apresenta a evolução do pensamento sobre a importância da inovação tecnológica para o crescimento industrial e econômico, e de que forma isso ocorre em diferentes perspectivas. Dentro desse conceito mais abrangente, são descritas as teorias sobre como a inovação tecnológica emana entre os setores industriais e na sociedade, o que as motiva e de que forma estão relacionadas. Como escolha metodológica, foi dada preferência para trabalhos seminais sobre esse tema, entendendo que trabalhos posteriores referentes a inovação foram construídos sobre essas mesmas bases.

2.1 ECONOMIA DA INOVAÇÃO

O crescimento e a competitividade de uma nação dependem profundamente da natureza de seu sistema de mudança técnica. (VIOTTI, 2003). A inovação e a mudança tecnológica são vistas como fatores inerentes ao crescimento e desenvolvimento da economia. Embora isso hoje em dia possa parecer lógico, em virtude da rapidez com que novas tecnologias adentram e saem de nossas vidas, isso nem sempre foi assim. Os estudiosos do passado não tinham a mesma perspectiva que se tem hoje em dia da importância do progresso tecnológico. Da mesma forma, as razões da incorporação de tecnologia em um processo ou produto, ou o modo como isso acontece nos diferentes setores produtivos, ainda é fruto de pesquisas e discussões. O objetivo desse capítulo é fazer uma abordagem histórica de como a inovação e a mudança tecnologia foram e são consideradas por aqueles que se dispuseram a estudá-las e a considerá-las em um modelo de crescimento econômico. Embora a perspectiva desse trabalho seja uma abordagem mais microeconômica, a nível da empresa, é essencial considerar a empresa como fazendo parte de um contexto econômico mais abrangente, ou seja, os aspectos macroeconômicos que possam determinar seu comportamento e opções de crescimento.

Embora reconhecida já no século XIX como um aspecto causal do crescimento econômico, a inovação e mudança tecnológica, não haviam sido sistematicamente estudadas até o século XX. No século XVIII, Adam Smith busca entender como cresce a riqueza nacional de um país. Logo no início de sua obra, A Riqueza das Nações (obra publicada em 1776), é ressaltado o aumento de produtividade em decorrência da especialização do trabalho. Marx (obra publicada em 1867) e List (obra publicada em 1841) abordaram a tecnologia como um fator para o crescimento econômico e evolução do capitalismo. Para Marx (2013), a inovação
A tecnológica era um fator que afetava a composição orgânica do capital e estaria na raiz da própria crise do capitalismo pela resultante redução da mais-valia. List (1986) defendia a atuação do Estado para o desenvolvimento tecnológico industrial e o crescimento econômico, principalmente através da proteção de indústrias nascentes. No final do século XIX predominou a visão neoclássica de um estado de equilíbrio estático da economia de mercado baseado nas curvas de oferta e demanda e preço dos fatores de produção, através das obras de Jevons (obra publicada em 1871), Menger (obra publicada em 1871) e Walras (obra publicada em 1874). Contra-ponto-se a esse modelo de equilíbrio estático surge Schumpeter (obras publicadas em 1911, 1939 e 1942) que, por sua vez, será a fonte de uma série de derivações de outras teorias, através dos economistas chamados de neo-schumpeterianos, como Giovanni Dosi, Richard Nelson, Sidney Winter, Nathan Rosenberg, Christopher Freeman, Keith Pavitt, entre outros. Edith Penrose foi uma autora que seguiu uma linha paralela no estudo da firma, procurando descobrir se havia algo inerente na natureza interna das firmas que tanto promovia o seu ritmo de crescimento como o limitava. Malerba (2002), por sua vez, estudou a inovação dentro de sistemas setoriais, ressaltando a importância do grau de interação entre as dimensões conhecimento, atores e instituições dentro de um setor, sendo este caracterizado como um conjunto de firmas heterogêneas unidas por processos produtivos semelhantes que trocam algum conhecimento comum.

2.1.1 Os primórdios do Estudo da Mudança Tecnológica

Em sua obra *A Riqueza das Nações*, de 1776, Adam Smith procurou identificar os fatores da formação da riqueza nacional. Antecipando a noção de ganhos de escala, Smith explica como o mercado opera e qual a importância do aumento do tamanho dos mercados para reduzir os custos médios de produção, proporcionando, desse modo, lucros mais altos. É bem conhecido o exemplo que Smith mostra de uma fábrica de alfinetes, no qual compara a produtividade da fábrica quando um mesmo funcionário é responsável por todas as etapas de produção do alfinete, e quando essas atividades são designadas para operadores especializados que executam apenas um passo do processo. Segundo Smith (2009, p. 17),

O aperfeiçoamento da destreza do operário irá fatalmente aumentar a quantidade de trabalho que ele é capaz de realizar, e a divisão de trabalho, ao reduzir o trabalho de cada pessoa a uma simples operação, e por tornar essa operação o único emprego de sua vida, necessariamente faz aumentar de modo considerável a destreza do trabalhador.
Também segundo Smith (2009, p.15), “a divisão do trabalho, até onde pode ser introduzida, causa, em cada uma das artes, um aumento proporcional da capacidade produtiva do trabalho.” A produção em grande quantidade utilizando os mesmos recursos antecipa o que será conhecido como aumento de produtividade. Smith estava considerando esse aumento de produtividade através da ação sobre o trabalho humano, o que será reproduzido de forma aprofundada e metódica na linha de produção fordista no início do século XX.

No século XIX, dois teóricos alemães, Karl Marx e George F. List, abordaram a questão do progresso técnico e a relação com trabalho e crescimento econômico. Embora abordassem a questão da tecnologia através de perspectivas diferentes, chegaram a algumas conclusões que influenciaram estudosos do século XX. List foi um autor seminal para o que virá a ser chamado de Sistema Nacional de Inovação (SNI), estudado por, entre outros, Freeman e Soete (2008). Marx, por sua vez, além das amplas repercussões políticas de sua doutrina que incentivou a criação de um novo sistema econômico, abordou a tecnologia do ponto de vista da substituição do trabalho, o que ainda é válido para justificar a transformação de sistemas produtivos.

Para Marx (2013), o dinamismo tecnológico estava diretamente associado à emergência histórica das instituições capitalistas. Em sua visão, o capitalismo leva a uma imensa expansão da produtividade, através do qual o sistema cria instituições e incentivos especialmente poderosos para acelerar tanto a mudança tecnológica como a acumulação de capital. A razão para isso é que a classe capitalista é a primeira classe dirigente na história cujos interesses estão indissoluvelmente ligados à mudança tecnológica e não à manutenção do status quo. (ROSENBERG, 2006).

Para o propósito desse trabalho, Marx traz duas importantes contribuições. A primeira foi em relação ao aumento da produtividade através da substituição do trabalho do homem pelo da máquina. A segunda é o processo de indução do progresso técnico que um setor provoca nos demais ligados a ele. Quanto ao primeiro aspecto, a implementação de inovação tecnológica em um processo pode ter várias finalidades, entre elas a economia de mão-de-obra. Abordando a questão por esse ângulo, Marx torna-se um teórico fundamental. Para Marx, o progresso técnico expressa-se sempre pelo aumento da produtividade do trabalho. Em termos de valor, o progresso técnico é dado pela diminuição do valor-trabalho incorporado em um bem. (BRESSER-PEREIRA, 1986). A finalidade das máquinas utilizadas no modo capitalista, segundo Marx (2013), é baratear mercadorias e encurtar a parte da jornada de trabalho que o trabalhador necessita para si mesmo, a fim de prolongar a outra parte de sua jornada, que ele dá gratuitamente para o capitalista. Também de acordo com Marx (2013, p. 449),
A máquina da qual parte a Revolução Industrial substitui o trabalhador, que maneja uma única ferramenta, por um mecanismo que opera com uma massa de ferramentas iguais ou semelhantes de uma só vez, e que é movimentada por uma única força motriz, qualquer que seja a sua forma.

Segundo Bresser-Pereira (1986), há progresso técnico quando, no processo de acumulação de capital, novas técnicas são introduzidas de modo a reduzir a quantidade de trabalho direto e indireto incorporado em um bem. Marx (2013) afirma que a adoção de tecnologia é motivada pela possibilidade de redução do tempo gasto pelo trabalhador para a produção de uma unidade individual do produto, com a consequente redução da parcela relativa ao seu salário no custo total do produto. Isso é claramente entendido como o aumento de produtividade do trabalhador, conceito chave para entender a constante pressão por redução de custos a que as indústrias processadoras de commodities sempre estão sujeitas, como os produtores e processadores de arroz e de soja.

A substituição de homens por máquinas, o que é associado a progresso tecnológico, leva Marx a desenvolver o conceito de Composição Orgânica do Capital (COC). A composição orgânica do capital resulta da relação de proporcionalidade existente entre o capital constante (C) e o capital variável (V). Nas definições dadas por Marx (2013), o capital constante é constituído por todos os elementos produtivos gastos para obter-se um produto, como matérias-primas, matérias auxiliares, máquinas e instalações. O capital constante é formado por duas parcelas: pelo capital circulante, que é incorporado totalmente no produto, como as matérias-primas, e pelo capital fixo, que é incorporado gradativamente no valor do produto na medida em que eles vão se desgastando, tais como os equipamentos. Já o capital variável é definido como a quantidade de salários pagos pelo trabalho produtivo. (SINGER, 1975). A composição orgânica do capital é expressa pela fórmula $COC = C/(C+V)$. Ela será tanto mais elevada quanto maior for a parcela de capital constante em relação à parcela do capital variável. (SANDRONI, 2005).

Ao longo do tempo, a tendência das empresas é de elevar a COC, com maior utilização de maquinárias e maior consumo de matérias-primas, elementos que compõem o capital constante, paralelamente a uma redução da mão-de-obra. Essa é uma trajetória visível na agroindústria. Equipamentos cada vez mais aperfeiçoados possibilitam uma operação quase autônoma, com um operador muitas vezes coordenando uma série de equipamentos através de uma central de controle. A incorporação de tecnologia significa uma redução do capital variável, definido por Marx como os salários, na participação no custo total do produto.

O segundo aspecto ressaltado na teoria de Marx é o processo de indução de inovação tecnológica a partir de uma necessidade técnica. Segundo Marx (2013), a modificação do modo
de produção numa esfera da indústria condiciona a modificação em outra. Um exemplo dado por Marx é o da forma de energia necessária para movimentar equipamentos cada vez mais pesados de uma forma cada vez mais confiável. Ele cita o exemplo das máquinas inicialmente movimentadas por força humana, depois através de cavalos e, posteriormente, por forças da natureza, como moinhos de vento e força hidráulica. Todas essas formas de força motriz não acompanhavam as necessidades das novas máquinas. O surgimento da máquina de vapor e seu aperfeiçoamento por Watt possibilitou uma forma de força motriz mais confiável e que, ao contrário da roda d’água, é urbano, e não rural, permitindo a concentração da produção nas cidades, ao invés de dispersá-la pelo interior. (MARX, 2013). Por essa razão, Marx ressalta que, uma vez revolucionado o modo de produção em um ponto, o processo de sua difusão se inicia. Outro exemplo trazido por Marx (2013), e posteriormente estudado por Landes (2005), é que a mecanização de uma indústria em particular, por exemplo, da fiação, tornou necessária a mecanização de outras áreas relacionadas com essa, como a tecelagem, e estampagem, e a química do branqueamento. “Uma inovação radical em um ponto estratégico da estrutura produtiva deflagra um conjunto de efeitos para frente e para trás”. (ALBUQUERQUE, 2017, p. 43).

George F.List publica seu livro, *Sistema Nacional de Economia Política*, em 1841, o qual daria o embasamento teórico para a promoção do desenvolvimento e defesa da economia alemã contra o liberalismo e a penetração de produtos ingleses em seu território. List forma sua doutrina a partir da análise histórica de economias que se destacaram em termos de desenvolvimento econômico. Ele procura desmontar a ideia de que o livre-comércio é sempre o caminho mais eficiente para o desenvolvimento econômico das nações. Segundo Fonseca (2000), List procurava alicerçar em argumentos históricos as diferenças entre a Alemanha ainda não unificada e a Inglaterra, para mostrar que as leis da economia não poderiam ignorar o contexto em que se inseriam. Ele contrapunha-se aos pressupostos da economia clássica da harmonia de interesses e da visão estática do mundo.

List não era contra o livre comércio, mas dizia que o sistema de Adam Smith aplicava-se somente a nações que já se encontravam em elevado grau de desenvolvimento, mas não era aplicável a nações atrasadas. Segundo List (1986), existem interesses conflitantes em uma economia, e a ação individual não necessariamente resulta em um melhor acerto social, como propunha Adam Smith.

List (1986) tinha a ideia do todo, entendendo-se esse todo como todas as partes do sistema produtivo de uma nação, incluindo agricultura, indústria e comércio. Ele se opunha à visão individualista dos economistas clássicos, como Smith e David Ricardo, que privilegiava
a empresa, e não a nação. Esses autores clássicos, que privilegiavam a especialização e a divisão
do trabalho, menosprezavam os aspectos institucionais e culturais determinantes da criação de
forças produtivas. (BITTENCOURT; CÁRIO, 2017). A harmonia deveria ser buscada por
organismos superiores, como o Estado.

Até o protecionismo, um país poderia fazer florescer sua indústria nascente e
prosperar através do comércio tanto em seu mercado interno quanto no externo. Segundo List
(1986, p.131) “[...] o sistema protecionista pode ser justificado única e exclusivamente com
vistas ao desenvolvimento industrial da nação”. No momento em que alcançasse a sua
maturidade industrial, o protecionismo poderia ser reduzido. Na visão de List, os benefícios do
livre comércio seriam consequências e não causas das proximidades dos níveis de
desenvolvimento das nações envolvidas. (BITTENCOURT; CÁRIO, 2017). Dentro de sua
concepção protecionista, List (1986) dizia que a indústria prosperaria e agiria como um indutor
do desenvolvimento de outras áreas e no aperfeiçoamento dos métodos e processos de
produção, o que levaria ao crescimento da nação como um todo. List (1986, p. 259) ressalta a
interdependência dos setores da economia de forma a constituir um sistema, na medida em que

[...] todos os setores da indústria estão intimamente coligados e relacionados entre si;
que o aperfeiçoamento de um setor prepara e fomenta o aperfeiçoamento dos demais;
que não se pode negligenciar nenhum deles, sem que os efeitos dessa negligência
sejam sentidos por todos; que, em suma, a força manufatureira de uma nação constitui
um todo inseparável.

Durante as décadas finais do século XIX e as iniciais do século XX, o modelo
neoclássico de crescimento predominou como explicação do crescimento econômico dos
países. Com o aumento da disparidade entre países desenvolvidos e subdesenvolvidos no século
XX, surgiram teorias para explicar a causa disso. A teoria do imperialismo explicava essa
situação retomando as antigas relações colônia-metrópole (pacto colonial) e os produtos que
uma comercializava com a outra. (JESUS, 1997). Segundo essa teoria, os países colonizados
baseavam sua economia em produtos básicos, sem tecnologia e, por conseguinte, sem reações
de interdependência entre os setores da economia para proporcionar reações em cadeia para o
crescimento econômico. Os países desenvolvidos, por sua vez, investiam em produtos com
conteúdo tecnológico mais avançado, proporcionando um incentivo maior para que as empresas
investissem em tecnologia a aumentassem o valor agregado de seus produtos. (JESUS, 1997).

Os autores de inspiração neoclássica não concordavam com essa posição. Eles
estabeleceram como principais fatores de crescimento o incremento da taxa de poupança
interna, o afluxo de capitais externos e a expansão das exportações. Segundo a perspectiva
neoclássica, a produtividade de uma empresa, em qualquer momento, é simplesmente determinada pelas tecnologias disponíveis e pelas condições de mercado, basicamente os preços dos fatores de produção. Ou seja, o crescimento de uma empresa seria determinado por fatores externos e, por isso, chamados exógenos à empresa. Os principais pressupostos teóricos dos neoclássicos eram baseados no equilíbrio estável e na racionalidade maximizadora. Dessa forma, as empresas convergem para um equilíbrio produtivo condizente com o padrão tecnológico, não existindo limitações de ordem econômica ou de coleta e processamento de informações por parte dos agentes. (VIEIRA FILHO; SILVEIRA, 2011). No entanto, a partir da década de 1950, percebeu-se que o crescimento econômico visto como um crescimento das empresas que compõem um país não podia mais limitar-se ao modelo neoclássico em vista de suas estreitas limitações. (NELSON, 2014). Segundo Viera Filho e Silveira (2011, p. 270),

O conjunto de decisões das firmas diante das mudanças estruturais de mercado se insere numa competição de buscas tecnológicas, nem sempre estáveis, e em um processo de ajustamento de estratégias, fundamentado num grau elevado de incerteza, o que normalmente conduz a economia para um ponto fora do equilíbrio.

O modelo neoclássico buscou aperfeiçoar-se com Robert Solow (1957), que admitiu a possibilidade de avanços tecnológicos capazes de deslocar a função produção. Os trabalhos de Abramovitz (1956) e Solow (1957) mostram que as mudanças no nível de produto da economia não podem ser atribuídas somente aos aumentos de insumos complementares por trabalhador. Nesse modelo, existe um resíduo chamado de avanço técnico, inserido na teoria de forma que se mantenha a relação entre produtividade e crescimento dentro dos pressupostos estáticos neoclássicos. (FARIA, 2011). Segundo Solow (1957), a produção cresce à medida que aumentam seus insumos, e as empresas se deslocam ao longo de suas funções de produção na medida em que houver avanços tecnológicos.

Nesse modelo, as empresas transformam insumos em produtos dentro de uma função de produção que define a máxima produção atingível com qualquer quantidade de insumos, que, por sua vez, é determinada pelo estado do conhecimento tecnológico. Uma das principais críticas a esse modelo é presumir-se que o conhecimento tecnológico seja público, ou seja, pode ser apropriado por outros. Outro ponto a ressaltar na crítica ao modelo neoclássico é que os mercados são considerados como perfeitamente competitivos, de modo que as empresas acabam tratando os preços como parâmetros. (NELSON, 2014).

A suposição construída e incorporada ao modelo neoclássico mais simples, de que o conhecimento tecnológico é um bem público e que o crescimento é processo de equilíbrio móvel, apresenta ser inconsistente com os mecanismos que dão origem a novas tecnologias nas
economias capitalistas. As variáveis neoclássicas não levavam em conta todas as diferenças de produtividade entre empresas nem a totalidade das variáveis elas relacionadas. A incerteza, os ganhos e perdas transitórios, o caráter irregular e hesitante do avanço técnico e a diversidade das características e estratégias das firmas eram abstraídos dos processos de mudança tecnológica. (NELSON; WINTER 2012).

De uma forma geral, as principais críticas ao modelo neoclássico de crescimento é que este considera que a incorporação de tecnologia e o avanço técnico são exógenos ao sistema, ou seja, as empresas assumem um papel passivo de quando inovar. Essa posição será criticada por estudiosos que seguirão os rumos de Schumpeter e Penrose, autores que darão uma maior proeminência ao empreendedor e uma maior individualização das empresas, apresentando uma explicação endógena do projeto tecnológico.

2.1.2 Antecessores dos Neo-schumpeterianos

as principais forças que movem o progresso tecnológico e as complexas interações que definem e orientam as possíveis direções em que esse progresso ocorre, desenvolvendo o conceito de trajetórias tecnológicas. Nesta seção, procura-se fazer uma revisão destas teorias, analisando de que modo cada uma contribuiu para a compreensão do processo de inovação. A partir dessas contribuições teóricas, são construídas proposições que serão verificadas quando do levantamento da dinâmica da evolução tecnológica da agroindústria de grãos do Rio Grande do Sul.

Schumpeter está entre os primeiros economistas que consideraram a mudança técnica e o empreendedorismo como base para o crescimento econômico e dinâmico do sistema capitalista. Isso abriu espaço para uma visão heterodoxa do crescimento, com uma abordagem mais complexa, incorporando variáveis decorrentes de um exame mais cuidadoso da realidade. Em sua análise da evolução do capitalismo, Schumpeter voltou-se para outras disciplinas com o intuito de aumentar a capacidade da economia de compreender toda a complexidade da vida, o que fica claro em suas obras posteriores. Na obra *Teoria do Desenvolvimento Econômico* (publicada em 1911), Schumpeter diferencia crescimento e desenvolvimento. Segundo Schumpeter, “entenderemos por desenvolvimento, portanto, apenas as mudanças da vida econômica que não lhe forem impostas de fora, mas que surjam de dentro, por sua própria iniciativa”. (SCHUMPETER, 1997, p, 74). Crescimento econômico, por outro lado, caracteriza-se por ser um fenômeno explicado por fatos decorrentes do aumento da população e da riqueza. A diferença crucial entre os conceitos é que Schumpeter, quando escreve “surgir de dentro, por sua própria iniciativa”, ele se refere a fenômenos qualitativamente novos, ou seja, inovações. Os economistas anteriores haviam presumido que o problema está em como o capitalismo administra as estruturas existentes, ao passo que o problema relevante é como ele as cria e as destrói. Schumpeter (1997) afirma que, havendo somente crescimento, a economia funciona em um sistema de fluxo circular de equilíbrio, cujas variáveis econômicas aumentam apenas em função da expansão demográfica.

A sua teoria baseia-se na concepção de que existem duas visões na análise econômica. A primeira está relacionada com o fluxo circular da renda de acordo com a predominante teoria econômica ortodoxa. Esta teoria está focada na determinação dos preços e das quantidades nos mercados em uma situação de concorrência perfeita em um estado estacionário. Os lucros derivam-se de posições de poder de mercado, mas, desde que a situação de equilíbrio é a da concorrência perfeita, esses lucros tenderiam para zero. A segunda visão está relacionada com uma economia na qual ocorre a criação de inovações que, por sua vez, possibilitam uma adição de valor que causa distúrbios no fluxo circular da renda. A inovação está no centro do sistema,
pois o lucro é o resultado de um inovação bem-sucedida implementada na economia. (SCHUMPETER, 1997). O desenvolvimento, para esse autor, ocorre na presença de inovações tecnológicas, e estas por obra de empresários inovadores financiados pelo crédito bancário. No fluxo circular, não existindo inovação, não há necessidade de crédito, nem de empresário inovador. Com isso, os lucros não são extraordinários e os preços aproximam-se aos de concorrência perfeita. (JESUS, 1997).

Para Schumpeter (2017), capitalismo estabilizado é uma contradição de termos. O capitalismo é essencialmente um processo de mudança econômica. Sem inovações por trás das mudanças, não há empreendedores; sem a realização empresarial, não há lucro capitalista nem impulso capitalista. Partindo da ideia dos ciclos longos de Kondratiev na economia capitalista desenvolvido no início da década de 1920, Schumpeter atribuiu a emergência desses ciclos à incorporação de inovações radicais que tiveram a capacidade de impor à economia e à sociedade transformações profundas. (ALBUQUERQUE, 2017).

As empresas partem em intensa busca para obter ganhos extraordinários com as inovações, e tentam preservar sua posição de mercado perante a concorrência. Na visão schumpeteriana, a inovação é baseada em uma visão de monopólio temporário, pois o empresário, em sua busca de lucros extraordinários, vê na inovação de um produto ou prática a possibilidade de criar um monopólio durante certo tempo. (TIGRE, 2006). Dentro desse contexto, as firmas lançam novos produtos, novos serviços e novas formas de organizar a produção para a manutenção de sua sobrevivência. As empresas reagem às mudanças com adaptações, algumas de modo mais criativo. Essas reações criativas decorrem de iniciativas inovadoras de empreendedores, podendo estas assumir a forma de uma nova mercadoria, uma nova forma de organização e a abertura de novos negócios. (McCRAW, 2012).

Em sua obra publicada em 1942, Capitalismo, Socialismo e Democracia, Schumpeter populariza a expressão que se tornou mais ligada a seu nome: destruição criadora. O processo de destruição criadora é o fato essencial do capitalismo e é nele que toda empresa capitalista tem de viver. (SCHUMPETER, 2017). Essa expressão está ligada ao processo de inovações que, com sua implementação no mercado, causam uma ruptura no conhecido fluxo circular da renda e nas estruturas estabelecidas de mercado. O crescimento econômico, dessa forma, é uma sequência de processos criativos que fazem o capitalismo ter um caráter evolucionário. Segundo Schumpeter (2017, p. 119),

O impulso fundamental que põe em movimento a máquina capitalista é dado pelos novos bens de consumo, os novos métodos de produção ou transporte, os novos mercados e as novas formas de organização industrial criadas pelas empresas capitalistas.
Um aspecto que deve ser salientado é a responsabilidade de promover a inovação. Em seu primeiro trabalho, Schumpeter (1997) ressalta o papel do empreendedor (entrepreneur), mais do que a estrutura da empresa que possibilita a inovação. O papel desse empreendedor é encontrar a melhor combinação de insumos para uma inovação que traga um retorno financeiro para a empresa. Por essa razão, essa primeira teoria é chamada de Marco I, para diferenciar do Marco II, desenvolvido em sua obra *Capitalismo, Socialismo e Democracia*. Nesse Marco II ele passa a ressaltar mais a importância do setor de Pesquisa e Desenvolvimento (P&D) das grandes empresas oligopolistas como motivadores e implementadores das inovações. (CANTWELL, 2000).

Schumpeter (1997) faz uma distinção crucial entre reações adaptativas e reações criativas no comportamento empresarial. Para esse autor, uma reação adaptativa ocorre quando uma empresa reage a uma mudança importante em seu ambiente simplesmente adaptando as práticas em vigor. Já uma reação criativa ocorre sempre que uma empresa faz algo fora do âmbito das práticas existentes. A reação criativa raramente pode ser prevista, sendo, portanto, indeterminada quanto à totalidade de seus efeitos, e provocando resultados de longo prazo. Esse segundo tipo de reação é mais dependente da liderança de agentes individuais.

Outra distinção feita por Schumpeter (1997) é entre empreendedores e inventores, assim como entre invenção e inovação. Inovação era vista por ele como a introdução comercial de um novo produto ou uma nova combinação, enquanto invenção pertencia à área de ciência e tecnologia. É com a ideia de lucro que os empreendedores estão constantemente transformando invenções em inovações. Esse processo decisório do que transformar em produto comercializável não é aleatório. Há várias possibilidades técnicas, mas nem todas economicamente viáveis em determinado período histórico. (ROSENBERG, 2006). Entre os fatores determinantes desse contexto estão os preços relativos, fatores institucionais e regulatórios, e o potencial percebido para esses novos produtos. Eles também são dependentes das trajetórias anteriores de inovação, pois o potencial de mercado frequentemente depende do que o mercado já aceitou anteriormente. O espaço em que ocorre a inovação é dinâmico e segue uma trajetória que representa o ritmo e a direção de uma dada tecnologia. (DOSI, 1982).

Em sua teoria, Schumpeter (2017) indicou que a mobilização de recursos para promover uma inovação é bastante dependente do tamanho da empresa. Com isso, ele sugeriu que empresas grandes, com maior capacidade de investimento em P&D, teriam maiores vantagens de lançar produtos e processos inovadores do mercado e, com isso, garantir uma vantagem que resultaria, no final das contas, em uma estrutura oligopolista. Hoje em dia sabe-se que mesmo empresas pequenas têm uma alta capacidade para inovação e utilização criativa de seus
recursos. Essa visão da empresa como um organismo capaz de se defender e assumir uma postura ativa em relação a seu entorno foi o objeto de estudo de Penrose em seu livro *A Teoria do Crescimento da Firma*, publicado em 1959.

Penrose (2006) identificou-se com Schumpeter quanto ao crescimento econômico baseado na inovação e criatividade. Dentro de seu foco de análise estava a firma e seu comportamento nessa economia dinâmica. Na ortodoxia, a firma constituía uma entidade que tomava decisões quanto ao preço e à quantidade produzida de um produto específico com o objetivo de maximizar seu lucro em um contexto estático. Segundo a análise de Penrose (2006), não era correto retratar a firma de acordo com a estrutura estática que a economia ortodoxa lhe dava. Para a autora, a firma tinha a possibilidade de ter um papel mais ativo do que a teoria ortodoxa lhe dava.

Penrose (2006) concentra-se em compreender o processo de crescimento da firma e os limites internos e externos à sua expansão. Isso foi feito através do foco na inovação como fonte de lucros, os quais poderiam ser obtidos através do aprendizado para desenvolver novas aplicações a partir de uma base de recursos de posse da empresa, ao invés de obtê-los através do poder de mercado. A autora estilizou a firma como buscadora de lucros, ao invés de maximizadora de lucros. (CANTWELL, 2000). Assim como Schumpeter, Penrose (2006) acreditava que a inovação era a única base confiável para um crescimento da firma a longo prazo, diferente de ganhos de curto prazo que poderiam ser obtidos a partir de práticas monopolísticas ou de poder do mercado.

A estrutura organizacional de uma empresa pode afetar a eficiência das atividades de inovação, sendo algumas estruturas mais apropriadas a determinados ambientes. Por exemplo, um grau maior de integração organizacional pode melhorar a coordenação, o planejamento e a implementação de estratégias de inovação. (OCDE, 2018). A estrutura administrativa da firma é uma criação de pessoas que a controlam, e pode sempre ser adaptada aos requisitos da firma, ou seja, expandida, modificada e elaborada na medida em que a firma cresce e se transforma. A firma é mais do que uma unidade administrativa, é uma coleção de recursos produtivos, cuja
alocação e combinação entre diferentes usos e ao longo do tempo é determinada por decisões administrativas. (PENROSE, 2006).

Desse modo, as condições do entorno da firma não são determinantes para o sucesso ou o fracasso da mesma. O entorno, composto pelas condições de mercado e o conjunto de oportunidades para investimento e crescimento percebido por seus empresários, difere de firma para firma. Esse entorno não é algo fixo e imutável, mas algo passível de ser manipulado pela firma a serviço de seus propósitos. Essa capacidade de agir sobre o entorno através de recursos próprios ou adquiridos, mas trabalhados através de um grupo gerencial, ditam as possibilidades de crescimento da firma. (PENROSE, 2006).

Os fabricantes nas unidades de análise de produção e beneficiamento de grãos aproveitaram a vantagem da diferenciação através de desenvolvimento de produtos inovadores para obter vantagens de mercado e consolidarem-se como empresas líderes em suas categorias. A inovação nos equipamentos e insumos, tanto na unidade de análise de produção (UA1) quanto na de beneficiamento (UA2), representa uma possibilidade de diferenciação frente aos concorrentes. Dessa forma, surge a oportunidade de apresentar a proposição 1 desse trabalho:

P1 - As empresas das unidades de análise de produção e de beneficiamento de grãos foram conduzidas à inovação tecnológica pela possibilidade de diferenciação em seu mercado.

Essa proposição busca identificar de que forma isso acontece nas empresas das duas unidades de análise utilizando algumas bases teóricas vistas anteriormente. Segundo Schumpeter (2017), a capacidade de gerar inovação, ou pelo menos de assimilar as mudanças tecnológicas de forma mais rápida, é fundamental para preservar a sobrevivência das empresas em um ambiente de concorrência. A inovação é uma invenção que foi introduzida no mercado, gerando ganhos econômicos. Portanto, ela é fruto de um conhecimento selecionado e considerado útil. No entanto, para isso, é preciso que as empresas se capacitem para serem inovadoras. (FREEMAN; SOETE, 2008). No trabalho de Penrose (2006), uma das principais funções do empresário é buscar alternativas de negócios e combinar os recursos produtivos disponíveis para auferir resultados crescentes. Para essa autora, as empresas inovadoras mais definem o seu entorno do que são definidas por ele. Independentemente das condições externas, sempre existem oportunidades de expansão. Tudo depende da capacidade da firma de vislumbrá-las adequadamente e delas tirar vantagem. Essa proposição busca compreender de que forma as empresas das duas unidades de análise vislumbram a possibilidade de diferenciar-se no mercado.
2.1.3 Teorias da Inovação segundo os Neo-schumpeterianos

Schumpeter e os neoclássicos abordaram a firma dentro de um contexto macroeconômico. Penrose, por sua vez, examinou a firma dentro de suas particularidades, de acordo com uma postura mais micro. Os neo-schumpeterianos, como Richard Nelson, Sidney Winter e Giovanni Dosi seguiram a linha de uma análise econômica da firma. O historiador econômico Nathan Rosenberg, por sua vez, buscou entender o processo evolutivo das inovações e seus mecanismos de indução e dependência. Christopher Freeman e Luc Soete (2008) envolveram-se com o esforço da compreensão da dinâmica de longo prazo da economia capitalista através do conceito de Sistema Nacional de Inovação (SNI). Segundo Felipe e Villaschi Filho (2017), este conceito pode ser entendido como um complexo de arranjos institucionais em diferentes níveis que interferem na trajetória e desenvolvimento da capacidade inovativa de uma nação, podendo estimular ou até mesmo retardar seu desenvolvimento tecnológico. Entre as influências fundamentais das instituições sobre um SNI está a capacidade de aprender dos agentes nele inseridos e suas possibilidades de desenvolvimento.

Os neo-schumpeterianos derivam sua pesquisa a partir de uma noção seminal propagada por Schumpeter (1997): de que a economia capitalista é evolutiva por natureza e que, no cerne dessa evolução, estão as firmas. Por trás dessas firmas estão empreendedores, como Schumpeter afirmava em 1911, ou estruturas destinadas a efetivar a pesquisa e desenvolvimento para a inovação, como o mesmo autor passou a considerar em 1942.

Para os neo-schumpeterianos, o progresso tecnológico é endógeno, ou seja, depende de fatores inerentes à empresa, e não somente de fatores externos aos quais a empresa se defronta de forma passiva. Os neo-schumpeterianos procuram entender como o sistema gera esse progresso tecnológico. A firma é o locus da inovação e as pesquisas seguintes buscam entender como ocorre esse processo de introdução de inovações. Pesquisas nessa área buscam compreender como as empresas evoluem através do aprendizado e aplicação de seu conhecimento. (NELSON; WINTER, 2012); como as firmas seguem trajetórias tecnológicas ou identificam as condições propícias para a introdução de inovações. (DOSI, 2006); e se as inovações são puxadas pela demanda (demand pull) ou introduzidas no mercado a partir de avanços propostos pela firma (technology push). (ROSENBERG, 2006; DOSI, 1982; SCHMOOKLER, 1962). No âmbito dos diferentes graus de inovação, há a distinção entre inovações incrementais e radicais. (ROSENBERG; MOWERY 2012; ROSENBERG, 2006), e os efeitos inovadores mais radicais que podem conduzir a revoluções tecnológicas. (PÉREZ, 2010).
2.1.3.1 Teoria Evolucionária

O aprendizado gera evolução e aprimoramento através de inovações nas empresas quando estas incorporam o que está disponível em termos de tecnologia. A preocupação central da teoria evolucionária diz respeito aos processos dinâmicos que determinam conjuntamente os padrões de comportamento da firma e os resultados de mercado ao longo do tempo. As firmas evoluem ao longo do tempo através da ação conjunta de busca e seleção. A situação do ramo de atividades em cada período carrega as sementes de sua situação no período seguinte. (NELSON; WINTER, 2012).

Nelson e Winter (2012) desenvolveram uma teoria evolucionária das capacidades e do comportamento das empresas que operam em um ambiente de mercado. Seu trabalho propõe um modelo evolucionário das estruturas produtivas sob condições de mudança técnica. Essa teoria evolucionária proporciona uma teoria bastante geral da natureza dos feedbacks entre um ambiente em mudança e a mudança dos comportamentos. Os autores fazem uma ligação entre a teoria evolucionária da mudança tecnológica com a teoria de comportamento da firma, estendida para incluir a inovação como uma atividade central da firma colocada em um contexto de competição schumpeteriana.

Segundo Campus (2005), a abordagem enfoca o desenvolvimento econômico de inovação tecnológica baseada, principalmente, na endogeneização do processo inovativo, originando modelos teóricos que descreveram as mudanças técnicas, e nos processos de difusão baseados em inovações demand-pull (puxadas pela demanda), science-push (empurradas pela ciência) e, ainda, technology-push (empurrados pela tecnologia).

Um conceito que fundamenta a teoria evolucionária da firma de Nelson e Winter (2012) é o das rotinas. As firmas por eles consideradas são modeladas como tendo, a qualquer momento dado, certas capacidades e regras de decisão. Essas capacidades e regras modificam-se ao longo do tempo, como resultado de esforços deliberados para a superação de problemas e de eventos aleatórios. Para os autores, rotina é o termo geral para todos os padrões de comportamentais regulares e previsíveis das firmas. Esse conceito pode ser entendido como incluindo as heurísticas estratégicas relativamente constantes que moldam a forma com que a firma aborda os problemas não-rotineiros que enfrenta. Os autores propõem incluir no conceito de rotina todas as padronizações de atividades organizacionais que a observação dos procedimentos heurísticos produz, incluindo a padronização das formas particulares de tentativas de inovar.
Na teoria evolucionária, essas rotinas assumem a função que os genes apresentam na teoria evolucionária biológica. À medida que tal padronização persiste ao longo do tempo e tem implicações na lucratividade e no crescimento, ela faz parte do mecanismo genético subjacente ao processo evolucionário. Na genética organizacional, refere-se aos processos pelos quais as características organizacionais, incluindo as subjacentes à habilidade de gerar produtos e auferir lucros, são transmitidos ao longo do tempo. (NELSON; WINTER, 2012).

Segundo Nelson e Winter (2012), as características das rotinas vigentes podem ser entendidas como referência ao processo evolucionário que as moldou. A rotinização das atividades de uma organização constitui a forma mais importante de estocagem do conhecimento específico dessa organização. O conjunto de rotinas de uma empresa forma a sua memória. Essa memória proporciona cumulatividade do progresso técnico.

Pode-se esperar que as firmas se comportem no futuro de acordo com as rotinas que empregaram no passado. Isso não implica, no entanto, uma identidade literal de comportamento ao longo do tempo, uma vez que as rotinas podem ser acionadas de formas complexas pelos sinais do ambiente. Desse modo, a inovação envolve a mudança de rotinas. Inovações que tenham potencial para gerar rotinas indutoras de maior lucratividade serão selecionadas implicitamente pelo maior sucesso competitivo das firmas portadoras das mesmas. Rotinas mais rentáveis tenderão a ser selecionadas em detrimento das demais. (NELSON; WINTER, 2012).

2.1.3.2 Estímulo para a Inovação: Demanda ou Oportunidade Tecnológica

O desenvolvimento tecnológico não é necessariamente incorporado de imediato ao processo produtivo, especialmente quando requer a aquisição de novos bens de capital pela empresa individual. (ROSENBERG, 2006). Quando, nos estágios iniciais de seu desenvolvimento, o custo de produção com a nova tecnologia é muito alto, mesmo aperfeiçoamentos que levem a significativas reduções de custos podem ter pouco ou nenhum efeito sobre o ritmo de adoção. Pode haver um longo período de gestação no desenvolvimento de uma nova tecnologia, durante o qual melhoramentos gradativos deixam de ser explorados, porque os custos com o uso dessa nova tecnologia são ainda absurdamente mais altos que os da antiga. No entanto, a partir de certo momento, através de uma inovação paralela, os custos da nova tecnologia podem se tornar competitivos com os da antiga, promovendo forte estímulo à adoção da inovação. (ROSENBERG, 2006).
O processo de inovação tecnológica, via de regra, depende de uma sequência de melhoramentos nas características de desempenho de uma invenção, de sua modificação e adaptação graduais para adequar-se às necessidades ou demandas específicas de vários nichos de mercado e da disponibilidade e introdução de outros insumos complementares que tornam mais útil uma invenção original. Pode haver fatores que são obstáculos para a difusão de novas tecnologias, como uma diferente geografia, ou recursos naturais que favorecem a tecnologia anterior. Há exemplos de recursos naturais que se tornaram economicamente viáveis somente depois do surgimento de uma inovação complementar a uma primeira inovação que não é usada por sua inviabilidade econômica. (ROSENBERG, 2006).

Nesse sentido, o fluxo intersectorial de inovação assume um papel fundamental em viabilizar economicamente determinadas tecnologias. Rosenberg e Mowery (2012) ressaltam que as forças econômicas que sustentaram a reestruturação das indústrias do petróleo e de produtos químicos nos Estados Unidos foram fortemente moldadas por inovações tecnológicas de outros setores da economia. Essa influência, algumas vezes, ocorre de forma acidental, ou seja, uma inovação em um determinado setor acaba tendo um reflexo em um setor totalmente diferente, possibilitando um destrave de algumas aplicações tecnológicas que não estavam viáveis economicamente neste segundo setor. Portanto, a unidade mínima de observação relevante raras vezes é constituída por uma inovação isolada, sendo mais comumente um aglomerado de inovações inter-relacionadas. A importância dessas complementaridades sugere que pode ser produtivo pensar cada um desses principais conjuntos de inovações dentro de uma perspectiva sistêmica. (ROSENBERG, 2006). A identificação dessas relações intersectoriais torna-se importante na medida em que seleciona investimentos em determinadas áreas que tenham a possibilidade de difundir-se de maneira mais abrangente para outros setores produtivos.

De acordo com o ponto de vista da mudança tecnológica estimulada por indução, novas tecnologias são introduzidas em resposta a alterações no mercado de fatores de produção, de acordo com os clássicos estudos de Marx (2013) e Hicks (1988). As firmas são estimuladas a investir em tecnologia quando o preço dos fatores utilizados aumenta, de forma a reduzir o uso dos insumos mais caros. (ANTONELLI, 2006). Uma derivação dessa teoria diz que há um claro incentivo para a introdução de tecnologia que faça um melhor uso dos recursos que são localmente mais abundantes. (SAMUELSON, 1965).

Um debate que ocorre a algumas décadas é a importância do mercado como indutor de inovações (demand pull) e a capacidade das empresas em inserirem no mercado seus desenvolvimentos tecnológicos (technology push). Diversos autores como Schmookler (1962),

Schmookler (1962) é o pioneiro em ressaltar o papel do mercado como indutor de tecnologia. Sua obra mostrou que a direção da mudança tecnológica é sensível às forças econômicas e que, na verdade, a mudança tecnológica é uma atividade econômica e pode ser, de maneira proveitosa, estudada como tal. A demanda afeta o desenvolvimento de novos produtos, uma vez que as empresas modificam e diferenciam os produtos para aumentar suas vendas e sua participação no mercado. Se as empresas não acreditam que exista demanda suficiente para novos produtos em seu mercado, elas podem decidir não inovar ou adiar suas atividades de inovação. (OCDE, 2018).

Schmookler (1962) coloca que as defasagens que ocorrem (entre mercado e atividade inventiva) são significativas, porque, segundo ele, ela indica que variações na venda de equipamentos induzem variações no esforço inventivo. Para os inventores, o aumento das aquisições de equipamentos feitas por um determinado ramo sinaliza a crescente lucratividade das invenções naquele ramo, fazendo com que orientem seus recursos e talentos de acordo com isso. Ele concluiu que a demanda, ao influenciar o tamanho do mercado para classes particulares de invenções, é o fator determinante decisivo da alocação de esforço inventivo.

A mensuração e a análise do papel da demanda na inovação são problemáticas. É muito difícil isolar os efeitos originários da demanda daqueles provenientes da oferta, e pouco se sabe sobre como mensurar efeitos de demanda em pesquisas. (OCDE, 2018). Rosenberg (2006) sustenta que o papel da demanda tem sido superdimensionado e distorcido, com consequências sérias para o entendimento do processo de inovação e das políticas alternativas apropriadas para o fomento de inovações. Alguns trabalhos utilizam uma definição muito vaga para demanda de mercado, havendo uma fragilidade da ampla estrutura conceitual desses estudos. Um viés que prejudica a análise desses trabalhos é que eles abordam a inovação nos ramos produtivos de bens de produção. Segundo Rosenberg (2006), esse grupo de indústria pode ser caracterizado por um maior grau de soberania do cliente do que outros segmentos do setor industrial, na medida em que as qualidades procuradas em seus produtos são comunicadas aos fabricantes de maneira mais clara do que no caso dos setores de bens de consumo.
A demanda não precisa somente estar vinculada ao mercado do varejo. Pode haver uma demanda de uma empresa por determinado bem de capital, entre empresas, por exemplo, ou pela necessidade de um insumo mais em conta. As inovações geram novas necessidades de sucessivos aperfeiçoamentos, ou possibilitam outras inovações que haviam sido implementadas anteriormente, mas que não haviam tido sucesso devido a algum impedimento técnico. (ROSENBERG, 2006). Uma inovação que se dissemina rapidamente, como o automóvel, cria uma alta demanda por um outro produto (gasolina), o que incentiva a pesquisa para aumentar a escala de produção desse segundo produto. Foi somente de modo gradual que as companhias de petróleo dos EUA começaram a perceber que suas operações de refino poderiam produzir não somente combustíveis e lubrificantes, mas também compostos químicos orgânicos intermediários (possibilitado pela escala de produção). (ROSENBERG; MOWERY, 2012).

Em geral, a percepção de um mercado potencial faz parte das condições necessárias para a inovação, mas não constitui de modo algum a condição suficiente. Dosi (2006) constata que há uma complexa estrutura de retroalimentação entre o ambiente econômico e as direções das mudanças tecnológicas. Ele enfatiza a fragilidade genérica dos mecanismos de mercado na seleção ex-ante das direções tecnológicas, especialmente no estágio inicial da história de um ramo industrial. Dada a intrínseca incerteza associada a seus resultados, em termos de sucesso tanto tecnológico como econômico, dificilmente será possível compará-los e classificar-los ex-ante.

Freeman (1979) apontou duas importantes características da controvérsia entre technology push e demand pull. A primeira diz respeito ao papel dos interesses dos grupos sociais relevantes no alinhamento destes aos diferentes lados do debate. Os interesses modelam as perguntas que são feitas, a maneira de buscar informações para responder a elas, assim como a interpretação dos resultados encontrados. A segunda constatação é de que os defensores do demand pull estavam ganhando terreno porque tinham uma base empírica quantitativa que lhes conferia uma aparência de apoio estatístico. Freeman (1979) defende o argumento de que as coisas são muito mais complexas do que cada uma das proposições consegue captar. O acaso, ou as contingências, têm um papel muito maior na sobrevivência e no crescimento competitivo do que é confortável admitir.

Alinhado com a posição de Freeman, Rosenberg (2006) diz que, em vez de enxergar tanto a existência de uma demanda de mercado quanto a existência de uma oportunidade tecnológica como representando, cada uma delas, uma condição suficiente para a ocorrência da inovação, deveríamos considerá-las, cada uma, como necessárias, mas não suficientes, para que daí resulte uma inovação. Ou seja, deve haver uma relação entre oferta e demanda. As inovações
bem-sucedidas passam, normalmente, por extensas modificações durante o processo de desenvolvimento, em resposta, por um lado, à percepção das exigências do usuário potencial, e, por outro, às exigências do fabricante, o qual está interessado em fabricar o produto ao menor custo possível. As inovações que não sejam altamente sensíveis a ambos os conjuntos de forças têm muito pouca probabilidade de alcançarem a posição de um sucesso comercial.

As empresas que compõem as unidades de análise de produção e de beneficiamento de grãos no Rio Grande do Sul apresentaram modificações técnicas em seus insumos e equipamentos de modo a resultar em maiores produtividades. Em decorrência de um maior volume de grãos colhidos, e pela necessidade de rapidez em algumas etapas, os produtores de grãos desejavam equipamentos que não fossem gargalos no fluxo. Através do exame da inovação tecnológica nesses equipamentos e insumos, a proposição 2 sugere que,

P2 – A inovação tecnológica da agroindústria assumiu características diferenciadas quando comparadas as unidades de análise de produção e beneficiamento de grãos. Essas unidades de análise apresentaram diferenças quanto à dinâmica de inovação nas cadeias produtivas do arroz e da soja.

Utilizando a base teórica explicitada, essa proposição procura mostrar o modo em que as inovações tecnológicas ocorreram nas duas unidades de análise, e de que modo os mecanismos de estímulo à inovação podem diferenciar-se de acordo com o grão considerado. Um primeiro ponto a ser examinado refere-se ao fato das inovações serem mais propostas pela empresa aos seus clientes, através de inovações desenvolvidas pelo seu setor de P&D ou de projetos (technology push), ou serem impulsionadas como respostas a demandas de seus clientes (demand pull). Embora seja reconhecido que todo produto deva satisfazer as necessidades dos clientes, a iniciativa para isso pode ocorrer por uma oportunidade vislumbrada pela empresa de oferecer algo que o cliente não manifesta diretamente essa necessidade, ou como uma resposta a algo manifestado diretamente. (FREEMAN, 1979). Segundo Schmookler (1962), a demanda afeta o desenvolvimento de novos produtos. As empresas modificam e diferenciam seus produtos no intuito de aumentar suas vendas e a sua participação no mercado.

Um outro aspecto contido nessa proposição é a forma que essas inovações são desenvolvidas e qual seu grau de dependência umas das outras, ou seja, uma inovação feita por uma empresa leva uma outra empresa da cadeia produtiva à necessidade de inovar. (ROSENBERG, 2006). Há inovações tecnológicas que as empresas devem fazer porque estão inseridas em um sistema de dependência umas das outras, como elos de ligação para uma
solução final proposta. Há, por outro lado, inovações que não dependem de outras, que podem ser desenvolvidas de forma isolada e aplicadas no equipamento. Uma inovação, dependendo de seu grau de radicalidade, gera alterações necessárias em outros equipamentos para frente e para trás na cadeia produtiva. As inovações geram novas necessidades de sucessivos aperfeiçoamentos, ou possibilitam outras inovações que haviam sido implementadas anteriormente, mas que não haviam tido sucesso devido a algum impedimento técnico. (ROSENBERG, 2006). Sabendo que há diferenças na necessidade de beneficiamento desses dois grãos, a proposição procura verificar até que isso influencia a dinâmica de inovação das duas unidades de análise.

2.1.3.3 Inovações Disruptivas e Inovações Incrementais

Segundo Rosenberg (2006), as inovações podem ser classificadas de acordo com o grau de mudança que proporcionam. Há inovações que surgem, por exemplo, de algo muito novo, de um equipamento que não existia antes ou que alterou-se substancialmente. Essas são as chamadas inovações disruptivas. Outros tipos de inovação, ao contrário, surgem como aperfeiçoamentos de algo que já existe. Esse outro tipo de inovação melhora o que já existe em termos de produtividade, qualidade, custo ou confiabilidade, mas cujo projeto original alterou-se muito pouco. Estas são as chamadas inovações incrementais.

Para entender como ocorreu o processo sequencial das inovações, Rosenberg (2006) faz uma distinção entre inovações radicais, incrementais e as relações de dependência e indução entre elas. Segundo Freeman e Perez (1988), as inovações incrementais ocorrem de maneira regular e objetivam melhorar os produtos já existentes, enquanto as modificações disruptivas geram uma mudança paradigmática, alterando substancialmente o produto.

As invenções, quando são inicialmente introduzidas ou patenteadas, geralmente estão longe da forma que tomam quando, finalmente, atingem uma ampla difusão. São os aprimoramentos que elas sofrem que finalmente levam a essa ampla difusão. (ROSENBERG; MOWERY, 2012). As inovações possuem um ritmo próprio de incorporação de mudanças e aperfeiçoamentos. Inicialmente, surgem em um formato bruto, primitivo, que, com o tempo, vão incorporando novas ideias e atributos, muitos deles vindo dos próprios usuários. Inicialmente, esse ritmo de incorporação de modificações pode ser mais intenso, mas, com o passar do tempo e com a maturidade da inovação, seu estado vai modificando-se menos. (ARTHUR, 1988).
A viabilidade de uma dada invenção pode depender da disponibilidade de tecnologias complementares. Esse fluxo intersectorial de inovação pode viabilizar economicamente uma inovação que estava travada. (ROSENBERG; MOWERY, 2012). A inovação proporcionada por um outro setor pode ser adaptada como uma inovação incremental em uma inovação anterior e torná-la mais atraente e viável. O barateamento da produção de aço obtido ainda no século XIX foi uma inovação disruptiva que, através de inovações incrementais, possibilitou que uma série de outras aplicações antes inviáveis economicamente. Essas relações de complementaridade tornam, portanto, excessivamente difícil predizer o fluxo de benefícios de qualquer invenção isolada e levam comumente a um adiamento do fluxo de benefícios esperados. (ROSENBERG, 2006).

O processo de inovação na sociedade não é uma reta com inclinação constante. Pode haver momentos em que uma inovação revoluciona todo um sistema. O processo evolutivo das inovações pode apresentar saltos devido ao surgimento de inovações disruptivas. De acordo com Pérez (2004), a cada revolução tecnológica ocorre uma explosão de novos produtos e processos, capazes de conduzir gradualmente os agentes para os novos rumos tecnológicos. São as inovações disruptivas que determinam o novo paradigma tecnológico a ser seguido.

O lançamento de uma inovação disruptiva envolve um grande grau de incerteza, muito maior do que o relativo às inovações incrementais. As ideias que gerarão uma inovação disruptiva partem de um conceito que nasce ou da necessidade do mercado ou pela iniciativa da empresa de surpreender o cliente. (FREEMAN, 1979). Através de um processo de seleção e melhoramento do projeto, o produto é lançado no mercado com um certo grau de incerteza de seu resultado. Essa incerteza pode ou não ser recompensada pelo monopólio dessa inovação, como proposto por Schumpeter. Com o tempo, essa inovação disruptiva será padronizada e receberá melhorias de uma forma incremental para ajustar-se a novos padrões de demanda ou para responder a pressões competitivas para redução de custo. (FREEMAN, 1979).

2.1.3.4 Trajetória das Inovações Tecnológicas

As inovações tecnológicas tendem a se conectar e aparecer nas proximidades de outras inovações anteriores, complementando-as e melhorando-as. (SCHUMPETER, 2017; ROSENBERG, 2006). Segundo Schumpeter (2017), as empresas inovadoras não surgem regularmente na economia. Seu aparecimento, muitas vezes, deriva de grupos que surgem depois de um grande avanço organizacional ou tecnológico em determinado setor industrial. A evolução de uma inovação, normalmente, é fruto de um trabalho coletivo que abrange outros

Assim como inovações individuais estão interconectadas com sistemas tecnológicos, estes, por sua vez, estão interconectados em revoluções tecnológicas. (PEREZ, 2010). Segundo Perez (2010), revoluções tecnológicas podem ser definidas como um conjunto de interrupções relacionadas, formando uma grande constelação de tecnologias interdependentes. Perez (2004) ainda ressalta que o movimento de quebra do paradigma tecnológico é tão forte que abre janelas de oportunidades para países em processo de catching up ou de forging ahead que estiverem preparados em termos estruturais para essa mudança. Desse modo, cada revolução tecnológica se desenvolve em um país núcleo que irá atuar como líder econômico mundial durante essa etapa. Após um período, as ondas de inovação devem se propagar para outros países, nascendo um novo paradigma tecnológico mundial. Esse movimento provoca a ruptura de forças e muita desordem, podendo promover a ruína de setores ou regiões que estiverem fora dos novos conceitos tecnológicos ou não se adaptarem aos mesmos.

O que, portanto, sustenta uma teoria científica é um arcabouço teórico de conceitos, de valores, de técnicas, em cujo âmbito a ciência se desenvolve. Fazer ciência significa, então, sustentar um determinado paradigma, ao mesmo tempo em que este legitima a própria ciência.
Kuhn introduziu um elemento novo na interpretação do método científico e da ciência. Ele reconhece os períodos de acumulação de conhecimento ("ciência normal", segundo ele), mas identifica também outros períodos, os de "crise de paradigma", que são seguidos pelo que denomina de "revoluções científicas". (KUHN, 2013).

Dosi (1982), busca explicar as principais forças que movem o progresso tecnológico e as complexas interações que definem e orientam suas ações. Tendo o paralelo de Kuhn em mente no que se refere a paradigma tecnológico, Dosi (1982) enfatiza que a trajetória tecnológica envolve um caminho predeterminado. A trajetória das inovações tem em Dosi (1982) uma abordagem através de paradigmas tecnológicos. Paradigma tecnológico é um modelo e um padrão de solução de determinados problemas tecnológicos selecionados, baseados em determinados princípios selecionados, derivados das ciências naturais e em determinadas tecnologias materiais selecionadas. O progresso técnico é determinado por certo paradigma tecnológico. (VIEIRA FILHO; SILVEIRA, 2011). Segundo Freeman (apud CASTELL, 2016, p.123),

Um paradigma tecnológico é um agrupamento de inovações técnicas, organizacionais e administrativas inter-relacionadas cujas vantagens devem ser descobertas não apenas em uma nova gama de produtos e sistemas, mas também e sobretudo na dinâmica da estrutura dos custos relativos de todos os possíveis insumos para a produção. Em cada novo paradigma, um insumo específico ou conjunto de insumos pode ser descrito como fator-chave desse paradigma caracterizado pela queda dos custos relativos e pela disponibilidade universal. A mudança contemporânea de paradigma pode ser vista como uma transferência de uma tecnologia baseada principalmente em insumos baratos de informação derivados do avanço da tecnologia em microeletrônica e telecomunicações.

Trajetória tecnológica consiste na evolução das diferentes tecnologias. Dosi (1982) define trajetória tecnológica como o padrão da atividade normal de solução de problemas com base num paradigma tecnológico. Pode ser representada pelo movimento de trade-offs multidimensionais entre as variáveis tecnológicas que o paradigma define como relevantes. Uma forma geral paradigmática do conhecimento tecnológico é a de que as atividades inovadoras são fortemente seletivas, finalizadas em direções precisas e cumulativas nas capacidades de solucionar problemas. (DOSI, 1988)

A trajetória das inovações é uma trajetória de escolhas tecnológicas. Dosi (2006) define tecnologia como um conjunto de parcelas de conhecimento – tanto diretamente prático (relacionado a problemas e dispositivos concretos), como teórico (mas praticamente aplicável, embora não necessariamente já aplicado) – de know-how, métodos, procedimentos, experiências de sucessos e insucessos e também, é claro, dispositivos físicos e equipamentos.
Por fronteira tecnológica Dosi (2006) entende como o nível mais alto alcançado em relação a uma trajetória tecnológica, com respeito às dimensões tecnológicas e econômicas relevantes.

Para Castells (2016), as descobertas tecnológicas ocorreram em agrupamentos, interagindo entre si num processo de retornos cada vez maiores. A inovação tecnológica não é uma ocorrência isolada. Conforme afirma Castells (2016, p.92),

Ela reflete um determinado estágio de conhecimento; um ambiente institucional e industrial específico; uma certa disponibilidade de talentos para definir um problema técnico e resolvê-lo; uma mentalidade econômica para dar a essa aplicação uma boa relação custo/benefício; e uma rede de fabricantes e usuários capazes de comunicar suas experiências de modo cumulativo e aprender usando e fazendo.

Nas escolhas das trajetórias tecnológicas, funcionam certos tipos de indicadores econômicos, como dispositivos direcionais a priori entre uma grande quantidade de possíveis escolhas tecnológicas. Uma empresa inova quando há uma estrutura propícua que traga os benefícios dessa inovação. No sistema capitalista, o retorno do investimento é crucial para que uma empresa decida investir em pesquisa e demais gastos que envolvem uma inovação. Segundo Dosi (2006), os determinantes da inovação são a apropriaabilidade privada dos efeitos da mudança técnica, a cumulatividade (experiência e tempo) do progresso técnico, e a oportunidade tecnológica. Quanto maior o potencial de apropriaibilidade privada, maior o incentivo para a firma promover a inovação. A capacidade que as empresas possuem para apropriar-se dos ganhos provenientes de suas atividades de inovação também afeta o processo de inovação. (VIEIRA FILHO; SILVEIRA, 2011). Se, por exemplo, as empresas não estão aptas a proteger suas inovações da imitação de seus competidores, elas terão menos incentivo para inovar. (OCDE, 2018). Nesse caso, o ambiente tecnológico é caracterizado por um nível elevado de efeitos de transbordamento (spillovers) ou externalidades positivas, em que o processo de imitação será favorecido. (VIEIRA FILHO; SILVEIRA, 2011). Nisso reside a importância de um sistema de proteção intelectual que garanta a posição monopolista que a empresa atingiu.

O processo ser cumulativo significa que, quanto mais houver acúmulo de conhecimento técnico, mais fácil será para a empresa inovar. A cumulatividade pode ser entendida pelas inovações sequenciais com melhoramentos graduais, ou seja, a capacidade de inovar com base em inovações passadas e áreas correlatas. (VIEIRA FILHO; SILVEIRA, 2011). Sempre que as trajetórias tecnológicas apresentam cumulatividade e grande apropriaibilidade, provavelmente se desenvolve uma estrutura oligopolista mais estável.
A possibilidade de desfrutar posições monopolistas temporárias (e/ou posições oligopolistas a longo prazo) em novos produtos e processos parece funcionar como poderoso incentivo para a atividade de inovação. As empresas que não estejam aptas a proteger suas inovações da imitação de seus competidores terão menor incentivo para inovar. (ANTUNES; PELEGRIN, 2015). Dito de outra forma, quanto maiores forem a apropriabilidade, a cumulatividade e as economias de escala, tanto maior será a probabilidade do surgimento da tendência de taxas de lucro oligopolistas.

Por fim, Dosi (2006) salienta que outro estímulo para a inovação é a existência de uma oportunidade tecnológica, ou seja, que exista o mercado e demanda para o que se quer produzir. Neste caso, o mercado funciona ex post como dispositivo seletor, geralmente entre um conjunto de produtos já determinados pelos amplos padrões tecnológicos escolhidos no lado da oferta. O mercado funciona como um sistema de recompensas e penalidades, verificando e selecionando entre diversas alternativas. (DOSI, 2006).

Os critérios econômicos, que agem como seletores, definem cada vez mais precisamente as trajetórias reais seguidas, dentro de um conjunto muito maior de trajetórias possíveis. Depois de selecionada e estabelecida uma trajetória, esta apresenta um impulso próprio que contribui para definir as direções em que a atividade de resolução do problema se move. Nelson & Winter (1977) as definem como trajetórias naturais do progresso técnico. A trajetória tecnológica constitui um agrupamento de possíveis direções tecnológicas, cujos limites exteriores se definem pela natureza do próprio paradigma.

Dosi (2006) sugere que as mudanças exógenas se relacionam à emergência de novos paradigmas tecnológicos, enquanto a mudança endógena refere-se ao progresso técnico ao longo das trajetórias definidas por esses paradigmas. A noção de trajetória ou paradigma enfatiza a importância das inovações incrementais no crescimento do caminho seguido por cada inovação radical. À medida em que o volume de produção e a produtividade tornam-se cruciais para a expansão de mercado, as inovações de processo tornam-se mais cruciais e canalizam os investimentos. (PEREZ, 2010).

Do ponto de vista de seu impacto econômico, o processo de difusão é crítico. Os efeitos de aumento da produtividade de tecnologias superiores dependem de sua utilização nos locais apropriados. Landes (2005) ressalta o papel dos imigrantes na transferência de conhecimento e difusão daquilo que vivenciavam em seus países de origem. Recentemente, os historiadores econômicos começaram a dedicar maior atenção a fatores institucionais como uma influência sobre o ritmo da difusão, como, por exemplo, a diminuição dos custos de transação, e a diminuição no custo de aquisição de informação. O processo de difusão, via de regra, depende
de uma sequência de melhoramentos nas características de desempenho de uma invenção, de sua modificação e adaptação graduais para adequar-se às necessidades ou demandas específicas de vários nichos de mercado e da disponibilidade e introdução de outros insumos complementares que tornam mais útil uma invenção original. (ROSENBERG, 2006).

Muitos dos aspectos de um material não são explorados cientificamente até que o material tenha estado em uso durante um longo tempo. Quando a tecnologia chega a um limite de desempenho, esse limite só pode ser ultrapassado quando há um melhor entendimento de certos aspectos do mundo físico, momento este em que entra a pesquisa científica. Os setores de alta tecnologia, ao forçarem os limites de desempenho técnico, estão continuamente identificando novos problemas que podem ser tratados pela ciência. (ROSENBERG, 2006).

Dosi (2006) e sua definição de trajetória tecnológica, com base no paradigma tecnológico, constrói um caminho predeterminado para a resolução de problemas. As soluções técnicas propostas pelas empresas que fazem parte das unidades de análise de produção e de beneficiamento de grãos voltaram-se para o aumento de produtividade, redução de custos e redução de perdas. Os aperfeiçoamentos tecnológicos seguiram uma trajetória que enfatizava a economia dos fatores escassos e aprimorava os aspectos relacionados a gargalos da produção.

À medida em que o volume de produção e a produtividade tornam-se mais importantes, as inovações tornam-se cruciais e tendem a canalizar os investimentos para seu desenvolvimento. Estima-se que tenham ocorrido tanto inovações incrementais quanto disruptivas na produção e no beneficiamento dos grãos analisados, e que estas tenham afetado em maior ou menor grau suas trajetórias tecnológicas. Em busca de um esclarecimento nesse sentido, o presente trabalho levanta a proposição 3, segundo a qual:

P3 - Em virtude do grande crescimento na produção de grãos no Estado nas últimas décadas, a dinâmica das inovações tecnológicas nas máquinas e equipamentos de produção e beneficiamento de grãos baseou-se mais em inovações disruptivas do que em inovações incrementais.

Procurando entender de que forma ocorreram as inovações nas duas unidades de análise, a construção da proposição 3 foi feita utilizando a base teórica anteriormente descrita para identificar quais tipos de inovação predominaram em uma e outra, e de que forma isso foi refletido em suas trajetórias tecnológicas. Como, segundo Dosi (1982), o espaço em que ocorre a inovação é dinâmico e segue uma trajetória que representa o ritmo e a direção de uma dada tecnologia, buscou-se identificar a trajetória tecnológica seguida em cada unidade de análise.
através da sequência de inovações adotadas nos equipamentos. O autor enfatiza que a trajetória tecnológica envolve um caminho predeterminado. Elas são dependentes das trajetórias anteriores de inovação, pois o potencial de mercado frequentemente depende do que o mercado já aceitou anteriormente. (DOSI, 1982).

2.1.3.5 Sistemas Setoriais de Inovação

As atividades de inovação de uma empresa ou da sua cadeia dependem da estrutura de suas relações com as fontes de informação, conhecimento, tecnologias, práticas e recurso humanos e financeiros. (ALBUQUERQUE; RITA; ROSÁRIO, 2012). O pressuposto principal da abordagem de um Sistema de Inovação (SI) é o de que as inovações não são geradas pelas firmas de forma isolada e seguindo um padrão linear, mas sim através de complexos padrões de interação entre agentes diversos. Esses agentes podem ser outras firmas, fornecedores, consumidores, concorrentes ou entidades que não atuam diretamente no mercado, como universidades, órgãos governamentais, organizações não governamentais etc. (EDQUIST, 2005).

Os sistemas de inovação são influenciados pelos pressupostos neo-shumpeterianos, fornecendo uma análise multidimensional, integrada e dinâmica da inovação, abrangendo uma parcela maior de fatores que influenciam e determinam sua dinâmica, como a demanda, o regime tecnológico, os diversos atores envolvidos e as instituições que governam as relações entre eles. (MALERBA, 2002).
A abordagem de Sistema Setorial de Inovação (SSI) foi proposta por Breschi e Malerba, e aprimorada em trabalhos posteriores. (MALERBA, 2002). Os sistemas podem ser entendidos como arranjos entre organizações pautados por vínculos sistemáticos com caráter cooperativo ou não. Um setor pode ser caracterizado como um conjunto de firmas heterogêneas unidas por processos produtivos semelhantes ou por grupos de produtos interligados e que trocam algum conhecimento comum. Ele extrapolua os Sistemas Nacionais ou Regionais de Inovação, pois, diferentemente destes, o SSI não tem uma delimitação geográfica definida a priori, podendo coexistir num mesmo sistema setorial diversas regiões ou mesmo países, concentrando-se em certos setores da economia. (MALERBA, 2002; SCHREMPF; KAPLAN; SCROEDER, 2013).

A vantagem da visão sistêmica setorial está na possibilidade de maior conhecimento da estrutura e das fronteiras do setor, de seus agentes e interações, dos processos de aprendizado, de inovação e de produção, da dinâmica de transformação, e dos fatores que determinam as performances das firmas. (MALERBA, 2002).

Malerba (2002) reconhece três dimensões (building blocks) no SSI, formando os pilares fundamentais do conceito de sistemas setoriais de inovação. A primeira é relacionada ao regime tecnológico, composto de produtos, processos e competências, que formam a base do conhecimento e processos de aprendizagem. A segunda busca identificar a gama heterogênea de atores e suas interligações. Os tipos e estruturas de relacionamento diferem de um sistema setorial para outro como consequência das características da base de conhecimento, dos processos relevantes de aprendizado, das tecnologias básicas, das características de demanda, dos elos-chave e das complementaridades dinâmicas. A terceira dimensão é composta pelas instituições, como normas, rotinas, hábitos, práticas estabelecidas, regras, leis e padrões. Algumas instituições são nacionais, como a lei de patentes, outras são específicas dos sistemas setoriais, como mercado de trabalho ou instituições financeiras específica do setor. (MALERBA, 2002).

Como exposto por Malerba (2002, 2005), um sistema setorial, bem como a dinâmica setorial, é expresso pelo grau de interação entre as dimensões analisadas. A Figura 1 representa as três dimensões (building blocks) de um SSI.
Figura 1 – Dimensões de um sistema setorial de inovação

<table>
<thead>
<tr>
<th>Conhecimento</th>
<th>Atores e interações</th>
<th>Instituições</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competências que formam a base do conhecimento e dos processos de aprendizagem.</td>
<td>Agentes heterogêneos, formados por indivíduos, empresas, organizações não empresariais, que interagem, cooperam e competem entre si.</td>
<td>Normas, rotinas, hábitos comuns, práticas estabelecidas, regras, leis e padrões, que formam a cognição e ação dos agentes.</td>
</tr>
</tbody>
</table>

Fonte: elaborado pelo autor segundo Malerba (2002).

Dentro de um sistema setorial de inovação surgem janelas de oportunidades que, uma vez aproveitadas por determinado ator, podem determinar para este um maior crescimento. (LEE; MALERBA, 2017). Essas alterações são chamadas de ciclos de *catch-up*, quando empresas emergentes aproveitam uma situação favorável e ressaltam seu papel no sistema setorial ao qual pertencem, podendo chegar à liderança do mesmo. Essas janelas de oportunidade podem surgir dentro de uma das três dimensões citadas anteriormente, mas sempre representarão uma fonte schumpetiana de alteração.

O estudo sobre o azeite de oliva do Rio Grande do Sul realizado por Caye (2018), mostrou que este sistema setorial de inovação “é composto principalmente por empresas privadas que atuam nas atividades inovadoras do setor, através do desenvolvimento e da fabricação de azeites de oliva e da geração e utilização de tecnologias”. (CAYE, 2018, p. 121). “Os fluxos de conhecimentos tecnológicos dos atores também foram e são fundamentais para o desenvolvimento deste SSI”. (CAYE, 2018, p. 122). Frozza e Tatsch (2014) estudaram o sistema setorial de biodiesel no Rio Grande do Sul e constataram que as firmas inovam de maneira restrita, e que o aparato institucional de pesquisa e ensino no Estado, embora gere conhecimento, interage pouco com o setor produtivo privado.

Os SSIs também estão sujeitos a influências externas, principalmente no tocante a transmissão de tecnologia. Malerba, Mancusi e Montobbio (2013) ressaltam em seu trabalho a relevância do transbordamento de conhecimento para a atividade inovadora entre diferentes países. Através do framework por eles elaborado, os autores chegaram à conclusão de que o alcance geográfico dos transbordamentos de conhecimento é afetado pela distância tecnológica entre o emissor e o receptor. Fluxos intrasetoriais de conhecimento são muito menos afetados
pela distância do que os intersetoriais. Os transbordamentos intrasetoriais fluem globalmente porque inventores e empresas estão melhor capacitados para reconhecer e absorver conhecimento externo. Em contraste a isso, se as empresas inovadoras são ativas em áreas tecnológicas diferentes do conhecimento usado para inovações em curso, transbordamentos internacionais são mais difíceis de extrair. Nesse caso, as fronteiras nacionais têm uma importância maior, pois dentro dessas fronteiras é mais fácil para as empresas inovadoras identificar, comunicar e absorver esses transbordamentos dos que vêm de um conhecimento que está distante de seu espaço tecnológico. Malerba, Mancusi e Montobbio (2013) também ressaltam que o nível de transbordamento tecnológico e de conhecimento intersetorial ou intrasetorial e a nível internacional ou nacional depende do tipo de indústria considerado.

Baseando-se na teoria sobre cooperação, intercâmbio de informação e conhecimento entre empresas de um setor, a proposição 4 sugere que:

P4 - As empresas pertencentes às unidades de análise de produção e de beneficiamento de grãos apresentam posicionamentos similares quanto à troca de tecnologia e conhecimento com outros atores.

A proposição 4 foi elaborada com base na teoria de que as inovações tecnológicas ocorrem em agrupamentos de empresas dentro de uma cadeia produtiva, interagindo entre si, em um processo de retornos cada vez maior. Desse modo, as inovações não são uma ocorrência isolada, mas um aglomerado de inovações interrelacionadas com diferentes colaboradores. (CASTELLS, 2016; ROSENBERG, 2006). Utilizando o que Malerba (2002) define como sistema setorial de inovação, a proposição procura entender de que forma existe em maior ou menor escala esse intercâmbio cooperativo, intencional ou não, entre as empresas de modo a afetar a dinâmica de inovação em cada unidade de análise.

As proposições listadas no Quadro 1 embasam a comparação entre as dinâmicas da inovação tecnológica nas unidades de análise de produção e de beneficiamento e processamento de arroz e de soja no Rio Grande do Sul.
Quadro 1 – Proposições de Pesquisa

<table>
<thead>
<tr>
<th>#</th>
<th>Proposições</th>
<th>Autor</th>
<th>Objetivo esp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>As empresas das unidades de análise de produção e de beneficiamento de grãos foram conduzidas à inovação tecnológica pela possibilidade de diferenciação em seu mercado.</td>
<td>Schumpeter (2017), Penrose (2006)</td>
<td>D, E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Freeman e Soete (2008)</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>A inovação tecnológica da agroindústria assumiu características diferenciadas quando comparadas as unidades de análise de produção e beneficiamento de grãos. Essas unidades de análise apresentaram diferenças quanto à dinâmica de inovação nas cadeias produtivas do arroz e da soja.</td>
<td>Schmookler (1962), Freeman (1979)</td>
<td>C, D, E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rosenberg (2006)</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>Em virtude do grande crescimento na produção de grãos no Estado nas últimas décadas, a dinâmica das inovações tecnológicas nas máquinas e equipamentos de produção e beneficiamento de grãos baseou-se mais em inovações disruptivas do que em inovações incrementais.</td>
<td>Rosenberg, Mowery (2012), Dosi (2006), Freeman, Perez (1988)</td>
<td>A, B, C</td>
</tr>
<tr>
<td>P4</td>
<td>As empresas pertencentes às unidades de análise de produção e de beneficiamento de grãos apresentam comportamentos similares quanto à troca de tecnologia e conhecimento com outros atores.</td>
<td>Makerba (2002), Rosenberg (2006)</td>
<td>A,B, D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Castells (2016)</td>
<td></td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.
3 PROCEDIMENTOS METODOLÓGICOS

Neste trabalho, a metodologia busca favorecer o entendimento da complexidade dos processos relacionados à inovação tecnológica nos equipamentos de beneficiamento do arroz e da soja. Os procedimentos metodológicos a seguir visam fazer uma classificação dessa pesquisa e descrever o procedimento de coleta de dados e de como esses dados foram analisados. Após, é descrito o método de trabalho, incluindo os bancos de dados pesquisados, os centros de pesquisa consultados, e de que forma foram conduzidas as entrevistas.

3.1 CLASSIFICAÇÃO DA PESQUISA

Na condução dessa pesquisa, a estratégia de estudo de múltiplos casos e a utilização de dados qualitativos, analisados de modo interpretativo, bem como as descrições e as explicações sobre processos, permitiram estabelecer relações entre os achados e os pressupostos teóricos iniciais. (VIEIRA; ZOUAIN, 2006; COLLINS; HUSSEY, 2005; FONSECA, 2002).

Esta pesquisa seguiu o paradigma interpretativista. Um paradigma de pesquisa é uma visão de mundo que o pesquisador adota em seu trabalho. Ele é formado a partir de pressupostos que temos da realidade, principalmente na forma como acredita-se que as coisas são e na forma que o conhecimento é construído. O paradigma de pesquisa guiou o método de pesquisa adotado, incluindo a estratégia da pesquisa, as técnicas de coleta de dados e de sua análise pelo pesquisador. O paradigma interpretativista escolhido nessa pesquisa não busca uma realidade objetiva com sua verdade, mas a interpretação do pesquisador sobre as interpretações dos indivíduos que participam em um determinado fenômeno. (SACCOL, 2009).

Esta é uma pesquisa teórica, pois baseia-se na compreensão de um processo e na proposta de diretrizes referente ao mesmo, nesse caso, o de inovação em equipamentos de beneficiamento de grãos. Não visa a uma aplicação direta e imediata na prática, mas será útil para as empresas que buscam a implementação de inovação tanto como promotoras quanto usuárias de equipamentos e práticas inovadoras.

De acordo com Collis e Hussey (2005), a pesquisa científica pode ser classificada quanto ao tipo em: exploratória, descritiva, analítica e preditiva. Quanto aos objetivos, esta é uma pesquisa exploratória. A pesquisa exploratória se caracteriza pela inexistência ou existência de poucos estudos anteriores sobre o mesmo fenômeno. Este tipo de pesquisa tem como objetivo proporcionar maior familiaridade com o problema, com vistas a torná-lo mais explícito, ou a construir proposições. A grande maioria dessas pesquisas envolve: (a)
levantamento bibliográfico; (b) entrevistas com pessoas que tiveram experiências práticas com o problema pesquisado; e (c) análise de exemplos que estimulem a compreensão. (GIL, 2010).

De acordo com Richardson (1999), pode-se classificar a pesquisa científica quanto a sua natureza como qualitativa ou quantitativa. A pesquisa qualitativa caracteriza-se por não empregar instrumentos estatísticos em sua análise. Quanto aos procedimentos metodológicos, envolve técnicas de observação e entrevistas, análise de conteúdo e análise histórica. A pesquisa quantitativa caracteriza-se pela quantificação na coleta de dados e na análise dos dados obtidos, o que geralmente ocorre pelo uso de tratamentos estatísticos, buscando garantir uma maior precisão dos resultados e levando a uma maior margem de segurança para a tomada de decisões. Esta é uma pesquisa qualitativa, baseando suas conclusões na análise dos discursos dos entrevistados, buscando entender determinado problema e de que forma as soluções para o mesmo estão sendo encaminhadas.

Para se desenvolver uma pesquisa, é indispensável selecionar o método de pesquisa a utilizar. De acordo com as características da pesquisa, poderão ser escolhidas diferentes modalidades de pesquisa, sendo possível aliá-lo qualitativo ao quantitativo. O método é o caminho que deve ser seguido para se chegar a um determinado objetivo ou fim. Segundo Lakatos e Marconi (2001), a especificação da metodologia da pesquisa é a que abrange maior número de itens, pois responde, a um só tempo, às questões “como?”, “com quê?” e “quanto?” Estes itens devem ser trabalhados e explorados para que se consiga ter uma boa pesquisa. Baseando-se nos objetivos da pesquisa, o método escolhido foi o estudo de caso, mais especificamente o de múltiplos casos, já que serão estudadas as situações de dois grupos de atores: empresas fabricantes de insumos e equipamentos para a produção de grãos, e empresas fabricantes de equipamentos de beneficiamento e armazenagem de grãos. Esses dois grupos são denominados, respectivamente, de unidade de análise de produção de grãos (UA1) e unidade de análise de beneficiamento de grãos (UA2).

O método de pesquisa classificado como estudo de caso é definido, segundo Cauchick Miguel (2010, p. 129), como “um trabalho de caráter empírico que investiga um dado fenômeno dentro de um contexto real contemporâneo por meio de análise aprofundada de um ou mais objetos de análise (casos)”. Caracteriza-se por ser um método abrangente que contempla desde o planejamento do projeto de pesquisa, com a definição de seus componentes, até as técnicas de coleta de dados e as abordagens específicas para análise de dados. (YIN, 2015). O método do estudo de caso é uma das diversas formas de fazer pesquisa, tendo como vantagem o uso de múltiplas fontes de evidência para solucionar problemas de pesquisa, sendo particularmente adequado para novas áreas ou domínios de investigação. (EISENHARDT, 1989; YIN, 2015).
Um aspecto diferenciador do estudo de caso reside em sua capacidade de lidar com uma ampla variedade de evidências, como documentos, artefatos, entrevistas e observações. (YIN, 2015).

Os estudos de caso podem ser apresentados com combinações de métodos qualitativos e quantitativos, aplicados em diversas situações, na investigação de fenômenos individuais, grupais, organizacionais, políticos e sociais, que permitem aos pesquisadores focarem em um caso sob uma perspectiva holística e num contexto real. (MARTINS, 2008). Classificam-se em estudo de caso único ou estudo de múltiplos casos, sendo este segundo tipo aquele que envolve mais do que um único caso e tem como vantagem proporcionar, por meio das evidências dos casos, um estudo mais robusto. A “justificativa para o projeto de casos múltiplos deriva, diretamente, de seu entendimento das replicações literais e teóricas”. (YIN, p. 65, 2015).

Como qualquer outro método, o estudo de caso apresenta vantagens e desvantagens. As principais vantagens são a aplicabilidade em diferentes orientações epistemológicas, e a possibilidade de utilizar múltiplas fontes de evidência. Os trabalhos que utilizam esse método beneficiam-se do desenvolvimento prévio das proposições teóricas que orientam a coleta e análise dos dados, formulação de hipóteses e a possibilidade do desenvolvimento de teorias. Dentre as desvantagens, o método de estudo de caso apresenta limitações como a impossibilidade de generalizar os resultados obtidos com conclusões específicas para os casos estudados, não permitindo conclusões genéricas. Exige uma metodologia mais apurada e mais tempo para coleta e análise dos dados. (SILVA; MÉRCES, 2018; YIN, 2015). Yin (2015) ressalta que uma vantagem do estudo de casos múltiplos é que suas evidências são mais robustas, mas, por outro lado, envolve mais tempo e mais recursos por parte do pesquisador.

Uma das primeiras tarefas no planejamento de um estudo de caso é a escolha da unidade de análise, ou seja, do caso. (CAUCHIK MIGUEL, 2010). Tendo em vista que esse método pode envolver um ou múltiplos casos, a quantidade a ser escolhida não segue determinação absoluta, aproximando-se mais do julgamento do pesquisador do que de critérios de significância. Yin (2015, p. 66) ressalta que “qualquer uso dos projetos de casos múltiplos deve seguir uma replicação, não uma lógica de amostragem, e o pesquisador deve escolher cada caso cuidadosamente”. Nesta pesquisa, optou-se por múltiplos casos por fornecerem uma base mais densa para a construção teórica em face das evidências empíricas que podem variar, haja vista que casos únicos são indicados para situações que apresentem situações extremas ou peculiares. (EISENHARDT; GRAEBNER, 2007; YIN, 2015). Segundo YIN (2015, p. 60), “cada caso deve ser selecionado cuidadosamente para que (a) possa predizer resultados similares (uma replicação literal) ou (b) possa produzir resultados contrastantes, mas por razões previsíveis (uma replicação teórica)”.
O estudo de múltiplos casos com o uso de dados qualitativos está voltado, no presente trabalho, para entender o fenômeno referente às dinâmicas que envolvem o processo de inovação no agronegócio da soja e do arroz, ressaltando as diferenças nos últimos 50 anos. Para isso, foram definidas duas unidades de análise. Uma unidade de análise de produção, que engloba os fabricantes de insumos e equipamentos de produção de grãos até a colheita; e a unidade de análise de beneficiamento de grãos, que inclui os fabricantes de equipamentos com essa finalidade. Nessa segunda análise, são estudados os equipamentos que fazem parte da chamada instalação dos produtores, ou seja, máquinas de pré-limpeza, secadores, transportadores e silos. A pesquisa faz uma comparação entre essas duas unidades de análise quanto à sua dinâmica tecnológica, com a finalidade de ressaltar suas diferenças, mas sempre com o foco de melhor entender como se deu essa evolução nos equipamentos da unidade de análise de beneficiamento.

Disso resulta que este trabalho adota uma perspectiva de retrospectiva. Um estudo de múltiplos casos retrospectivo investiga o passado, coletando dados históricos (CAUCHIK MIGUEL, 2010). Dessa forma, tem-se dois casos: empresas responsáveis por recursos e equipamentos utilizados na produção de grãos (soja e arroz) (UA1), e empresas fabricantes de equipamentos que beneficiam e armazenam esses grãos (UA2). Essas duas unidades de análise foram comparadas com o objetivo de individualizá-las e entender como se deu a dinâmica de inovação em cada uma delas. O relatório dos casos cruzados mostra de que forma os processos diferenciaram-se e quais os determinantes para as semelhanças e diferenças entre eles.

3.2 MÉTODO DE TRABALHO

No intuito de atingir o objetivo de pesquisa, foi necessário abordar o tema “inovação tecnológica” a partir de uma perspectiva histórica. O que se buscou foi a compreensão de como ocorreu, ao longo do tempo, a dinâmica da incorporação de inovação tecnológica na produção e no beneficiamento de grãos (arroz e de soja), e de que forma esses dois processos nas duas unidades de análise assemelham-se ou diferenciam-se. Os critérios adotados para balizar essa comparação são as proposições levantados no capítulo 2. Para atingir tal objetivo, esse trabalho trilhou dois caminhos paralelos. Por um lado, valueu-se da pesquisa documental e bibliográfica para identificar quais as tecnologias nos equipamentos sucederam-se com o passar do tempo. Por outro caminho, buscou compreender os motivadores dessas inovações. Esse segundo caminho baseou-se em entrevistas com produtores rurais e fabricantes de equipamentos e insumos das duas unidades de análise. Essas entrevistas mostraram as motivações para o
desenvolvimento ou para a busca por inovações tecnológicas. Posteriormente, e de posse dessas informações, as dinâmicas de inovação das duas unidades de análise foram comparadas quanto à sua trajetória tecnológica, usando por base as proposições elaboradas no capítulo 2. As etapas do método de trabalho ocorrem conforme a Figura 2.

Figura 2 - Etapas do método de trabalho

O trabalho iniciou no passo 1 com a identificação da oportunidade de pesquisa. A necessidade de entender de que forma ocorreu a dinâmica da inovação tecnológica nessas duas
unidades de análise teve sua origem na própria experiência profissional do pesquisador no beneficiamento desses grãos. A partir da identificação da oportunidade de pesquisa, foram elaborados a pergunta de pesquisa que norteará o trabalho, e os objetivos principal e específicos (passo 2). O Quadro 2 apresenta os objetivos específicos e a forma que foram atingidos. Esses objetivos buscam construir de que forma ocorreu a dinâmica de inovação tecnológica nos dois momentos distintos da cadeia de produção do arroz e da soja.

Quadro 2 – Objetivos específicos e sua abordagem

<table>
<thead>
<tr>
<th>#</th>
<th>Objetivo específico</th>
<th>Como foi trabalhado</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Descrever as inovações tecnológicas mais representativas nos equipamentos de beneficiamento de arroz e de soja.</td>
<td>Identificação, através das entrevistas e de pesquisa documental, quais foram as inovações incorporadas nos produtos dos fabricantes dessa unidade de análise.</td>
</tr>
<tr>
<td>B</td>
<td>Descrever as inovações tecnológicas mais representativas nos insumos e equipamentos para a produção de arroz e de soja.</td>
<td>Identificação, através das entrevistas e de pesquisa documental, quais foram as inovações incorporadas nos produtos dos fabricantes dessa unidade de análise.</td>
</tr>
<tr>
<td>C</td>
<td>Analisar e diferenciar entre as inovações tecnológicas aquelas que são incrementais das inovações disruptivas na produção e no beneficiamento de arroz e de soja.</td>
<td>Através da análise de documentos e entrevistas, verificar até que ponto as inovações tecnológicas incorporaram alterações leves ou rupturas acentuadas no projeto dos equipamentos.</td>
</tr>
<tr>
<td>D</td>
<td>Identificar os principais fatores que motivaram os fabricantes de máquinas e insumos agrícolas e os fabricantes de equipamentos de beneficiamento na busca pela inovação tecnológica.</td>
<td>Identificação dos fatores através de pergunta direta na entrevista sobre o que motivou a adoção das inovações feitas pela empresa.</td>
</tr>
<tr>
<td>E</td>
<td>Compreender de que forma os produtores se relacionaram com a inovação tecnológica dos equipamentos e insumos de produção e de beneficiamento, e de que forma contribuem para a inovação tecnológica dos mesmos.</td>
<td>Através das entrevistas, foram identificadas as formas através das quais os clientes das empresas fabricantes das duas unidades de análise contribuíram para a incorporação de tecnologia nestes equipamentos.</td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.

Após isso, foi feita a definição da estrutura conceitual-teórica com o levantamento do referencial teórico que balizou a pesquisa (passo 3). Para sua consecução, foi feita uma pesquisa de artigos, livros, dados de fontes oficiais, teses e dissertações referentes ao tema da pesquisa. A definição da estrutura conceitual-teórica foi feita com o objetivo de fornecer a base teórica sobre a qual repousa a pesquisa. O referencial está relacionado aos objetivos do trabalho e estruturam as perguntas do roteiro de entrevista. Esse trabalho visa descrever as inovações que ocorreram nos equipamentos relativos ao beneficiamento de arroz e de soja nos últimos 50 anos, e comparar essa dinâmica de inovações com as que ocorreram na produção desses grãos. Para
isso, a literatura teórica contribui de duas maneiras. Primeiro, fornecendo elementos de análise da inovação tecnológica, um campo mais explorado pela história econômica do que pela engenharia de produção.

A segunda forma pela qual contribui o referencial teórico é referente às etapas de produção e beneficiamento dos grãos que serão investigados ao longo da pesquisa. O histórico da cultura desses dois grãos no Estado, e as várias etapas da produção e beneficiamento de arroz e de soja são referidas e explicadas no capítulo 4, ressaltando sua importância e função para a cadeia produtiva do respectivo grão. Cabe ressaltar que os equipamentos que fazem parte de cada etapa são apenas rapidamente mentionados no capítulo 4, pois a sua descrição mais pormenorizada e as alterações que sofreram ao longo do tempo são parte da análise dos resultados no capítulo 5.

A estrutura conceitual-teórica que compõe o capítulo 2 foi obtida através de artigos ou livros seminais de autores que estudaram a inovação tecnológica em seus diferentes aspectos. Esses autores foram escolhidos por serem os que estabeleceram os fundamentos e trajetórias para inúmeras pesquisas posteriores sobre inovação. Foram também pesquisadas as principais publicações dos autores que estão directamente relacionados à essa área de pesquisa. A Revista Brasileira de Inovação (RBI), da Unicamp, foi uma importante fonte sobre esses autores e seus trabalhos, assim como publicações da Science and Technology Policy Research (SPRU) da Universidade de Sussex.

Para a busca dos artigos e teses diretamente relacionados à inovação tecnológica de arroz e soja, foi utilizada a base de dados da EBSCO e da BDBTD (Biblioteca Digital Brasileira de Teses e Dissertações). Foi efetuada a leitura dos títulos e abstracts de todos os trabalhos e os critérios de exclusão foi não ter associação com o tema específico da pesquisa, ou seja, não serem relacionados a equipamentos e insumos.

Parte dos artigos encontrados e não utilizados referiam-se a etapas posteriores do beneficiamento de arroz e soja. No caso do arroz, muitos artigos foram encontrados abordando o descasque, polimento e parboilização. No caso da soja, os artigos referentes a obtenção de farelo de soja e seu processamento em proteína texturizada e isolada não foram utilizados. Na Tabela 1 estão expostas as bases de dados e as palavras-chave utilizadas.
Tabela 1 – Palavras-chave e bases de dados

<table>
<thead>
<tr>
<th>Base</th>
<th>Palavra-chave</th>
<th>Total de artigos identificados</th>
<th>Trabalhos alinhados após crítica de exclusão</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBSCO</td>
<td>Innovation in agribusiness</td>
<td>143</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Grain cereal production</td>
<td>207</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Innovation in rice production</td>
<td>52</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Innovation in soybean production</td>
<td>27</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Innovation in rice equipments</td>
<td>472</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Innovation in soybean equipments</td>
<td>263</td>
<td>13</td>
</tr>
<tr>
<td>BDTD</td>
<td>Beneficiamento de arroz</td>
<td>2069</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Beneficiamento de soja</td>
<td>1842</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Inovação no beneficiamento de soja</td>
<td>616</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Inovação no beneficiamento de arroz</td>
<td>663</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Inovação tecnológica na agroindústria</td>
<td>661</td>
<td>11</td>
</tr>
</tbody>
</table>

Fonte: Elaborada pelo autor.

Além dessas bases de dados, foram pesquisados trabalhos de centros de pesquisa reconhecidos por sua atuação na pesquisa agropecuária, como o GEPAI (Grupo de Estudos e Pesquisas Agroindustriais, da Universidade Federal de São Carlos), o PENSA (Programa de Estudos dos Negócios do Sistema Agroindustrial, da Universidade de São Paulo), e o CEPAN (Centro de Estudos e Pesquisas em Agronegócio, da Universidade Federal do Rio Grande do Sul).

Devido à sua importância como fonte de dados e estudos sobre a economia gaúcha, foi também consultada a FEE (Fundação de Economia e Estatística) quanto a dados de produção e artigos referentes à agroindústria de soja, arroz e equipamentos de beneficiamento de grãos. Outras organizações diretamente relacionadas à produção e beneficiamento de arroz e soja, como ABIARROZ (Associação Brasileira da Indústria do Arroz), FEDERARROZ (Federação dos Arrozeiros do Rio Grande do Sul), APROSOJA (Associação dos Produtores de Soja do Rio Grande do Sul), FARSUL (Federação da Agricultura do Estado), IRGA (Instituto Riograndense do Arroz) e ABIMAO (Associação Brasileira de Máquinas e Equipamentos) foram consultadas para a obtenção de dados de produção e sobre equipamentos. Os dados referentes ao histórico de produção nacional, tanto em termos de produtividade por hectare, área plantada e produção foram obtidos através do IBGE (Instituto Brasileiro de Geografia e Estatística) e CONAB (Companhia Nacional de Abastecimento).

A partir da identificação, no capítulo 2, dos mecanismos que, historicamente, estiveram presentes na trajetória da inovação tecnológica, foram construídas as proposições relacionadas às duas unidades de análise (passo 4). Essas proposições procuram compreender quais foram as diferenças e semelhanças no processo de inovação tecnológica entre as duas unidades de análise da pesquisa. A construção das proposições, por sua vez, embasou a elaboração dos roteiros de entrevistas que estão no anexo A do trabalho (passo 5). Esses roteiros serão de dois
tipos: para os fabricantes de insumos e equipamentos das duas unidades de análise, e para os produtores de arroz ou de soja.

A pesquisa documental (passo 6) foi baseada em catálogos de equipamentos, livros e publicações que exponham inovações na cadeia produtiva e nos equipamentos da agroindústria, mais especificamente aqueles relacionados à produção e ao beneficiamento e armazenagem de arroz e de soja. Foi dado o devido valor a publicações mais antigas, que descrevem a constituição dos equipamentos na época em que foram escritas. Essas informações foram muito valiosas quando comparadas com os catálogos atuais dos equipamentos. Nessa análise, buscou-se identificar os aspectos inovadores que foram sendo incorporados aos equipamentos com o decorrer do tempo. A leitura desses documentos procurou explicitar quais foram as inovações adotadas com o passar do tempo, seu grau de inovação e em quais equipamentos das duas unidades de análise.

A pesquisa de campo foi realizada através de um roteiro de entrevistas semiestruturadas previamente preparado a partir de um protocolo no passo 5. De acordo com Cauchik Miguel (2010), um protocolo não se resume somente a um roteiro de entrevista. Também deve conter procedimentos e regras gerais da pesquisa para sua condução. Um protocolo bem elaborado é um instrumento que melhora a confiabilidade e a validade da pesquisa. (CAUCHIK MIGUEL, 2010). Segundo Soriano (2004), para que se coloque em prática essa técnica, é necessário que se localize a fonte-chave da informação, assim denominada por possuir experiências e conhecimentos relevantes sobre o tema em estudo ou por estar preparada para fornecer dados que outras pessoas desconhecem total ou parcialmente. No estudo de campo, o pesquisador realiza a maior parte do trabalho pessoalmente, pois é enfatizada a importância do pesquisador ter tido ele mesmo uma experiência direta com o objeto de estudo. (GIL., 2010). As entrevistas foram realizadas pelo pesquisador, pessoalmente ou por telefone, com dois grupos de atores da cadeia de produção dos grãos: fabricantes de equipamentos e insumo, e produtores de arroz ou soja (passos 7 e 8).

A entrevista é uma importante modalidade para coleta de dados primários em estudos de caso ou múltiplos casos. Um dos tipos de entrevista é a focada ou direcionada, na qual o pesquisador segue um conjunto de perguntas derivadas do protocolo de pesquisa. (YIN, 2015). A entrevista semiestruturada não é inteiramente aberta, mas não pode ser conduzida por muitas questões pré-estabelecidas. Baseia-se apenas em poucas questões que servirão como guias. Outra característica dessa técnica é a possibilidade da inclusão de novas perguntas durante a entrevista com a finalidade de explorar mais algum assunto. Por isso, é fundamental utilizar um roteiro flexível. Segundo Yin (2015), essa técnica é uma das principais fontes de informação
para pesquisas do tipo estudo de caso. Yín (2015) argumenta que a entrevista permite seguir uma linha consistente de investigação, sendo o fluxo real de questões fluido e não rígido, dando assim liberdade para o investigador.

Os roteiros das entrevistas são semiestruturados, com perguntas específicas para cada um dos dois grupos, mas todas centradas no assunto principal da inovação tecnológica dos equipamentos e insumos. O roteiro foi construído baseado na experiência do pesquisador na área e nas proposições construídas a respeito da dinâmica de inovação tecnológica segundo o referencial teórico exposto no capítulo 2. Foram construídos dois roteiros de entrevistas com o objetivo de entender o processo de inovação tecnológica dentro do contexto de cada um dos atores (fabricantes e produtores) (Anexo A).

As entrevistas foram cruciais para o andamento do trabalho, pois identificaram motivações, implementações e barreiras com que os atores se defrontaram ao longo da trajetória de inovações de suas empresas. O primeiro grupo foi composto por fabricantes de insumos e equipamentos para a produção e beneficiamento de grãos, que compõem as duas unidades de análise (UA1 e UA2). O segundo grupo foi composto por produtores de arroz ou de soja. Esses dois grupos abrangem os atores ligados diretamente à inovação, ou seja, tanto aqueles que requerem a inovação como aqueles que a oferecem. No total foram entrevistados dez produtores, a maioria dos quais plantam os dois grãos. Dentre estes dez produtores, dois deles beneficiam arroz e vendem com sua marca. As entrevistas foram gravadas pelo próprio autor e posteriormente transcritas para análise do discurso. A relação das entrevistas com os fabricantes das duas unidades de análise está mostrada na Tabela 2. Nessa tabela é referenciado o tipo de equipamento ou insumo produzido.
Tabela 2 – Fabricantes entrevistados das duas unidades de análise

<table>
<thead>
<tr>
<th>Empresa/Código</th>
<th>Ramo de atuação</th>
<th>Cargo</th>
<th>Duração (minutos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Máquinas agrícolas</td>
<td>Gerente de vendas</td>
<td>48</td>
</tr>
<tr>
<td>B1</td>
<td>Máquinas agrícolas</td>
<td>Engenheiro de projetos</td>
<td>25</td>
</tr>
<tr>
<td>C1</td>
<td>Máquinas agrícolas</td>
<td>Engenheiro de projetos</td>
<td>32</td>
</tr>
<tr>
<td>D1</td>
<td>Máquinas agrícolas</td>
<td>Gerente de projetos</td>
<td>26</td>
</tr>
<tr>
<td>E1</td>
<td>Máquinas agrícolas</td>
<td>Gerente de vendas</td>
<td>18</td>
</tr>
<tr>
<td>F1</td>
<td>Irrigação</td>
<td>Engenheiro de projetos</td>
<td>17</td>
</tr>
<tr>
<td>G1</td>
<td>Sementes/defensivos</td>
<td>Gerente de vendas</td>
<td>21</td>
</tr>
<tr>
<td>H1</td>
<td>Sementes/defensivos</td>
<td>Gerente de vendas</td>
<td>17</td>
</tr>
<tr>
<td>J1</td>
<td>Estação meteorológica</td>
<td>Gerente de vendas</td>
<td>15</td>
</tr>
<tr>
<td>K1</td>
<td>Drones de aplicação</td>
<td>Proprietário e diretor de vendas</td>
<td>20</td>
</tr>
<tr>
<td>K2</td>
<td>Bicos pulverizadores</td>
<td>Engenheiro de projetos</td>
<td>21</td>
</tr>
</tbody>
</table>

Tabela 2 – Fabricantes entrevistados das duas unidades de análise

<table>
<thead>
<tr>
<th>Empresa/Código</th>
<th>Ramo de atuação</th>
<th>Cargo</th>
<th>Duração (minutos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>Equipamentos de beneficiamento</td>
<td>Gerente de projetos</td>
<td>90</td>
</tr>
<tr>
<td>B2</td>
<td>Equipamentos de beneficiamento</td>
<td>Proprietário e diretor de vendas</td>
<td>35</td>
</tr>
<tr>
<td>C2</td>
<td>Equipamentos de beneficiamento</td>
<td>Gerente de projetos</td>
<td>32</td>
</tr>
<tr>
<td>D2</td>
<td>Equipamentos de beneficiamento</td>
<td>Gerente de projetos</td>
<td>110</td>
</tr>
<tr>
<td>E2</td>
<td>Equipamentos de beneficiamento</td>
<td>Engenheiro de projetos</td>
<td>34</td>
</tr>
<tr>
<td>F2</td>
<td>Equipamentos de beneficiamento</td>
<td>Engenheiro de projetos</td>
<td>37</td>
</tr>
<tr>
<td>G2</td>
<td>Equipamentos de beneficiamento</td>
<td>Gerente de projetos</td>
<td>23</td>
</tr>
<tr>
<td>H2</td>
<td>Equipamentos de beneficiamento</td>
<td>Gerente de projetos</td>
<td>28</td>
</tr>
<tr>
<td>I2</td>
<td>Termometria</td>
<td>Engenheiro de projetos</td>
<td>34</td>
</tr>
<tr>
<td>J2</td>
<td>Ventilação armazéns e silos</td>
<td>Proprietário e diretor de vendas</td>
<td>22</td>
</tr>
<tr>
<td>K2</td>
<td>Refrieração armazéns e silos</td>
<td>Engenheiro de projetos</td>
<td>22</td>
</tr>
</tbody>
</table>

TOTAL 727

Fonte: Elaborada pelo autor.

A Tabela 3 relaciona os produtores entrevistados, qual grão produzido, área plantada, destino e localização da lavoura.

Tabela 3 – Produtores entrevistados

<table>
<thead>
<tr>
<th>Produtor</th>
<th>Grão</th>
<th>Área plantada (ha)</th>
<th>Localização</th>
<th>Destino</th>
<th>Duração (minutos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Arroz/Soja</td>
<td>3500</td>
<td>Pedro Osório</td>
<td>Mercado interno</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>Soja</td>
<td>4000</td>
<td>Ibirubá</td>
<td>Exportação</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>Arroz (benef.)/Soja</td>
<td>3000</td>
<td>Rio Grande</td>
<td>Interno e Exportação</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>Arroz (benef.)/Soja</td>
<td>5000</td>
<td>Ibirubá</td>
<td>Interno e Exportação</td>
<td>87</td>
</tr>
<tr>
<td>5</td>
<td>Soja</td>
<td>400</td>
<td>Ernestina</td>
<td>Exportação</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>Soja</td>
<td>9000</td>
<td>Cruz Alta</td>
<td>Exportação/interno</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>Arroz/Soja</td>
<td>7600</td>
<td>Santa Vitória do Palmar</td>
<td>Interno e Exportação</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>Arroz/Soja</td>
<td>7600</td>
<td>Santa Vitória do Palmar</td>
<td>Interno e Exportação</td>
<td>49</td>
</tr>
<tr>
<td>9</td>
<td>Soja</td>
<td>800</td>
<td>Tapes</td>
<td>Biodiesel/Exportação</td>
<td>32</td>
</tr>
<tr>
<td>10</td>
<td>Arroz</td>
<td>100</td>
<td>Palmares do Sul</td>
<td>Mercado interno</td>
<td>15</td>
</tr>
</tbody>
</table>

TOTAL 296

Fonte: Elaborada pelo autor.
A seleção de empresas para as entrevistas foi feita com a intenção de abranger o máximo possível o leque de equipamentos relativos à produção e beneficiamento de grãos. Como dito anteriormente, o foco desse trabalho foi o de entender a dinâmica de inovação tecnológica dos equipamentos de beneficiamento (UA2) em relação aos equipamentos e insumos de produção (UA1). Por isso, a seleção de fabricantes da unidade de análise de beneficiamento (UA2) procurou ser a mais completa possível. Os principais fabricantes desses equipamentos no Estado estão aqui incluídos. A maior parte desses fabricantes produzem os quatro equipamentos objeto de estudo: máquinas de pré-limpeza, secadores, transportadores e silos. A eles foram agregados fabricantes de acessórios relativos ao controle de temperatura, ventilação e refrigeração, pois estes complementam os equipamentos dos primeiros.

Na unidade de análise de produção de grãos (UA1), foi dada preferência para os equipamentos relacionados diretamente com o trabalho na lavoura, ou seja, máquinas agrícolas. A esse grupo foi agregado o de duas empresas que desenvolvem sementes geneticamente modificadas, pois foi percebido, no decorrer do trabalho, que as inovações tecnológicas dessas máquinas não poderiam prescindir de uma análise do que estava ocorrendo em termos de tecnologia no elo anterior da cadeia de produção. A complexidade dessa unidade de análise levou o autor a buscar empresas de outros ramos, como irrigação, meteorologia e bicos de pulverização para entender até que ponto as inovações estão interligadas.

Quanto aos produtores de arroz e de soja, não houve um critério de seleção específico. As entrevistas foram sendo feitas à medida em que eram conseguidas por diversos contatos. Procurou-se produtores dos dois tipos de grão para tentar perceber a diferença em suas visões quanto à tecnologia. Boa parte, no entanto, planta os dois grãos por favorecer a rotação do solo e por ver na soja uma colheita com mais perspectiva.

O procedimento de análise das entrevistas, foi feito através de uma análise de discurso (passo 9) para colaborar com a comprovação ou refutação das proposições anteriormente construídas. Essa análise articula o linguístico com o social e o histórico, na qual a linguagem é estudada não apenas enquanto forma linguística, como também enquanto forma material de ideologia. Na análise de discurso, a linguagem vai além do texto, trazendo sentidos pré-construídos. (CAREGNATO; MUTTI, 2006). A escolha por essa técnica para analisar as entrevistas decorre do fato de que o discurso produzido pela fala sempre terá relação com o momento sócio histórico, o que se encontra alinhado com o objetivo de uma pesquisa que visa identificar motivações e iniciativas tomadas em determinados momentos históricos. As entrevistas, depois de transcritas, foram marcadas através de um código que represente
categorias previamente definidas e bascadas nas proposições de pesquisa. “Os códigos são blocos cujo objetivo é resgatar os dados das narrativas e transcrições de forma a associá-los ao que se pretende investigar, seja no âmbito da questão da pesquisa ou dos constructos desenvolvidos a partir da literatura”. (CAUCHIK MIGUEL, 2010, p. 136).

Por sua característica de Estado produtor agrícola, o Rio Grande do Sul realiza, periodicamente, feiras relativas ao agronegócio. Essas feiras foram uma grande oportunidade para o autor visualizar as últimas inovações tecnológicas nos insumos e equipamentos de produção e beneficiamento de grãos. Duas dessas feiras foram visitadas pelo pesquisador. A EXPONTE foi visitada nos anos 2017, 2018 e 2019. A EXPONTE foi visitada nos anos 2019 e 2020. Além de ver os equipamentos e insumos ao vivo e obter seus catálogos, essas feiras apresentaram uma grande oportunidade de ter contato com todos os atores da cadeia de produção e beneficiamento de grãos. Também lá pode ser verificado o estilo de estratégias de marketing, postura comercial e divulgação que caracteriza as duas unidades de análise de produção e beneficiamento de grãos.

A descrição da dinâmica tecnológica dos equipamentos de produção, beneficiamento e armazenagem, com base na pesquisa bibliográfica e entrevistas, foi a base para a elaboração do capítulo 5, no qual consta o histórico do aperfeiçoamento técnico dos equipamentos objeto de estudo (passo 10). Esse capítulo tem o propósito de descrever a evolução de cada equipamento constante no beneficiamento dos grãos. Esse capítulo inicia com uma descrição mais breve da incorporação tecnológica nos equipamentos e insumos para a produção de grãos, que fazem parte da unidade de análise de produção. A finalidade dessa parte inicial foi estabelecer um marco de comparação com a descrição mais detalhada que vem a seguir dos equipamentos relativos ao beneficiamento dos grãos, principalmente para pontuar os tipos de inovações tecnológicas adotadas.

Uma vez coletados os dados, tanto das entrevistas quanto da pesquisa documental, foi feita a sua análise cruzada (passo 11) que, segundo Yin (2015, p. 136), “consiste no exame, na categorização, na tabulação, no teste ou nas evidências re combinadas de outra forma, para produzir descobertas baseadas em empirismo”. Segundo Eisenhardt (1989), em pesquisas conduzidas através de estratégias de estudos de casos, não existe um padrão ou formato específico e, apesar de ser o centro da construção da teoria, é a etapa mais difícil e, simultaneamente, a menos codificada do processo. A técnica analítica utilizada foi a triangulação dos dados. A técnica da triangulação foi feita através de uma interação entre as diversas fontes de evidências, analisando sua convergência ou divergência, visando a sustentação das proposições. (CAUCHIK MIGUEL, 2010). Para Yin (2015), a triangulação
consiste em fundamento lógico para se utilizar várias fontes de evidência, permitindo o desenvolvimento de linhas convergentes de investigação e que os dados obtidos à luz de sua análise se tornem mais acurados e convincentes. Dentre os possíveis tipos de triangulação propostos (YIN, 2015) (das fontes de dados, entre diferentes avaliadores, de perspectivas para o mesmo conjunto de dados, dos métodos), foi utilizada a triangulação das fontes de dados. Esse tipo de triangulação é feito quando fontes diversas de dados são adotadas, as quais, no entanto, convergem ao mesmo conjunto de fatos ou descobertas.

A triangulação foi feita através de três painéis. O primeiro painel consiste dos dois grupos de entrevistas; o segundo corresponde à pesquisa documental em livros, catálogos de equipamentos e visitas a feiras; o terceiro consiste em um painel final aglutinador, no qual as proposições são confrontadas com os levantamentos resultantes dos painéis anteriores. O primeiro painel é resultado das entrevistas feitas com os fabricantes de insumos e equipamentos das duas unidades de análise: produção e beneficiamento de grãos. Dele também fazem parte as entrevistas com os produtores de arroz e de soja. A transcrição dessas entrevistas encontra-se no Anexo B desse trabalho.

O segundo painel consiste de dados obtidos através da pesquisa documental para cada unidade de análise. Nele consta toda a pesquisa documental sobre os equipamentos e insumos estudados, o que inclui catálogos de equipamentos, os quais normalmente salientam os aspectos mais inovadores neles introduzidos, e livros novos e antigos com a descrição de equipamentos de beneficiamento de grãos. A comparação do que é apresentado nos livros mais antigos com o que é visto na realidade, em catálogos ou em vistas a feiras, mostra o quanto houve, ou não houve, de avanço tecnológico. Desse painel fazem parte as constatações feitas pelo pesquisador nas visitas a exposições (EXPOINTER, EXPODIRETO) e no contato direto com os equipamentos.

O terceiro painel relacionou as proposições de pesquisa com os levantamentos derivados dos dois primeiros painéis. Os resultados obtidos foram comparados com as proposições iniciais da pesquisa (passo 12) que haviam sido desenvolvidas a partir das implicações teóricas. Na conclusão do trabalho, no capítulo 7, constam as considerações finais, as limitações e as sugestões de pesquisas futuras (passo 13).
Figura 3 – Triangulação dos resultados

Fonte: Elaborada pelo autor.
4 PRODUÇÃO E PROCESSAMENTO DE ARROZ E SOJA NO RIO GRANDE DO SUL

Com a finalidade de situar o objeto de pesquisa, neste capítulo é descrita a evolução do plantio de arroz e de soja no Estado. Na sequência, são descritas as etapas da produção e do beneficiamento pelas quais esses grãos passam após a colheita, e de que fazem parte os equipamentos que serão posteriormente analisados quanto à sua inovação (capítulo 5).

Os primeiros grãos trazidos para o Rio Grande do Sul, com a intenção de constituir a base de alimentação para os primeiros habitantes, não foram o arroz nem a soja. Já a alguns séculos, o milho havia sido trazido por indígenas de outras regiões da América. No século XVII, o trigo foi trazido pelos padres jesuítas e outros colonizadores europeus. (BUENO; TAITELBRAUM, 2009). Até o final do século XIX, estes foram os principais cultivos no Estado, juntamente com a erva-mate. O arroz e a soja, os grãos que vão alavancar o Estado como um celeiro agrícola nacional, foram extensamente cultivados somente a partir do século XX.

4.1 PRODUÇÃO DE ARROZ E SOJA NO RIO GRANDE DO SUL

O cultivo de arroz e soja teve um grande crescimento ao longo do século XX, o que levou ao aprimoramento dos insumos e equipamentos nos dois momentos de produção e beneficiamento da cadeia de produção dos grãos. O Rio Grande do Sul, historicamente, é um grande produtor de grãos. Sua representatividade na produção nacional depende do grão considerado, sendo preponderante na produção de arroz, como pode ser visto na Tabela 4.

Tabela 4 - Participação do Rio Grande do Sul no total nacional safra 2018/2019 (em t)

<table>
<thead>
<tr>
<th></th>
<th>Ano 2019</th>
<th>Soja</th>
<th>Arroz</th>
<th>Milho</th>
<th>Trigo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brasil</td>
<td>115.018.200</td>
<td>10.428.100</td>
<td>98.504.000</td>
<td>5.488.700</td>
<td></td>
</tr>
<tr>
<td>Rio Grande do Sul</td>
<td>19.187.100</td>
<td>7.389.100</td>
<td>5.768.100</td>
<td>1.936.000</td>
<td></td>
</tr>
<tr>
<td>% Rio Grande do Sul</td>
<td>16,68</td>
<td>70,86</td>
<td>5,86</td>
<td>35,27</td>
<td></td>
</tr>
</tbody>
</table>

Fonte: CONAB (2019).

O agronegócio no Rio Grande do Sul contribui com 40,5% do PIB estadual e representa mais de 50% das exportações do estado. (FEE, 2017). Esse volume de produção não foi obtido somente de forma extensiva, através da incorporação de novas terras, mas, principalmente, devido ao aumento de produtividade, como pode ser visto na Tabela 5. O aumento de
produtividade dos grãos irradiou-se ao longo de toda a cadeia produtiva, tornando necessário um acompanhamento tecnológico que fornecesse máquinas e equipamentos mais eficientes para os produtores e empresas de beneficiamento.

Tabela 5 - Produção de grãos no Rio Grande do Sul 1950 - 2019

<table>
<thead>
<tr>
<th>Ano</th>
<th>SOJA</th>
<th>ARROZ</th>
<th>TRIGO</th>
<th>MILHO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Área (ha)</td>
<td>Produção (t)</td>
<td>kg/ha</td>
<td>Área (ha)</td>
</tr>
<tr>
<td>1950</td>
<td>24.259</td>
<td>33.739</td>
<td>1930,8</td>
<td>241.626</td>
</tr>
<tr>
<td>1955</td>
<td>67.321</td>
<td>99.353</td>
<td>1475,8</td>
<td>314.460</td>
</tr>
<tr>
<td>1960</td>
<td>167.384</td>
<td>191.503</td>
<td>1144,1</td>
<td>336.696</td>
</tr>
<tr>
<td>1965</td>
<td>384.643</td>
<td>459.040</td>
<td>1193,4</td>
<td>450.496</td>
</tr>
<tr>
<td>1975</td>
<td>3.113.286</td>
<td>4.688.521</td>
<td>1506,0</td>
<td>468.585</td>
</tr>
<tr>
<td>1980</td>
<td>3.987.000</td>
<td>5.581.800</td>
<td>1400,0</td>
<td>589.995</td>
</tr>
<tr>
<td>1985</td>
<td>3.637.000</td>
<td>5.710.100</td>
<td>1570,0</td>
<td>726.135</td>
</tr>
<tr>
<td>1990</td>
<td>3.577.000</td>
<td>6.438.600</td>
<td>1800,0</td>
<td>664.730</td>
</tr>
<tr>
<td>1995</td>
<td>3.015.000</td>
<td>6.150.600</td>
<td>2040,0</td>
<td>929.869</td>
</tr>
<tr>
<td>2000</td>
<td>3.039.000</td>
<td>4.965.000</td>
<td>1650,0</td>
<td>986.035</td>
</tr>
<tr>
<td>2005</td>
<td>4.090.100</td>
<td>2.854.900</td>
<td>688,0</td>
<td>1.018.189</td>
</tr>
<tr>
<td>2010</td>
<td>3.976.200</td>
<td>10.218.800</td>
<td>2570,0</td>
<td>1.053.454</td>
</tr>
<tr>
<td>2015</td>
<td>5.249.200</td>
<td>14.881.500</td>
<td>2835,0</td>
<td>1.120.823</td>
</tr>
<tr>
<td>2016</td>
<td>5.455.000</td>
<td>16.201.400</td>
<td>2970,0</td>
<td>1.076.000</td>
</tr>
<tr>
<td>2017</td>
<td>5.569.600</td>
<td>18.713.900</td>
<td>3360,0</td>
<td>1.100.700</td>
</tr>
<tr>
<td>2018</td>
<td>5.692.100</td>
<td>17.150.300</td>
<td>3013,0</td>
<td>1.077.600</td>
</tr>
<tr>
<td>2019</td>
<td>5.777.500</td>
<td>19.187.100</td>
<td>3321,0</td>
<td>1.001.100</td>
</tr>
</tbody>
</table>

Fonte: CONAB (2019).

Arroz e soja são as duas culturas agrícolas mais representativas do Rio Grande do Sul. A Figura 4 ilustra o crescimento da participação destes grãos no total produzido pelo estado.

Figura 4 - Crescimento da produção de soja e arroz sobre total de grãos colhidos no RS

Fonte: CONAB (2019).
Há diferenças significativas entre os caminhos que o arroz e a soja percorrem após a colheita. Uma delas é quanto à comercialização. Enquanto boa parte do arroz produzido no Estado é voltado para o consumo doméstico, sob a forma de diferentes produtos (polido, integral, parboilizado, mistura com outros cereais), a soja visa fortemente o mercado mundial, seja na forma in natura, seja na forma de farelo e proteína (proteína concentrada, texturizada ou isolada de soja).

O fato de que a quase totalidade da soja cultivada no Rio Grande do Sul é geneticamente modificada (GM) é uma circunstância favorável para utilização no biodiesel, já que a soja GM tem um mercado consumidor mais restrito como produto alimentício junto à população. A capacidade autorizada de produção de biodiesel no Rio Grande do Sul é de 6.283 m³/dia. (ANP, 2018). A transesterificação alcalina é o processo químico geralmente mais utilizado no Brasil para a obtenção do biodiesel B100, mas outros processos também podem ser utilizados, como craqueamento e esterificação. A partir de 2008, a adição de biodiesel puro B100 ao óleo diesel passou a ser obrigatória e com um percentual crescente ao longo dos anos. A Lei 13.033/2014 aumentou o percentual de mistura no biodiesel no óleo diesel de 6% (B6) para 7% (B7). Atualmente a composição é de 8%, sendo a meta alcançar 10%. (BRASIL, 2018).

Os processamentos dos grãos de arroz e soja são feitos de formas diferente. O arroz passa por um processo mais simples, basicamente com limpeza, descasque, polimento e seleção de grãos. Ou seja, o grão colhido é praticamente o grão que se come. O tratamento hidrotérmico do grão, chamado parboilização⁸, é um modo de agregar valor ao produto, correspondendo a cerca de 20% do total do arroz consumido no Brasil. (ABIAP, 2018). Mesmo com seu processo mais simples, o beneficiamento de arroz exigiu um aprimoramento dos equipamentos

⁸ A palavra “parboilização” deriva da expressão partial boiled, em inglês, que em tradução livre significa parcialmente fervido. A parboilização é um processo hidrotérmico pelo qual passa o arroz em casca, consistindo em uma aeração, na qual o arroz fica algumas horas em contato com água quente (60°C – 65°C) em um tanque, seguido por um tratamento em autoclave e posterior secagem. Esse processo traz alguns benefícios, como recuperação de grãos que por ventura estejam quebrados na casca, uma maior retenção de vitaminas B1, B2 e B12, e um maior rendimento na hora de cocção por parte do consumidor, já que apresenta uma maior absorção de água. (AMATO, 1991).
envolvidos, em vista de que, como uma *commodity*, perdas e custos afetam diretamente a margem de lucro decorrente de uma baixa elasticidade-preço.

A soja não é consumida no estado em que é colhida, além de ser em parte destinada à produção de biodiesel ou exportada *in natura*. Para o consumo humano, a soja passa por um processo mais elaborado, no qual, após a extração do óleo e a produção de faroela da fração sólida resultante, o produto pode ser processado e classificado como proteína concentrada, texturizada ou isolada, sendo usada como ingrediente para diferentes tipos de alimentos.

4.1.1 Evolução do Plantio de Arroz e Soja no Rio Grande do Sul

O arroz (*Oryza sativa*) pertence à família das gramíneas, sendo uma das culturas agrícolas mais antigas do mundo e base da alimentação de vários países asiáticos. O arroz constitui um produto alimentar básico para 50% da população mundial, contribuindo com 20% das calorias e 13% das proteínas necessárias para o consumo humano. (YOKOYAMA; RUCATTI; KLUTHCOUSKI, 1999). Segundo a CONAB (2019), em 2019 foram colhidas mundialmente 706 milhões de toneladas de arroz. Os dois maiores produtores de arroz do mundo são a China e a Índia, com respectivamente, 35% e 20% da produção mundial total. O Brasil é o 9º maior produtor de arroz mundial e o maior produtor fora da Ásia. (HENKIN; GRÜNĐING; OLIVEIRA, 2010). Na safra de 2018/2019 foram colhidas 10.483.600 t no território nacional. Dentre os estados produtores, o Rio Grande do Sul produziu 7.389.100 t, o que representa 70,48% do total produzido em 58,80% do total da área plantada no Brasil. (CONAB, 2019).

Segundo a *Food and Agriculture Organization* (FAO, 2017), o arroz é classificado de acordo com seu grau de beneficiamento, em função das dimensões do grão e tipo. Quanto ao grau de beneficiamento, o arroz pode ser em casca natural ou parboilizado. Quanto às dimensões do grão, ou classe, o arroz pode ser longo fino, longo, médio, curto ou misturado. Por fim, quanto à variedade, pode ser Indica, Glutinous, Japônica ou Aromático.

O arroz também difere quanto ao grau de beneficiamento que recebe. O arroz em casca natural é aquele anterior a qualquer beneficiamento, ou seja, o que for retirado diretamente da lavoura. O arroz em casca parboilizado é o arroz em casca natural após sofrer um processo hidrotérmico. O arroz integral é o arroz descascado, mantendo intacto o germe e as camadas internas e externas do grão (o conjunto dessas partes é também chamado de faroela). O arroz integral também pode ser parboilizado, passando pelo já citado processo hidrotérmico, mas mantendo as mesmas camadas anteriores. O arroz polido é aquele que remove o faroela. Ele
pode ser o branco polido ou o parboilizado polido. (YOKOYAMA; RUCATTI; KLUTHCOUSKI, 1999).

No Rio Grande do Sul, datam de 1833 as primeiras lavouras localizadas na depressão central, cultivadas nas coxilhas. O trigo antecedeu o arroz como produto agrícola de exportação, mas o arroz assumiu, a partir da última década do século XIX, as características de uma lavoura capitalista e comercial, incorporando um nível crescente de tecnologia para atingir uma maior produtividade, principalmente através de uma melhor irrigação. (MÜLLER, 1998). Nos primeiros 40 anos da lavoura arrozeira gaúcha irrigada, os mercados consumidores sofreram grandes transformações. A orizicultura gaúcha tomou impulso a partir de 1900, quando a proteção alfandegária praticamente retira a concorrência externa, principalmente do arroz italiano, reservando o mercado nacional para o produto brasileiro. Isso proporcionou substanciosos lucros tanto para os proprietários de terra quanto para os arrendatários. (FRAQUELLI, 1993).

O empresário Pedro Osório, sócio de várias charquearias em Pelotas e outras cidades, vislumbrou no cultivo do arroz, no fim do século XIX, a possibilidade de uma lavoura extensiva que usasse a mão de obra que ficava ociosa após o período de abate do gado nas charquearias. Seu grande mérito no cultivo do arroz foi o de usar a tecnologia para a obtenção de resultados. Em 1909 ele já era chamado o rei do arroz. Ele percebeu que uma irrigação eficiente significava o sucesso ou insucesso da lavoura. Por isso, investiu pesadamente em sistemas de irrigação mais eficientes. A contratação de técnicos que projetaram casas de bombas e canais de distribuição de água mais eficientes tornou o cultivo lucrativo, o que, gradualmente, ocasionou o aumento da produção por hectare. Em 1912, Pedro Osório trouxe da Europa para seu engenho São Gonçalo, o maior da América Latina na época, avançadas máquinas alemãs. (BUENO; TAITELBAUM, 2009). Ele investiu pesadamente em máquinas de beneficiamento das marcas Schultze e Huckauf & Bulle, com a finalidade de obter um produto diferenciado. (ABUCHAIM, 2013).

Nas primeiras três décadas da produção de arroz no estado no século XX, a mecanização estava praticamente restrita à irrigação. A irregularidade das chuvas foi um inconveniente que só pôde ser superado com irrigação controlada. Entre os anos de 1890 e 1900, os colonos alemães de Taquara e Santa Cruz realizaram as primeiras experiências com irrigação. Em 1903, Pelotas iniciou o cultivo de arroz com irrigação mecânica, Gravataí em 1905, e Cachoeira do Sul em 1906. O processo de irrigação mecânica utiliza instalações de bombeamento, canais e motores à lenha. Uma vez recalculada, a água era conduzida por grandes e altas calhas de metal aos canais de terra. Embora de alto custo, ele tem um efeito normalizador sobre as safras
gaúchas, reduzindo as flutuações estacionais do produto e viabilizando um aumento de produtividade, embora implicando, por outro lado, uma maior imobilização de capital. (FRAQUELLI, 1993).

Embora a irrigação fosse uma segurança maior da lavoura, ela tinha seus inconvenientes. Era muito cara e trabalhosa, pois exigia grandes quantidades de lenha e estava sujeita ao variável caudal de água dos rios, o que não oferecia segurança quanto ao abastecimento na quantidade necessária e no momento preciso. O açude era uma forma mais segura e econômica a longo prazo, mas estavam presentes somente em grandes lavouras. (MASSERA, 1983). Segundo Massera (1983), a não construção de açudes, como as deficiências na sistematização, são devido ao fato de que os produtores, a maioria sem capital e arrendatários, não investiam em construções que ficariam para o proprietário.

Com a Primeira Guerra Mundial o arroz italiano parou de chegar ao Estado, o que deu chance ao arroz gaúcho de expandir seu mercado. (BUENO; TAIETELBAUM, 2009). Até a Primeira Guerra Mundial, o principal mercado de arroz gaúcho foi o próprio Estado. No período da Primeira Guerra Mundial e até 1923, o principal mercado esteve constituído pelas praças do Rio da Prata, ficando o mercado estadual em um segundo plano. A partir de 1924 impôs-se tendencialmente o mercado nacional. (MASSERA, 1983). Com o retorno da concorrência internacional com o final da Primeira Guerra na Europa (1918), o arroz produzido por Pedro Osório manteve os mercados que havia conquistado no Brasil e no Prata, pois seu arroz tinha uma qualidade reconhecidamente superior. (ABUCHAIM, 2013).

Em 1916, a produção do Estado atinge 100.000 toneladas, com um produto que já tinha uma qualidade superior ao arroz de sequeiro produzido em São Paulo e Minas Gerais. O crescimento da produção significava a necessidade de capital e financiamento. Segundo Fraquelli (1993), a criação da Carteira Agrícola do Banco do Brasil ocorreu somente em 1922, e a criação do Banco do Rio Grande do Sul, em 1928, o que retardou o oferecimento de crédito a juro baixo aos interesses agropastoris. Aliado a isso está o fato da impossibilidade de estocagem entre os produtores. Desse modo, a produção era vendida ou posta à disposição pelos mesmos logo após a colheita. Os grandes engenhos, consequentemente, assumem um grande relevo para beneficiar o produto nos centros de concentração das safras (como Pelotas e Cachoeira do Sul) e nos centros exportadores-consumidores (Porto Alegre, Rio Grande e Pelotas). Desse modo, as necessidades de armazenagem e beneficiamento colocavam o produtor na dependência do industrial do arroz. (FRAQUELLI, 1993). Pedro Osório novamente foi inovador nesse aspecto, construindo o engenho São Gonçalo, com equipamentos modernos.
capazes de beneficiar 150 toneladas de arroz por dia. Através de uma caldeira Babcock e Wilcox utilizava o vapor como forma de energia. (ABUCHAIM, 2013).

Alternando entre momentos de dificuldade e de prosperidade, a produção de arroz no Estado teve um crescimento considerável desde as primeiras lavouras. Em fins de 1964, entrou em vigor o Estatuto da Terra, que tinha como objetivo, entre outros, a tecnificação da agricultura, incentivando as empresas rurais no sentido de melhorar o armazenamento, secagem, beneficiamento e circulação do produto. (FONTOURA, 2007). Considerando a abrangência temporal de análise proposto por este trabalho, a produção de arroz cresceu 15 vezes. (CONAB, 2019). Nesses anos, as operações de comércio exterior do arroz em relação aos volumes importador e exportados foram oscilantes. Como o Brasil está muito próximo de outros produtores de arroz (Uruguai, Argentina e Paraguai), a variação cambial, além da quantidade de estoques de passagem do Brasil influenciaram nas quantidades importadas e exportadas desse cereal. Essa é uma característica que diferencia o arroz da soja, pois para esta última predominam as exportações.

A Tabela 6 a seguir mostra a movimentação de exportação e importação de arroz no Brasil nos últimos anos. Percebe-se que há uma alternância de saldos maiores de importação ou exportação nos diferentes anos, o que reflete fatores macro e microeconômicos, principalmente variação cambial, custos de produção e volume de estoques de passagem. (CONAB, 2019). Na última coluna da tabela está representado o quanto as exportações oriundas do Rio Grande do Sul contribuíram com a exportação do total nacional.

Tabela 6 – Exportação e Importação de arroz (Brasil e Rio Grande do Sul)

<table>
<thead>
<tr>
<th>Safra</th>
<th>Importação (1000 t)</th>
<th>Exportação (1000 t)</th>
<th>Saldo</th>
<th>Exportação do RS</th>
<th>% export. do RS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013/14</td>
<td>807,2</td>
<td>1.188,4</td>
<td>Positivo</td>
<td>877,9</td>
<td>73,9</td>
</tr>
<tr>
<td>2014/15</td>
<td>503,3</td>
<td>1.362,1</td>
<td>Positivo</td>
<td>936,4</td>
<td>68,7</td>
</tr>
<tr>
<td>2015/16</td>
<td>1.187,4</td>
<td>893,7</td>
<td>Negativo</td>
<td>676,0</td>
<td>75,6</td>
</tr>
<tr>
<td>2016/17</td>
<td>1.042,0</td>
<td>1.064,7</td>
<td>Equilíbrio</td>
<td>586,5</td>
<td>55,1</td>
</tr>
</tbody>
</table>

Fonte: CONAB (2019).

Segundo Conceição (1986), a mecanização da agricultura gaúcha iniciou nas lavouras de arroz antes de 1950, e restringiu-se a ela até os primeiros anos da década de 1950, quando o trigo passou a assumir crescente importância e também foi objeto de mecanização. Na década de 1950, o trigo representava uma das principais culturas agrícolas do Estado, ocupando cerca
de um terço de toda a área cultivada no Rio Grande do Sul e amparado por uma forte política de incentivo à mecanização. O desestímulo à produção de trigo ocorreu no final da década de 1950, devido a acordos do governo brasileiro com os Estados Unidos, nos quais este último país passou a exportar para o Brasil seu produto, desestimulando a produção nacional. Os produtores que se haviam mecanizado, viram na soja a oportunidade para diversificar a sua produção e ocupar a capacidade ociosa de máquinas e terras. Essa associação e rotatividade com o trigo foi fundamental para sua expansão que ocorreria na década de 1960. (CONCEIÇÃO, 1986).

A expansão da lavoura de soja no Rio Grande do Sul e no Brasil está ligada a mudanças de hábitos alimentares nos Estados Unidos e na Europa. Nesse ano ocorre um embarque do produto para a Europa, que passava por um período de carência na produção de óleos vegetais. (CONCEIÇÃO, 1986). Além disso, a escassez de terras destinadas à pecuária nos países europeus fez com que aumentasse a criação de animais em confinamento, o que aumentou a demanda de alimentos que tinham no farelo de soja um de seus principais ingredientes. (NEWKIRK, 2010; FONTOURA, 2007). As três regiões do estado com maior produção eram as Missões, o Alto Uruguai e o Planalto Médio. Essas três regiões apresentavam algumas características próprias que as levaram a apresentar diferenças em sua mecanização. A região das Missões cultivava soja principalmente para autoconsumo, o que retardou um pouco mais a expansão de sua produção. O Alto Uruguai, além do autoconsumo, tinha um excedente que permitiu a instalação de algumas empresas de esmagamento de grãos para a produção de óleo, o que incentivava o aumento da oferta de soja. No Planalto Médio, a soja foi incorporada à produção de trigo e beneficiou-se da mecanização já existente.

A partir da década de 1960 a soja passa a ser uma escolha das médias e grandes propriedades, ultrapassando sua produção para a subsistência e tendo uma participação comercial cada vez mais importante. Boa parte dessa expansão ocorreu devido à redução da área cultivada com trigo. (CONCEIÇÃO, 1986). Em 1965, a área plantada com trigo era 60% da área que havia sido cultivada em 1960, em grande parte devido à expansão do cultivo de soja. O ano de 1968 marcou uma grande expansão da área cultivada com soja, ocupando áreas anteriormente ocupadas com pecuária. Sua expansão foi principalmente induzida por uma conjuntura internacional favorável à exportação, incluindo a colheita no Brasil ocorrer no período de entressafra dos Estados Unidos, o maior produtor mundial. (CONCEIÇÃO, 1986). Outro fator que ajudou a expansão da produção de soja foi a sua facilidade de sucessão com o trigo, possibilitando-o utilizar o capital em máquinas, terra e mão-de-obra já existente.

O cultivo de soja promoveu a rotação de culturas, quando a soja, cultivo de verão, sucedia o cultivo invernal do trigo. (CHEUIQUE, 2018). Também foi aproveitada uma estrutura de cooperativa já montada para o trigo. Segundo Conceição (1986), tal fato conduziu a uma evolução da estrutura cooperativa regional, pois os dois produtos passaram a orientar suas atividades, aumentando seus potenciais de comercialização e ampliando seus mercados de ação.

empresas de esmagamento de grãos, mas voltados para linhaça, girassol, tungue e amendoim. Com a expansão da produção de soja, estas empresas foram gradativamente voltando-se para o esmagamento de soja. O autor conclui que, nesse primeiro momento, elas foram mais consequência do que causa da expansão da soja. Em um segundo estágio, com uma ampliação da capacidade de processamento de soja, as indústrias de óleo vegetal passam a incentivar o aumento da produção de soja.

Tabela 7 – Volume de exportação de soja do Rio Grande do Sul para a China

<table>
<thead>
<tr>
<th>Ano</th>
<th>Volume total exportado (1000 t)</th>
<th>Valor total exportado (US$1000)</th>
<th>Volume exportado para a China (1000 t)</th>
<th>Valor total exportado para a China (US$1000)</th>
<th>% volume representado pela China</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>1.988</td>
<td>854.003</td>
<td>1.157</td>
<td>497.876</td>
<td>58,20</td>
</tr>
<tr>
<td>2009</td>
<td>3.044</td>
<td>1.152.991</td>
<td>2.466</td>
<td>933.402</td>
<td>81,01</td>
</tr>
<tr>
<td>2010</td>
<td>2.640</td>
<td>965.102</td>
<td>2.292</td>
<td>838.044</td>
<td>86,82</td>
</tr>
<tr>
<td>2011</td>
<td>2.860</td>
<td>1.409.421</td>
<td>2.328</td>
<td>1.150.662</td>
<td>81,40</td>
</tr>
<tr>
<td>2012</td>
<td>2.154</td>
<td>1.132.633</td>
<td>2.002</td>
<td>1.062.792</td>
<td>92,94</td>
</tr>
<tr>
<td>2013</td>
<td>3.869</td>
<td>2.248.594</td>
<td>3.462</td>
<td>1.834.679</td>
<td>89,48</td>
</tr>
<tr>
<td>2014</td>
<td>4.294</td>
<td>2.234.803</td>
<td>3.934</td>
<td>2.046.853</td>
<td>91,62</td>
</tr>
<tr>
<td>2015</td>
<td>4.974</td>
<td>1.916.156</td>
<td>4.496</td>
<td>1.734.537</td>
<td>90,39</td>
</tr>
<tr>
<td>2016</td>
<td>5.131</td>
<td>1.911.388</td>
<td>4.342</td>
<td>1.619.319</td>
<td>84,62</td>
</tr>
<tr>
<td>2017</td>
<td>5.596</td>
<td>2.091.775</td>
<td>5.200</td>
<td>1.944.984</td>
<td>92,92</td>
</tr>
</tbody>
</table>

Um dos fatores desse crescimento é a aceitação pela China de soja transgênica (GM), o que estimula o agricultor gaúcho a permanecer com esse grão, ao invés de reconsiderar o grão convencional. O cultivo do grão transgênico traz uma série de facilidades para o agricultor em relação ao seu manejo e controle de pragas e, como a fonte principal de demanda (China) aprovou as variedades transgênicas cultivadas no estado, a situação deve continuar. (BATISTA, 2015; CHRISTOFFOLI, 2009).
A soja é uma oleaginosa com uma grande variedade de utilização. Após a colheita, o processo de beneficiamento de soja segue com a eventual secagem e armazenagem junto ao produtor. O processo de beneficiamento dentro das empresas beneficiadoras continua com o recebimento, limpeza e esmagamento dos grãos, no qual basicamente ocorre a separação do óleo bruto (aproximadamente 20% do peso do grão) do farelo, utilizado tanto para consumo humano na forma de proteína texturizada ou isolada, quanto animal. O óleo bruto, por sua vez, é refinado até assumir as propriedades adequadas para o consumo humano. Inicialmente, o valor comercial da soja estava associado à sua capacidade de produzir óleo comestível através do esmagamento do grão. Posteriormente, foi dada maior importância ao seu material sólido resultante do esmagamento devido ao seu conteúdo proteico. Com um grão com conteúdo proteico em base seca entre 25,5% a 36,5%, a soja é capaz de produzir farelo com uma proteína de no mínimo 46%, sendo esse o padrão para rações animais. Com um beneficiamento mais aperfeiçoado, o teor da proteína texturizada de soja pode chegar a 52%, e até a 91%, com a proteína isolada de soja. (MATEOS; LATORRE; LÂZARO, 2015).

4.2 ETAPAS DA PRODUÇÃO DE ARROZ E DE SOJA ATÉ A COLHEITA

A produção de arroz e soja, desde o plantio até a colheita, segue basicamente as mesmas etapas. A descrição dessas etapas serve para localizar os diferentes tipos de inovação que ocorreram na unidade de análise de produção de grãos (UA1).

Há uma grande dependência entre essas etapas ao se buscar uma maior produtividade por hectare e menores perdas. Um preparo e plantio inadequado afetam a qualidade da colheita, assim como a adequada escolha de uma semente depende das condições geográficas e edafoclimáticas (relacionadas ao solo). (SHOUP; DUNCAN; CIAMPITTI, 2016). As atividades até a colheita do grão podem ser divididas de uma forma mais genérica do seguinte modo - Figura 5.

Figura 5 – Etapas da produção de grãos

Preparo → Plantio → Proteção → Colheita

Fonte: Elaborado pelo Autor.
O preparo do solo é realizado para proporcionar condições satisfatórias para a semeadura, a germinação das sementes, a emergência de plântulas, o desenvolvimento e a produção das plantas. Visa também eliminar as plantas daninhas, controlar a erosão e descompactar o solo. (SANTIAGO; BRESEGHELLO; FERREIRA, 2013). O manejo do solo influencia a maioria dos parâmetros físicos do mesmo que, direta ou indiretamente afetam o desenvolvimento e a produtividade da soja e do arroz. Nos solos mal preparados ocorre uma interação entre o impedimento mecânico, que é uma zona de solo com alta densidade e compactação. A aeração inadequada pode causar deficiência ou excesso de água, manter a temperatura excessivamente alta ou baixa, provocar deficiência de oxigênio e, consequentemente, inibir o desenvolvimento radicular. (TORRES; SARAIVA; GALERANI, 1993). Um mau preparo do solo vai ocasionar perdas até a colheita, pois pode criar desníveis que afetarão a altura da planta. (NUNES, 2020). No Rio Grande do Sul há uma grande participação do método de preparo de solo chamado plantio direto. Segundo Santiago, Breseghello e Ferreira (2013, p. 31),

O plantio direto é um método de semeadura no qual a semente e o adubo são colocados diretamente no solo não revolvido usando semeadeiras/adubadoras apropriadas. É recomendado para solos descompactados e com fertilidade homogênea no perfil de 0 cm a 40 cm, sendo o controle de plantas daninhas dependente de herbicidas. A superfície do terreno deve possuir uma camada de restos culturais que auxilia na conservação do solo e na umidade do perfil.

O plantio ou semeadura caracteriza-se pela incorporação das sementes no solo, efetuada pela plantadeira, um equipamento que tem incorporado uma série de tecnologias, incluindo a quantidade de sementes por área. A densidade de plantio está relacionada ao número de sementes por área e varia com o cultivar utilizado. (SHOUP; DUNCAN; CIAMPITTI, 2016). O cuidado com a distribuição de sementes nas fileiras, a profundidade de plantio e o espaçamento entre fileiras são fatores determinantes para a obtenção da máxima qualidade de plantio, e com efeitos sobre as operações subsequentes e a produtividade da lavoura. A semeadura em época não indicada promove baixa estatura ou acamamento das plantas. (NUNES, 2020).

Uma vez incorporada a semente no solo, a irrigação fornece à planta sua necessidade de água. O arroz tem uma maior necessidade de água, principalmente no Rio Grande do Sul, que utiliza a técnica do arroz irrigado ao invés do sequeiro (ou de terras altas). Para o arroz, o método mais utilizado de irrigação é o de irrigação por inundação contínua. Uma alternativa para áreas com limitação na disponibilidade de água é o sistema de pivô central, também
utilizado para a cultura da soja, que tem menor resistência do que o arroz às inundações e a secas. (SANTIAGO; BRESEGHELLO; FERREIRA, 2013).

A proteção é a etapa que se prolonga por mais tempo, pois segue o ciclo de crescimento da planta. As plantas de soja defrontam-se com uma grande ameaça em relação a ervas daninhas, sendo de fundamental importância uma medida protetiva. Nessa etapa são aplicados os defensivos, de base química ou biológica, que protegerão a planta contra fungos (fungicidas), plantas daninhas (herbicidas) e insetos (inseticidas). (FAO, 2019). A aplicação desses defensivos tem sido objeto de muita atenção e pesquisa, pois não sendo bem feita, pode representar perdas significativas para o produtor. Além disso, uma aplicação eficiente não significa proteger apropriadamente a planta, mas fazer isso com o menor custo possível. A aplicação de defensivos ocorre basicamente por pulverização. Por esta razão, fatores como o tamanho da gota e a quantidade dosada são de fundamental importância. (CRYER; ALTIERI, 2017).

A etapa da colheita é a última dessa fase. No tempo apropriado, a planta alcança o grau de maturação adequado, além do qual pode trazer perdas. A pesquisa genética tem desenvolvido diferentes tipos de cultivares para serem plantados em diferentes janelas temporais. O arroz atinge o ponto de maturação ou de colheita quando dois terços dos grãos estão maduros. Embora seja fácil determinar visualmente este ponto, pode-se usar como base o teor de umidade dos grãos, o qual deve estar preferencialmente entre 18% e 23%. Quando o arroz é colhido muito cedo, com umidade muito elevada, há o risco da ocorrência de grãos chochos. O oposto também é prejudicial. O arroz colhido tardiamente, muitas vezes esperando que seque um pouco mais na lavoura, é afetado pela debulha natural e pelo acamamento, além de ficar mais suscetível ao ataque de insetos e a riscos climáticos. A qualidade do produto também fica comprometida, pois o grão fica mais suscetível a trincas que irão gerar arroz quebrado no momento do beneficiamento. (SANTIAGO; BRESEGHELLO; FERREIRA, 2013).

A soja é colhida com uma umidade mais baixa, com um teor de umidade de cerca de 12% a 15%, o que na maior parte das vezes permite seu armazenamento sem uma prévia secagem. Este intervalo ideal de umidade para a colheita está diretamente ligado com a resistência mecânica dos grãos ao dano mecânico. Esta etapa de produção apresenta uma série de riscos que afetam o rendimento da colheita. Alguns deles já decorrem de um mau preparo do solo, que promovem desníveis no terreno e oscilações na altura do corte durante a colheita. (NUNES, 2020). A má regulagem da colheitadeira também ocasiona perdas. Segundo Nunes (2020), cerca de 80% a 85% das perdas ocorrem pela ação dos mecanismos da plataforma de corte das colheitadeiras (molinete, barra de corte e caracol), 12% são ocasionados pelos
mecanismos internos (trilha, separação e limpeza), e 3% são causados por deiscência natural. A velocidade de trabalho das colheitadeiras deve ser determinada em função dos níveis de perdas aceitáveis.

4.3 ETAPAS DO BENEFICIAMENTO DE ARROZ E DE SOJA

As etapas de beneficiamento do arroz e da soja nas instalações dos produtores são semelhantes, pois incluem pré-limpeza, secagem e armazenagem, utilizando equipamentos com pequenas variações, dependendo se for arroz ou soja. Como a soja tem sido colhida com uma umidade mais baixa do que a do arroz (soja por volta de 14%, arroz por volta de 21%), não é usual os produtores de soja secarem o grão em suas instalações. Normalmente, depois da pré-limpeza, ocorre o transporte para seu destino final.

Na sequência do processo de beneficiamento ocorrem diferenças devido à sua transformação para o produto final nas indústrias. Boa parte da soja colhida no Estado é exportada na forma de grãos. Uma parte, porém, é transformada em alimentação humana ou para animais de criação. Na alimentação humana, a soja é consumida no Brasil predominantemente na forma de farinha texturizada ou isolada de soja e na forma de óleo de soja. (MANDARINO; ROESSING, 2001). Com esse objetivo as etapas do beneficiamento da soja incluem quebra, descasque, condicionamento, laminação, extração do óleo, tostagem e moagem. Em processos posteriores, o farelo de soja obtido pode ser texturizado, ou ter sua proteína isolada de açúcares e fibras, o que representa um aumento do percentual da proteína no produto final. A proteína isolada de soja é o produto que passa por mais processos industriais e que mais agrega valor à soja. (ERICKSON, 1995).

O arroz passa por menos transformações do produto final em comparação com o grão original, sendo comercializado sob uma forma muito similar com a do grão sem casca (arroz integral). As etapas de beneficiamento de arroz classificado como branco incluem o descasque, polimento, separação eletromagnética e separação de grãos quebrados.

As primeiras etapas do beneficiamento dos grãos ocorrem nas instalações do produtor - Figura 6.
Figura 6 – Etapas do beneficiamento nas instalações do produtor

Colheita → Pré-limpeza → Secagem → Armazenamento

Fonte: Elaborada pelo autor.

A Figura 7 apresenta uma unidade padrão de recebimento, secagem e armazenagem de grãos de acordo com a disposição usual de equipamentos.

Figura 7 – Instalação de recebimento, secagem e armazenagem de grãos

Fonte: Elaborada pelo autor.

Esta representação é simplificada, e tem a intenção de mostrar a interligação dos equipamentos que são comentados no Capítulo 5 quanto à sua inovação tecnológica. Uma unidade desse tipo nas instalações do produtor pode ter um nível de complexidade maior, com mais opções de retorno dos grãos, papel esse executado por diferentes descargas dos elevadores de canecas. A versatilidade de uma instalação desse tipo permite repassar os grãos na pré-limpeza e na secagem caso exista necessidade.

4.3.1 Pré-Limpeza dos Grãos

A pré-limpeza consiste na remoção física de impurezas presente na massa de grãos antes que eles passem em outros equipamentos, como os secadores e silos. (WIMBERLY, 1983). Embora as colheitadeiras já façam uma separação mais grosseira de impurezas no momento da
colheita, os grãos devem passar por uma limpeza mais rigorosa e uma secagem antes da armazenagem. As chamadas máquinas de limpeza são utilizadas tanto nas instalações dos produtores quanto dos beneficiadores. Embora no aspecto construtivo sejam semelhantes, a diferença na denominação destas máquinas está em que as chamadas máquinas de pré-limpeza fazem parte da operação do produtor do grão, com a finalidade de reduzir o teor de impurezas para acerca de 4%. As máquinas de limpeza, por sua vez, fazem parte da operação do beneficiador do grão, reduzindo o teor de impurezas para cerca de 1,0%. (MILMAN, 2002).

Segundo Wimberly (1983), os grãos são limpos pelas seguintes razões:

- reduzir requisitos para secagem e custo da secagem;
- remover materiais que poderiam causar deterioração do grão durante a armazenagem;
- remover materiais que poderiam danificar os equipamentos de transporte;
- remover materiais que causam uma redução da classificação dos grãos;
- reduzir requisitos de armazenamento.

Mesmo que o produtor faça a limpeza antes da venda, o beneficiador não deve arriscar-se a colocar o grão em seus equipamentos sem ele próprio providenciar uma segunda limpeza. Não só a pré-limpeza no produtor pode ter alguma inefficiência, mas também durante o transporte pode haver contaminação com impurezas que podem alterar a qualidade do grão. Segundo Weber (2005, p.52),

Do ponto de vista técnico, para a melhor conservação dos grãos, controle de insetos, temperatura e do melhor desempenho da aeração, quanto menos impurezas melhor, entretanto o valor de 1% é aceitável particularmente se não permanecer concentrado mas espalhado da forma mais homogênea possível, o que é obtido com os espalhadores de grãos existentes nos silos.

Uma pré-limpeza eficiente reduz os riscos de incêndio nos equipamentos; facilita a movimentação do ar por separar a poeira que se depositaria nos espaços intergranulares, permitindo a uniformização da secagem; reduz os custos, já que os materiais inúteis não estarão presentes para serem secos; e diminuem as fontes de microrganismos e de pragas. (MILMAN, 2002; ROMBALDI, 1988; WEBER, 2005).

Para que a operação de pré-limpeza seja eficiente, a vazão de produto no equipamento deve ser tal que não apresente uma restrição muito grande ao fluxo de descarregamento, mantendo uma taxa aceitável de separação de impurezas. O desenho, dimensão e a intensidade de vibração desses equipamentos são fatores que os fabricantes buscam aprimorar a fim de obter mais eficiência de separação. O movimento dos grãos e os efeitos da velocidade de vibração na
separação de impurezas são modelados para um melhor projeto do equipamento. (YUAN et al., 2018; CAO et al., 2018).

A classificação é um processo que visa uniformizar os grãos em virtude de um melhor processamento nas etapas seguintes de beneficiamento, ou para uniformizar o produto para uma posterior comercialização. A Instrução Normativa 29/2011, do Ministério da Agricultura, Pecuária e Abastecimento, determina a necessidade de um sistema de limpeza que tem como objetivo “reduzir o teor de impurezas e de matérias estranhas existentes na massa de grãos, permitindo eficiente secagem e adequada aeração para uma boa conservação”. (BRASIL, 2019). A mesma Instrução Normativa estabelece que para comprovar a metodologia de limpeza adotada, a unidade armazenadora deve dispor de normas operacionais referentes aos procedimentos empregados para a limpeza dos produtos.

A classificação de sementes de soja por tamanho vem sendo adotada pela maioria das empresas produtoras de sementes. Segundo Baudet (2003), esta classificação pode variar de 5,0 a 7,5 mm, com intervalos regulares de 0,5 mm. Deve-se ressaltar que a denominação de semente classificada por peneira refere-se às sementes retidas na peneira indicada e que tenham, obrigatoriamente, passado pela perfuração imediatamente superior. A classificação da semente de soja é realizada há vários anos no Brasil. Essa é uma técnica importante uma vez que a padronização por tamanho das sementes resulta num incremento da precisão de semeadura, o que facilita a obtenção da população de plantas desejada. (SMITH e CAMPER, 1975).

A poeira deverá ser coletada em todos os pontos de produção de pó dentro da unidade armazenadora e instalação de movimentação, principalmente na admissão ou descarga de transportadores de correias, redler ou chute, ao longo dos túneis, balanças de fluxo, elevadores e máquinas de limpeza.
4.3.2 Secagem de Grãos

Para um melhor ganho por parte do produtor, os grãos devem ser colhidos assim que atingem a sua maturação. Após esse momento, não há mais incremento na massa do grão e o grão apresenta certa umidade que impede que seja armazenado sem uma prévia secagem. A secagem permite o armazenamento de grãos por maior tempo porque diminui o teor de água do produto até níveis que permitam a conservação segura de suas qualidades e de seu valor nutritivo. (ELIAS; OLIVEIRA; VANIER, 2017). A água no interior do grão está basicamente presente em três formas. A primeira é a água superficial, também chamada adsorvida. Depois tem-se a água livre absorvida, ou presente entre os espaços intercelulares e canais dentro do grão. Por último há a água combinada, chamada de água de constituição, pois faz parte da estrutura química dos grãos. No processo de secagem, as duas primeiras são removidas até se chegar a um nível seguro. A primeira é mais fácil de ser removida, pois está na superfície. A seguir, a água livre, ou absorvida, será removida, mas somente depois que, devido ao gradiente de umidade gerado, ela migra para as camadas mais externas do grão. (ELIAS; OLIVEIRA; VANIER, 2017; WEBER, 2005).

Na determinação do grau de umidade, se considera água livre tanto a adsorvida como a absorvida que seja possível de ser separada do material sólido sem alterar sua constituição. Quando o resultado for expresso em percentagem de água existente em relação ao peso total de grãos, é chamada de umidade em base úmida. Quando em relação ao peso da matéria seca, é chamada de umidade em base seca. (ELIAS; OLIVEIRA; VANIER, 2017).

Quando o grão é armazenado, ele continua a respirar, o que pode ser definido como a liberação de energia através de oxidação bioquímica de compostos orgânicos. Grãos armazenados entre 11% e 13% têm uma respiração discreta, mas ultrapassando este limite ela se acelera. Os produtos resultantes dessa respiração são dióxido de carbono, água e calor. Como o arroz é um mau condutor de calor, este tende a se concentrar onde é gerado, ocasionando um ponto quente na armazenagem a granel. (ELIAS; OLIVEIRA; VANIER, 2017; TAGGART, 1947). Armazenamento sem uma prévia e eficiente secagem estimula o metabolismo dos próprios grãos, consumindo substâncias de reservas, provocando deterioração e reduzindo sua qualidade. (ELIAS; OLIVEIRA; VANIER, 2017).

Alguns produtores preferem deixar os grãos no campo o máximo de tempo possível, pois desse modo há um decréscimo gradual da umidade. O problema é que, assim como a umidade se reduz com o tempo, também a massa seca do grão diminui, afetando o valor comercial do grão. Dependendo das condições climáticas e do estágio de maturação do grão, o
arroz é colhido com uma umidade entre 18% e 23%, ou mesmo maior. (WIMBERLY, 1983). A soja é colhida com uma unidade mais baixa, com cerca de 14 a 16%. O momento da colheita e, consequentemente sua umidade, é uma decisão do produtor. Com uma umidade do grão entre 13-14%, o arroz pode ser armazenado por 2 a 3 meses. Com uma umidade entre 12-12,5%, por mais tempo ainda. (BAILEY, 1992).

A secagem dos grãos tem a finalidade de reduzir esta umidade para um nível seguro, de forma que o produtor ou o beneficiador possa escolher o melhor momento para comercializar o grão ou para beneficiá-lo. (BAILEY, 1992). É muito arriscado o armazenamento sem haver a redução da umidade original de colheita para uma umidade segura abaixo de 14%. (CALDERWOOD; LOUVIER, 1965; WEBER, 2005). O crescimento de mofo e infestações de insetos são as principais causas de deterioração de grãos durante o armazenamento. (BROOK, 1992).

Por esta razão, a secagem é uma etapa obrigatória no beneficiamento dos grãos, pois certamente representará uma grande perda caso não seja realizada. Os produtores que possuem uma limitada capacidade de secagem em suas instalações, têm a possibilidade de enviar seu produto diretamente para o comprador, normalmente uma empresa de beneficiamento que executará essa etapa de secagem assim que o grão for recebido. Isso, no entanto, depende da umidade do grão no momento da colheita, que não pode ser excessivamente alta. O produtor também será descontado pelo comprador pelo excesso de peso representado pela umidade acima dos 13%.

Tabela 8 – Teor máximo de umidade recomendado para armazenamento

<table>
<thead>
<tr>
<th>Produto</th>
<th>Teor máximo de umidade recomendado para armazenamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milho</td>
<td>13%</td>
</tr>
<tr>
<td>Soja</td>
<td>13%</td>
</tr>
<tr>
<td>Trigo</td>
<td>13%</td>
</tr>
<tr>
<td>Arroz</td>
<td>13%</td>
</tr>
</tbody>
</table>

Uma prática ainda utilizada é a de postergar a colheita do grão até que este, atingindo a maturação, reduza gradualmente sua umidade, principalmente se as condições atmosféricas
permitirem quando o tempo estiver com uma baixa umidade relativa do ar. Desse modo o grão, depois de colhido, ao invés de estar com 23 ou 25% de umidade (caso do arroz), pode estar com 18 a 20%, o que reduz consideravelmente o tempo necessário de secagem nos secadores e, consequentemente, a quantidade de combustível necessária para reduzir essa umidade a 13%. No entanto, há problemas se os grãos forem colhidos muito secos, como danos de quebras e trincas nos grãos. Do mesmo modo, grãos colhidos com uma umidade muito alta causam dificuldades no equipamento de colheita e gera o amassamento com o rompimento do tegumento. (SANTIAGO; BRESEGHELLO; FERREIRA, 2013; WEBER, 2005). À medida que passa o tempo após a maturação, diminui a resistência dos grãos ao ataque das pragas e dos microrganismos. O retardamento e as danificações mecânicas podem determinar que sejam colhidos grãos com qualidade já comprometida ou com pré-disposição para grandes perdas durante o armazenamento. (SANTIAGO; BRESEGHELLO; FERREIRA, 2013; ELIAS; OLIVEIRA; VANIER, 2017).

Pelo fato de operarem com temperaturas altas e produto sujeito à combustão, os secadores, assim como os silos, são objetos de atenção por parte de órgãos de segurança. A Resolução Técnica CBMRS nº22, de 2017, determina que:

Os secadores de grãos devem ser dotados de sensores que indiquem ao operador a temperatura de entrada do ar aquecido no secador, bem como a temperatura do ar em sua exaustão. Os mesmos devem estar acoplados a alarmes de tal forma que os operadores sejam avisados sempre que a temperatura de secagem e/ou a temperatura de exaustão ultrapassar o limite de segurança estabelecido pela operação.

Nos secadores, o arroz e a soja são secados através do contato com ar quente que circula por entre os grãos. Através da queima de um combustível em uma fornalha próxima do secador, são gerados os gases de combustão que são conduzidos através do secador, atravessando a massa de grãos. A compreensão do perfil de secagem dentro do secador e o comportamento do ar quente é fundamental para o aprimoramento desses equipamentos, o que pode ser feito através de imagens que captam o perfil de temperatura no secador. (ELGAMAL; KISHK; ELMASRY, 2017)

A relação combustível taxa de secagem é um fator importante a ser considerado pelo produtor, o que está relacionado com a vazão de ar por kg de grão seco. (TOHIDI; SADEGGHI; TORKI-HARCHEGANI, 2017; SARKER et al., 2015; GOLMOHAMMADI et al., 2015). Diferentes configurações de secagem têm sido estudadas para reduzir a quantidade de energia necessária por massa de água evaporada. (JITTANIT; SAETEAW; CHAROENCHAIHISRI,
2010; YAHRA et al., 2018). Embora nas instalações dos produtores predominem os secadores verticais, em empresas que parboilizam arroz, outros modelos de secadores são utilizados, como os horizontais rotatórios. (FIROUZI; ALIZADEH; HAGHTALAD, 2017).

As fornalhas podem utilizar diferentes combustíveis, como lenha, gás ou casca de arroz. A utilização da casca de arroz é uma alternativa econômica para aquelas instalações que descascam o cereal para posteriores etapas de beneficiamento. (KWOFIE; NGADI, 2017). Essa é uma alternativa adequada não somente para a economia de energia, mas também para evitar a dispersão da casca pelo campo. A generalizada utilização da casca de arroz para a geração de energia é um fator de economia de combustíveis fósseis. (QUISPE; NAVIA; KAHHAT, 2019). As cinzas provenientes da queima, por sua vez, podem ser utilizadas para uma série de finalidades, como agregação em diferentes materiais de construção. (GURSEL; MARYMAN; OSTERTAG, 2016; PADHI et al., 2018; MEDINA et al., 2018, CHABANNES et al., 2017).

4.3.3 Transpote de Grãos e Dispositivos de Descarga

O deslocamento de grãos em instalações de produção ou beneficiamento ocorre entre etapas de processamento e no descarregamento/carregamento de grãos. Duas classes gerais de equipamentos de transporte de grãos podem ser identificadas: aqueles cuja posição permanece fixa durante o transporte (correias, esteiras, redlers, helicoidais, vibratórios, elevadores de canecas e dispositivos pneumáticos); os que se movimentam com o grão (páis carregadeiras, vagonetas, empilhadeiras, caminhões, guinchos, guindastes). (GOMIDE, 1983).

O transporte de grãos é essencial em qualquer instalação que os processe ou os armazene. Sua importância reside em fazer essa operação com a menor perda possível, com a menor utilização de energia, e com a velocidade requerida. De um modo geral, os transportadores podem ser utilizados para o carregamento ou descarregamento de silos ou equipamentos em geral. Dependendo da situação, incluindo exposição a intempéries, um equipamento pode ser preferível a outro. A função de qualquer transportador de grãos é deslocá-lo de um ponto para outro, sem danificá-lo fisicamente. Qualquer alteração será danosa, principalmente se houver quebra dos grãos ou aumento de umidade devido a exposição em ambientes úmidos. Além disso, outras características desejáveis é que o equipamento de transporte gere o mínimo possível de poeira, seja robusto e gaste pouca energia. Alguns equipamentos são mais vantajosos economicamente do que outros em determinada faixa de capacidade, assim como alguns exigem um investimento inicial maior mas necessitam de menos manutenção no decorrer dos anos. (MILMAN, 2002).
Dentre os equipamentos de transporte, podem ser incluídos os dispositivos de alimentação de equipamentos, que, muitas vezes, transportam em curta distância grãos de um equipamento (como silos), para outro (uma máquina de limpeza). São utilizados para o descarregamento de silos, no carregamento de transportadores, na alimentação de secadores, peneiras e selecionadoras eletrônicas. O alimentador possibilita uma vazão constante de grão, o que possibilita respeitar a capacidade de transporte ou de processamento do equipamento a seguir. Os alimentadores podem ser do tipo volumétrico ou do tipo gravimétrico. Os do primeiro tipo alimentam com uma razão volumétrica constante. Já os do segundo tipo alimentam com uma vazão mássica constante. Os do segundo tipo são mais aperfeiçoados, pois exigem a presença de células de carga. Os dispositivos de alimentação mais usuais são válvulas rotativas, helicoides, vibratório, esteira ou uma válvula pneumática com abertura controlada.

Os dispositivos de transporte de grãos devem obedecer às normas de segurança determinadas pela Resolução Técnica CBMRS N°22, do Estado do Rio Grande do Sul e editada pela Secretaria de Segurança Pública. Essa Normativa estabelece que transportadores de parafuso (rosca sem fim) deverão ser completamente fechados em carcaças metálicas, com tampas de abertura livre na extremidade de descarga e no acoplamento do eixo. Os transportadores verticais e horizontais devem ser dotados de sensores automáticos de movimento, que desligam automaticamente os motores ao ser detectado o escorregamento da correia ou corrente. (RIO GRANDE do SUL, 2017).

4.3.4 Armazenagem de Grãos

A armazenagem de grãos constitui uma etapa fundamental após a colheita, pois a produção de grãos é algo sazonal, e seu consumo é contínuo. Essa sazonalidade possibilita ao produtor poder esperar o momento certo na entressafra para vender seu grão por um preço mais vantajoso. (ELIAS; OLIVEIRA; VANIÉR, 2017). Para isso, o grão deve permanecer íntegro, do contrário, o prejuízo financeiro será enorme.

Os grãos são organismo armazenados vivos e, em consequência, respiram, produzindo água, calor e gás carbônico. O armazenamento de grãos consiste em mantê-los em um ambiente seguro e propício até uma etapa posterior para sua utilização. Grãos armazenados em condições desfavoráveis, com alta temperatura e umidade afetam a qualidade do grão. (AHMAD et al., 2017; KAMINSKI et al., 2013). As condições de armazenagem afetam as propriedades físico-químicas dos grãos de arroz. (KANLAYAKRIT; MAWEANG, 2013; PARNSAKHORN; LANGKAPIN, 2013). A oxidação de proteínas durante a armazenagem afeta as suas
características de gelatinização. (SHI; WU; QUAN, 2017). A coloração é afetada, tornando o grão mais amarelado. (SHAFIEKHANI; WILSON; ATUNGULU, 2018).

Os silos podem proporcionar uma maior agilidade no pós-colheita, pois caso sejam silos secadores, podem complementar a operação de secagem iniciadas pelos secadores e agilizar o processo como um todo. A etapa de armazenamento deve ser antecedida da etapa de secagem, pois normalmente os grãos não são colhidos com uma umidade tal que possibilite seu armazenamento imediatamente após a colheita. De acordo com Weber (2005), há uma série de vantagens para os produtores em ter um sistema de armazenagem em sua propriedade:

- evita os elevados custos de transporte durante a safra;
- evita o transporte de grãos com umidade e impurezas elevadas, afetando a qualidade dos mesmos;
- permite que os grãos sejam comercializados em um momento de melhor preço.

A armazenagem adequada de grãos deve evitar que insetos, roedores e pássaros tenham acesso aos grãos, que eles estejam protegidos de umidade, e que eles estejam a uma temperatura adequada que não estimule o metabolismo do grão, o que provocará liberação de calor e umidade que acabam afetando grãos nas proximidades do ponto de origem. (BAILEY, 1992). Segundo Elias, Oliveira e Vanier (2017, p. 69),

As determinações de peso seco e/peso volumétrico, composição química, umidade e temperatura dos grãos, contaminação microbiana, presença e ataque de pragas, características higrométricas do ar, teor de micotoxinas, valor nutricional, germinação das sementes e avaliação sensorial dos grãos armazenados constituem importantes parâmetros no controle da conservabilidade durante o armazenamento.

O arroz é um grão higroscópico, o que significa que ele tende a ficar em equilíbrio com a umidade ambiente. (WIMBERLY, 1983; WEBER, 2005). Por essa razão, os silos contendo esse grão deve ter grande hermeticidade e providenciar ventilação, já que os invernos no Rio Grande do Sul caracterizam-se pela alta umidade. Em virtude das elevadas perdas que o produtor e o processador podem ter em virtude de um armazenamento inadecuado, os silos evoluíram em relação à sua concepção inicial. A utilização de aeração forçada nos silos para resfriar os grãos armazenados se disseminou a partir dos anos 1960. (REED, 1992).

As principais causas de perdas são relativas à deterioração de grãos. A deterioração é causada pela disseminação de microrganismos que encontram na umidade e no calor fatores propícios para seu crescimento. Dentre as perdas qualitativas, especial cuidado deve receber a ocorrência de grãos ardidos e/ou contaminados por fungos produtores de micotoxinas, que desvalorizam o produto e ameaçam a saúde humana e dos rebanhos. (ELIAS; OLIVEIRA;
Verificou-se que a aeração e o controle de temperatura são de suma importância para evitar a proliferação de microrganismos através do controle dessas áreas mais quentes e úmidas. (STEIDLE NETO; LOPES, 2015; BROOK, 1992). Tanto a aeração forçada quanto a utilização de exaustores eólicos auxiliam na conservação dos grãos armazenados. (SILVA et al., 2014).

O correto armazenamento de grãos requer que sejam monitorados tanto em termos de umidade quanto em termos de temperatura. O estado térmico de grãos dentro de silos verticais com aeração pode ser monitorado através de modelos matemáticos (KHATCHATOURIAN et al., 2017) e com imagens produzidas por rádio frequência. (ASEFI et al., 2017). O perfil de temperatura é monitorado através de uma série de sensores distribuídos transversalmente e longitudinalmente no silo. (OLATUNDE; ATUNGULU, 2017). Uma combinação de alta temperatura dos grãos com uma alta umidade é muito prejudicial. Por esta razão, uma das alternativas utilizadas para a conservação de arroz armazenado é a utilização de ar refrigerador insuflado no ambiente de armazenamento. (BARBOSA et al., 2010). A aeração dos grãos em um silo deve ser a mais uniforme possível. O ideal é que sejam desenvolvidos modelos computacionais que simulem a dinâmica do fluido (ar) dentro do silo. (OLATUNDE; ATUNGULU; SADAKA, 2016).

Diferentes combinações de temperatura e umidade favorecem condições que podem prejudicar mais ou menos os grãos (insetos, germinação, fungos). A Figura 8 representa o diagrama de boa conservação de grãos. A área amarela (área A), com baixa temperatura e menor umidade é a mais indicada. Os sistemas de armazenagem visam manter os grãos nessa área.

Figura 8 – Diagrama de boa conservação dos grãos

Fonte: Hara (2019).
A armazenagem de grãos deve obedecer normativas emitidas tanto pelo Governo Federal quanto pelo Governo Estadual. O Governo Federal, através da Instrução Normativa 29/2011, estabelece os controles e monitoramentos necessários de termometria e aeração nos silos e armazéns graneleiros, com determinação de pontos de leitura da temperatura e de fluxo de ar mínimo por tonelada armazenada. (BRASIL, 2019, p. 25). Segundo esse documento,

O número de pontos de leitura deve ser compatível com o tipo da estrutura e a capacidade estática da unidade armazenadora. Deve-se usar, no mínimo, um ponto de leitura a cada 150 m² de capacidade estática, sendo os pontos uniformemente distribuídos.

Segundo a mesma Instrução Normativa, quanto ao sistema de aeração, é determinado que (BRASIL, 2019, p. 25):

As estruturas de armazenagem do tipo vertical devem ser dotadas de sistema de aeração com fluxo de ar de, no mínimo, 0,05 metro cúbico por minuto, para cada tonelada de capacidade estática. Nas estruturas horizontais a vazão específica mínima deve ser de 0,1 metro cúbico por minuto, para cada tonelada de capacidade estática.

Além dos requisitos mencionados acima, a Instrução determina que, para comprovar a metodologia adotada, a unidade armazenadora deve dispor de normas ou manuais operacionais referentes aos procedimentos adotados para a operação do sistema de termometria e aeração, e da manutenção dos mesmo para posterior consulta.

Como a efetividade da aeração dos silos e armazéns depende das condições atmosféricas do ar externo, a mesma Instrução Normativa estabelece que existam procedimentos para acompanhamento psicrométrico do ar. Para comprovar a metodologia adotada, devem existir normas operacionais de como este acompanhamento é feito e manter os dados obtidos arquivados para posterior consulta.

O Governo Estadual, através da Resolução Técnica CBMRS N°22, de 2017, determina que os locais destinados ao armazenamento de grãos devem ter um sistema de monitoramento de temperatura em toda sua extensão, sistema de aeração para evitar sua decomposição, evitando vapores inflamáveis, e sistema de alívio de explosões.

A geração de material particulado ocorre em praticamente todas as etapas de beneficiamento dos grãos, desde o descarregamento na moega até a aeração no armazenamento. Para evitar a proliferação desse material na atmosfera, com possíveis danos ambientais e à saúde, a Instrução Normativa nº29/2011 (BRASIL, 2019, p.16), determina que:
Todas as unidades armazenadoras devem ser dotadas de sistema de captação de material particulado, aprovado por meio de licença de funcionamento expedida pelo órgão competente. São aceitas como comprovação de conformidade as licenças de funcionamento emitidas por prefeituras, órgãos de segurança ou ambiental.

Como se pode verificar, a legislação brasileira determina alguns parâmetros que devem ser seguidos pelos fabricantes e armazenadores de grãos, o que leva a algumas das inovações nos equipamentos vistos no capítulo seguinte.
5 INOVAÇÕES TECNOLÓGICAS NAS DUAS UNIDADES DE ANÁLISE

Esse capítulo busca fazer a descrição dos processos de inovação nas unidades de análise de produção e de beneficiamento do arroz e soja no Rio Grande do Sul. Como a ênfase do trabalho é o processo de inovação nos equipamentos de beneficiamento, ou seja, após a colheita, a primeira parte deste capítulo visa fazer um rápido apanhado das inovações na área que compreende as operações até a colheita dos grãos com o objetivo de mostrar, em linhas gerais, seus principais avanços tecnológicos. A descrição e análise das inovações nessa área servirá como um contraponto para as inovações no beneficiamento, que são exploradas com mais profundidade na segunda parte desse capítulo.

5.1 EQUIPAMENTOS E INSUMOS PARA A PRODUÇÃO DE GRÃOS

A maior produtividade de arroz e soja no Rio Grande do Sul ao longo dos últimos 50 anos, conforme mostra a Figura 9, é resultado de uma série de fatores.

Figura 9 – Produtividade (Kg/ha) – Arroz e Soja no RS

Fonte: CONAB (2019).

Os fatores identificados que determinaram esse resultado positivo foram:

i-) desenvolvimento de sementes de alto rendimento;

ii-) desenvolvimento de herbicidas, fungicidas, fertilizantes mais eficazes;
iii-) agricultura de precisão, possibilitando a utilização de maior número de dados em diferentes momentos do plantio e colheita;

iv-) máquinas agrícolas mais aperfeiçoadas em termos de produtividade e eficiência para sua função;

v-) fracionamento da área de plantio com a consequente variação de manejo (aplicação de defensivos, fertilizantes) de acordo com a necessidade;

vi-) uso de dispositivos especiais, como drones, para a aplicação pontual dos insumos necessários;

vii-) uso da internet para transmissão de dados e acompanhamento remoto da operação.

A seguir é feita uma breve consideração dos aspectos mais inovadores nas áreas supramencionadas.

5.1.1 Agricultura de Precisão

No modelo tradicional de agricultura, o manejo do solo é feito de maneira uniforme, sem levar em consideração as necessidades específicas de determinadas áreas. O produtor desconsidera a variabilidade espacial de produção e acaba tratando toda a área pela média. Desse modo, existe a possibilidade de que a aplicação de defensivos ou fertilizantes ocorra a mais ou a menos do que o necessário. Do mesmo modo, o momento da colheita é uniforme para um campo, não levando em consideração que a maturidade das plantas possa estar em estágios diferentes. A agricultura de precisão mudou isso e trabalha mais especificamente com as análises químicas e monitoramento por imagem, para determinar as necessidades das diferentes áreas de uma lavoura. A tecnologia permite que o manejo seja diferenciado para tratar as variações que existem em uma lavoura. A agricultura digital é a análise das informações de lavoura disponibilizadas pela agricultura de precisão trabalhando com dados de máquinas, internet das coisas e outras fontes junto com big data.

Em 2012, o Ministério da Agricultura, Pecuária e Abastecimento (Mapa), ao instituir a Comissão Brasileira de Agricultura de Precisão (CBAP), definiu a Agricultura de Precisão como “um sistema de gerenciamento agrícola baseada na variação espacial e temporal da unidade produtiva e visa ao aumento de retorno econômico, à sustentabilidade e à minimização do efeito ao ambiente”. (BRASIL, 2012, p. 6). Ou seja, um modelo de gestão que leva em conta a variabilidade espacial do campo com o objetivo de obter um resultado sustentável social, econômico e ambiental. (INAMASU; DERNARDI, 2014). A Figura 10 mostra que a agricultura de precisão deve ser entendida como uma sequência de três etapas que dependem
entre si e nas quais o desenvolvimento tecnológico em uma etapa estimula o desenvolvimento tecnológico na seguinte.

Figura 10 – Ciclo da agricultura de precisão em três etapas

Fonte: Inamasu; Bernardi (2014).

Uma parte das inovações adotadas na unidade de análise de produção de grãos está inserida no contexto da Indústria 4.0, termo esse cunhado em 2011 na feira de Hannover. (SCHWAB, 2017). A expressão é uma alusão à Quarta Revolução Industrial. (LASI et al., 2014). A Indústria 4.0 traz uma série de impulsionadores tecnológicos que definem o próximo estágio dos sistemas produtivos, em que os processos ocorrerão automatizados, em redes, flexíveis e autoconfiguráveis. (SCHNEIDER, 2018). A Indústria 4.0 aplicada à agricultura tem sido chamada de farming 4.0 e agriculture 4.0. (BRAUN; COLANGELO; STECKEL, 2018;

O cruzamento de dados de fontes diversas gera recomendações agronômicas para aperfeiçoar o planejamento agrícola. Empresas como a Bayer/Monsanto desenvolveram aplicativos que visam à otimização do gerenciamento da produção. Um exemplo é o WeedScout, que identifica plantas daninhas por meio de imagem de celular. A mesma empresa está desenvolvendo outro aplicativo para o reconhecimento de nematoides (doenças do solo). De posse de informações mais seguras, é possível fazer um manejo mais direcionado de aplicação de defensivos. O resultado é uma economia no uso de herbicidas que pode chegar até 83% no caso da soja. Isso é muito significativo, pois as despesas com defensivos podem chegar a 25% de todos os custos de uma fazenda. (vilarino, 2020).

O monitoramento por imagem está sendo feito através de dispositivos adaptados à barra de pulverização ou através de imagens proporcionadas por drones. Os dispositivos adaptados às barras de pulverização são dotados de um sistema óptico que possibilitam a pulverização seletiva. À medida que o pulverizador passa pela lavoura, o leitor óptico identifica a planta daninha e ativa a dosagem através da ponta de pulverização. A empresa Trimble, fornecedora do equipamento WeedSeeker, divulga que a utilização desse equipamento de pulverização seletiva promove uma economia de até 90% nos gastos de produtos químicos. (trimble, 2020).

Para auxiliar de modo mais preciso a agricultura de precisão, estão sendo cada vez mais usados Veículos Aéreos Não Tripulados (VANT), também chamados drones, para o auxílio de monitoramento das terras, mapeamento detalhado das terras para otimização do plantio e pulverização pontual de defensivos. (jorge; inamasu, 2014). A utilização de drones possibilita o monitoramento aéreo em tempo real dos processos de colheita. O padrão espectral da vegetação fornece uma série de padrões para identificar o estágio fisiológico e de saúde das plantas. A utilização de drones está em franca expansão, e suas possibilidades de uso são inúmeras. O desenvolvimento de drones tem sido um segmento onde startups estão encontrando boas oportunidades de negócios. (inamasu; bernardi, 2014).
O drone possui um Sistema de Posicionamento Global (GPS) acoplado, assim como, uma unidade de navegação inercial. O veículo não aceita comandos de movimento diretamente ligados pelo GPS, devido a grande margem de erro deste, recorrendo a uma Unidade de Navegação Inercial (INU) garantindo uma melhor precisão da posição. Os drones podem ser equipados com diferentes tipos de sensores que tem diferentes aplicações. Câmeras RGB (red, green, blue) detectam falhas de plantio, desenvolvimento da cultura, formação da planta, modelo de elevação do terreno. Câmeras térmicas possibilitam a detecção de estresse hídrico/irrigação. Câmeras multispectrais possibilitam a detecção de estresse nutricional, para determinação de índices indicadores fisiológicos, e estrutura da copa. Se equipados com equipamentos de transmissão de dados, são capazes de transmitir em tempo real os dados recolhidos. (INAMASU; BERNARDI 2014).

O drone pode ser usado para sobrevoar as lavouras e avaliar o índice de emergência das plantas, analisando a distribuição de sementes. Com isso, ocorre o diagnóstico para uma possível decisão de replantar alguma área. Durante a colheita, em mapas com imagem via satélite, cores indicam os pontos da lavoura mais produtivos e os mais problemáticos. Os drones têm câmeras com sensores capazes de captar espectros de imagens não visíveis ao olho nu, como deficiências hídricas e nutricionais das plantas. Drones equipados com raio X produzem imagens capazes de identificar grupos de plantas daninhas, inclusive sua espécie, e a variação no crescimento das plantas. (ARPAC, 2020).

Um mosaico de imagens consiste em unir grande quantidade de imagens em uma nova Imagem. (CHON; KIM; LIN, 2010). Os mosaicos aéreos agrícolas permitem direcionar vistorias de campo durante o ciclo do cultivo ou em datas posteriores à colheita, fornecendo um diagnóstico preciso da área de cultivo. (LEBOEUF, 2000). A partir daí, podem ser elaborados os mapas de recomendações: descompactação, fertilidade e aplicação de insumos em taxa variável, auxiliando nas tomadas de decisões. A eficiência da tomada de decisão está ligada à obtenção mais rápida e precisa de informações, e também auxilia no controle de pragas, doenças e queimadas. (LELONG et al., 2008).

Após as imagens serem processadas e analisadas, é gerado um modelo de aplicação de defensivos e fertilizantes em taxa variável de acordo com a necessidade. Sua autonomia de voo pode chegar a duas horas, período durante o qual podem mapear uma área de até 5000 hectares. Os tipos de drones mais usados em áreas de até mil hectares são os multirrotores, com pequenas hélices. Em propriedades maiores predominam os equipamentos de asa fixa, tipo avião.
5.1.2 Internet e Transmissão de Dados

O conceito de Agricultura 4.0 é atribuído ao grande guarda-chuva que envolve a geração de dados por meio de ferramentas de agricultura de precisão, controle de pragas e doenças, monitoramento meteorológico e gestão da propriedade. As informações digitais geradas por equipamentos, aplicativos e softwares são integradas na nuvem, onde os dados da lavoura e de gestão são analisados de forma conjunta. (COLUSSI, 2019). A transformação digital na agricultura está fazendo com que os sistemas de criação de valor estejam se tornando cada vez mais complexos, envolvendo um número crescente de atores que trabalham de forma interdependente. (THUL; ALTHER, 2018, apud KLINGENBERG, 2020, p. 85).

A agricultura 4.0 abrange a digitalização de todo o conhecimento produzido por análises de solo, máquinas, equipamentos e sensores. A partir da geração de dados, é possível criar algoritmos que geram instruções diretas para agricultores e máquinas através da inteligência artificial, visando o uso otimizado de adubos, sementes e outros insumos. Essa digitalização trouxe mais ferramentas para considerar a variabilidade das áreas agrícolas. Isso está permitindo uma gestão com controle muito rígido de entradas e saídas e de medição da eficiência dos processos. O avanço da agricultura digital nos últimos anos transformou a maneira pela qual os produtores fertilizam o solo e protegem as lavouras de plantas invasoras, doenças e insetos, possibilitando, inclusive, a redução da quantidade de herbicidas aplicados.

No entanto, há o desafio de que muitos equipamentos de diferentes marcas não se comunicarem, com padrões de dados não convergentes. Muitas propriedades ainda não têm maior nível de tecnologia digital devido a problemas de conectividade, de máquinas que não conversam entre si e à deficiência de sinal de internet em algumas regiões do Estado. Um software de gerenciamento da produção pode realizar a centralização de dados, manter históricos detalhados da safras e possibilitar o controle remoto das informações geradas na lavoura. As operações agrícolas são muito interconectadas, do preparo do solo e plantio à proteção de cultivos e colheita. As etapas precisam trocar dados entre si.

Os smartphones representaram um grande avanço na velocidade da tomada de decisões. As mais diversas informações chegam em tempo real ao produtor para ajudá-lo nas decisões de negociação ou de decisões técnicas de produção. Adicionalmente, a rapidez para as negociações mais vantajosas é possibilitada pela disponibilidade em tempo real da cotação dos produtos nas Bolsas de Chicago, no caso da soja, e do valor do câmbio. Decisões referentes à técnica na produção como o volume de chuva e umidade do solo, ajudam a determinar o que deve ser complementado pela irrigação.
5.1.3 Defensivos Agrícolas, Fertilizantes e sua Aplicação

O sucesso de uma lavoura depende de um conjunto de fatores, como escolha de cultivares, época de plantio, adubação equilibrada, plantio direto na palha e controle das invasoras e doenças. Após proporcionar ao solo as condições necessárias para o crescimento das plantas de uma forma vigorosa, é necessário o controle de tudo aquilo indesejável que acompanha o seu crescimento, papel realizado pelos defensivos agrícolas (herbicidas, fungicidas e inseticidas). As condições climáticas do Brasil e Rio Grande do Sul são muito favoráveis à emergência de pragas e plantas daninhas, o que exige um maior esforço em seu controle através de defensivos de vários tipos. Pesquisas indicam que as plantas daninhas podem ocasionar perdas de 20% a 70% no rendimento dos grãos, dependendo da espécie, época e intensidade da infestação. (BASF, 2019).

A alta produtividade está relacionada ao preparo do solo. Um solo pobre, produz pouco. Em vista disso, a utilização de fertilizantes tem crescido muito no Brasil e no Rio Grande do Sul. Estimativas apontam que a utilização de adubos químicos nas lavouras do país cresceu 450% nos últimos 30 anos. (COLUMI, 2019b). Os fertilizantes são baseados em nitrogênio, fósforo e potássio, formando a fórmula NPK. Esses macronutrientes são em boa parte importados, especialmente o potássio, o que os deixa suscetíveis a uma variação de preço devido ao câmbio. Também fundamental para o solo é a correção de sua acidez. (EMBRAPA, 1993).

O cuidado com o solo, através de sua análise, tem sido uma prática comum dos produtores. Quando o resultado do exame aponta que o potencial hidrogeniônico do solo é baixo, o que significa um alto nível de acidez, deve ser feita a calagem, usando calcário. O calcário é fundamental para a soja e para o milho, pois os solos apresentam um nível de acidez que limita bastante o potencial de produtividade destas duas culturas, o que ocorre em virtude da presença de alumínio em teores elevados. Seu uso, no entanto, deve ser bem regulado, para que o solo atinja um pH entre 5,8 e 6,0. Mais do que isso a produtividade da lavoura pode cair. (EMBRAPA, 1993).

Uma prática de agricultura de precisão disseminada no Brasil consiste da amostragem de solo georreferenciada para o mapeamento da fertilidade dos talhões de cultivo, seguida da prescrição e aplicação de corretivos de acidez e de fertilizantes em quantidades que variam de acordo com a condição de fertilidade em cada local dentro da lavoura. (RESENDE et al., 2014). Com a aplicação do calcário, baseado na correta dosagem do insumo através da análise do solo, ocorre o aumento da disponibilidade de nutrientes, especialmente de cálcio e magnésio,
melhorando a fixação do nitrogênio do ar. No caso da soja, isso possibilita a economia de fertilizante nitrogenado. A calagem também possibilita um aumento no volume de raízes das plantas, o que possibilita que elas explorem uma maior área de solo e aumente a absorção de nutrientes e de água. Outro benefício da calagem é potencializar a adubação, melhorando o aproveitamento do fósforo existente no solo e dos fertilizantes aplicados na lavoura.

Depois de feita a semeadura ou plantio, a operação crucial passa a ser a proteção daquilo que foi plantado. O Brasil, como um país tropical, tem uma alta incidência de organismos e doenças que prejudicam a lavoura, os principais sendo a ferrugem-asiática, mancha-alvo, antracnose, pódio, crestamento-foliar, septóriose, mela e mofo-branco. (HENNING et al., 2014). O desenvolvimento da resistência desses organismos frente aos defensivos desenvolvidos exige uma constante evolução destes últimos. O desenvolvimento de herbicidas e fungicidas mais potentes, por sua vez, acaba afetando a própria planta, como é o caso do Glifosato, o herbicida de maior alcance. Como forma de resolver e quebrar esse ciclo vicioso, sementes geneticamente modificadas são desenvolvidas com uma maior tolerância a esses defensivos.

A ferrugem asiática, causada pelo fungo Phakosora pachyrhizi, é uma doença agressiva, que tem mostrado grande capacidade de adaptação a diferentes grupos químicos de fungicidas. Ela apareceu no Brasil na safra 2001/2002, e seus esporos se disseminam facilmente por correntes de ventos a longas distâncias. As plantas infectadas pelo fungo apresentam desfolhamento precoce, comprometendo a formação e o desenvolvimento de vagens e diminuindo o peso final dos grãos. A cada ano, são menores as opções de fungicidas. Com isso, uma empresa do porte da Syngenta, promoveu uma prática chamada manejo consciente para minimizar os problemas decorrentes da doença. (HENNING et al., 2014).

A Bayer desenvolveu o herbicida Dicamba como uma nova possibilidade para o produtor rural aplicar na pós-emergência da soja, junto ao Glifosato. O Dicamba é altamente eficiente no controle de plantas de folha-larga (como a Buva, a Corda-de-viola, o Caruru, o Leiteiro e o Picão-Preto), e traz um efeito prolongado de solo de até 14 dias, prevenindo a emergência de plantas daninhas após sua aplicação. (BAYER, 2020).

A aplicação de defensivos tem, nos bicos de pulverização, um fator-chave para a efetividade da operação. Por efetividade, entende-se a aplicação correta, em termos de tamanho de gota, uniformidade ao longo da barra de pulverização e proteção ambiental. Denomina-se bico o conjunto de peças colocado no final do circuito hidráulico, por meio do qual a calda é fragmentada em gotas. O bico consiste em várias partes, sendo a ponta de pulverização a mais importante. Essas pontas são responsáveis por transformar a calda de pulverização em gotas de
um determinado tamanho e distribuí-las de maneira uniforme no alvo a ser pulverizado. As pontas criam o chamado espectro de gotas, um fator-chave para uma boa pulverização. Portanto, é a ponta de pulverização que determina não somente o volume da calda, mas também o diâmetro da gota, a sua distribuição ao longo da barra de pulverização e o potencial de contaminação ambiental. Ao longo de seu uso, essas pontas se desgastam devido à abrasão pelos defensivos e por impurezas na água da calda. (TEIXEIRA et al., 2019).

A questão da deriva, ou espalhamento indevido do defensivo, é outro fator que tem estimulado o desenvolvimento de novas pontas. De acordo com Teixeira et al. (2019), o risco de deriva ocorre principalmente com gotas menores que 100 μm, enquanto que escorrimentos podem ocorrer com gotas maiores do que 500 μm. Foram relatados diversos casos decorrentes de deriva no Estado em 2019. (LOEBLEIN, 2019). Com vistas a reduzir a magnitude desses problemas, as pontas de pulverização são fabricadas em diferentes materiais, os quais têm suas próprias características e diferentes resistências à abrasão. As pontas de cerâmica são as que oferecem maior resistência ao desgaste. (MAGNOJET, 2020). De acordo com Teixeira et al. (2019), o material de fabricação das pontas influencia diretamente no tamanho das gotas. A ponta de cerâmica é a que apresenta melhor resultado de homogeneidade. A Figura 11 apresenta a durabilidade das pontas de pulverização em função do material de fabricação.

Figura 11 – Durabilidade das pontas de pulverização

![Gráfico de barras mostrando a durabilidade das pontas de pulverização](image)

Fonte: Magnojet (2020).

Uma série de ações na lavoura depende das condições climáticas do momento. Tendo percebido essa necessidade, algumas empresas, como a Agrosystem, desenvolveram estações meteorológicas portátiles que indicam as condições atmosféricas em momento real. Desse modo, os produtores rurais são informados dos dias e horas nos quais as condições meteorológicas, como velocidade do vento, precipitação e temperatura, estão favoráveis para aplicação de defensivos, de acordo com sua janela de pulverização. O estabelecimento de um calendário para a entrada de máquinas evita prejuízos e situações como compactação de solo,
atolamento de maquinário, dentre outros problemas. Essas estações meteorológicas podem ser equipadas com sensores de radiação solar, sensores de radiação ultravioleta, pluviômetro (taxa de chuva), anemômetro, sensor de temperatura, sensor de umidade superficial da folha e sensor de umidade do solo. (AGROSYSTEM, 2020).

5.1.4 Irrigação

Além de fornecer a necessária quantidade de água para a planta, a irrigação é uma condição complementar para evitar quebra de safra em épocas de estiagem. Por esta razão, novos métodos de irrigação, cobrindo uma área maior e com melhor aproveitamento da água, são oferecidos aos produtores como forma de evitar perdas. Os obstáculos à sua utilização, no entanto, residem no custo de aquisição e de manutenção (energia elétrica) e na limitação dos pontos de captação. Como todo implemento agrícola, sua justificativa reside no aumento da produção e da qualidade da lavoura. Adicionalmente, muitas áreas não seriam possíveis de serem utilizadas se não fossem irrigadas. Entre as inovações adotadas nessa operação, cabe salientar a utilização de pivôs centrais de irrigação. O Pivo Central de irrigação é o método na qual a irrigação é feita por meio de uma torre, com uma estrutura suspensa que gira de forma circular para a parte superior da plantação. Existem três tipos de pivôs centrais. Há o pivô central fixo, no qual a torre central fica fixa sobre uma base de concreto, localizada no centro da área a ser irrigada. O pivô central pode ser utilizado para variados tipos de solo e topografia. A altura do equipamento é escolhida de acordo com a altura da cultura a ser irrigada. A principal vantagem do pivô fixo é a baixa necessidade de mão-de-obra para a operação do equipamento. Há também o pivô central rebocável, utilizado para irrigar várias áreas com o mesmo equipamento. Por fim, há o pivô lateral, específico para áreas retangulares e com pequeno desnível, pois se desloca em linha reta, permitindo maior aproveitamento da área. Seu deslocamento é alinhado por meio de um sulco no solo, ou de um cabo de aço. Os pivôs podem ser utilizados com fertilizantes e defensivos, diminuindo o uso de sistemas de pulverização específicos, custo de aplicação e perdas por esmagamento. (FOCKINK, 2019).

Além da própria utilização dos pivôs para irrigação, uma inovação adotada foi o acionamento remoto dos pivôs, evitando o deslocamento até a central de comando e o desperdício de água. Uma outra inovação adotada foi o desenvolvimento de um sistema que permite que todas as torres andem ao mesmo tempo, sem paradas, elevando a vida útil de todo o equipamento mecânico e do conjunto de força motriz (moto redutores, redutores de roda e acoplamientos). (FOCKINK, 2019). Como a energia elétrica é um dos principais custos da
lavoura, 30% a 35% segundo BRUNING et al (2019), a utilização de inversores de frequência foi outra inovação importante nessa operação. O inversor de frequência é um dispositivo eletrônico capaz de controlar a velocidade (rotação) de um motor de indução e, consequentemente, a vazão da bomba ligada a esse motor. Através do inversor, o motor trabalha a uma frequência diferente da fornecida pela rede. Isso possibilita economia de energia elétrica, pois substitui as válvulas estranguladoras que controlam a vazão nos sistemas usuais, mas, nesse caso, com o motor funcionando na mesma frequência e consumindo a mesma energia elétrica. (BRUNING et al., 2019).

5.1.5 Sementes

A pesquisa em relação ao desenvolvimento de novas sementes já ocorre desde os anos 1970. Porém, principalmente em relação à soja, tiveram uma aceleração muito forte após o ano 2000. As variedades de sementes de arroz e soja podem ser desenvolvidas tanto por empresas estatais quanto por empresas privadas, normalmente multinacionais como Nidera, Bayer, BASF e Corteva. O objetivo dessas empresas é o desenvolvimento de sementes que apresentem mais produtividade, adaptadas a determinadas condições climáticas e com maior resistência aos defensivos utilizados. Periodicamente, novas variedades de sementes de arroz e soja são lançadas no mercado, implicando o pagamento de royalties para essas empresas. O desenvolvimento de novas variedades apoia-se na biotecnologia e está intimamente ligado ao desenvolvimento de novos herbicidas, fungicidas e inseticidas, pois uma razão para esse contínuo lançamento de novas variedades é a necessidade de uma planta mais resistente aos defensivos que, por sua vez, também evoluem no sentido de combater pragas que ficam mais resistentes. Os resultados têm mostrado que os produtores rurais aderem a essa contínua evolução das sementes, pois está praticamente suprimida no Rio Grande do Sul a produção de soja convencional (IP ou Identidade Preservada).

O Instituto Riograndense do Arroz (IRGA) é uma das instituições responsáveis pelas transformações do plantio de arroz no Estado. Essa instituição foi fundada em 1938, iniciando na forma de um sindicato que buscava o desenvolvimento de pesquisas e tecnologias para serem levadas ao campo. Tornou-se, na década de 1940, uma entidade pública, e atualmente é responsável pelo desenvolvimento de cultivares resistentes a doenças, que tenham um alto rendimento de grãos inteiro e uma alta produtividade.

A Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) busca desenvolver variedades geneticamente modificadas de soja. O objetivo é reduzir os riscos em decorrência
das mudanças climáticas. O isolamento de um gene relacionado à resistência ao estresse hídrico e sua introdução em uma planta a torna altamente tolerante à seca. No teste feito, as plantas não modificadas sobreviveram apenas 15 dias sem água, enquanto que as plantas que receberam o gene sobreviveram mais de 40 dias. (EMBRAPA, 2019).

Além do desenvolvimento de organismos geneticamente modificados, já de amplo uso na soja plantada no Rio Grande do Sul, uma nova tecnologia, a CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats), está sendo desenvolvida pelos órgãos de pesquisa. Essa nova tecnologia, ao invés de introduzir um gene de uma outra espécie, edita os genes do organismo, sendo capaz de modificar o genoma das plantas, animais e microrganismos, permitindo ligar e desligar genes, reforçando ou inibindo determinada característica de um organismo. Essa técnica utiliza enzimas para cortar o DNA em pontos determinados e começou a ser utilizada na agricultura em 2014. A edição de genomas permite desenvolver culturas agrícolas resistentes a pragas e aumentar a resistência de plantas, como o desenvolvimento pela EMBRAPA para aumentar a tolerância da soja à seca. (EMBRAPA, 2019).

As empresas multinacionais são muito dinâmicas no desenvolvimento de novas variedades genéticas (cultivares) e estão sempre atentas às características ambientais da região para oferecer a melhor solução. Após lançar no mercado a soja geneticamente modificada de primeira geração RR, a Bayer desenvolveu a soja transgênica RR2 Pro (resistente ao Glifosato) após 2010, e agora desenvolve a Intacta 2 Xtend com previsão de entrada no mercado brasileiro na safra 2021/2022. Esta soja traz duas novas proteínas que aumentam a proteção contra as lagartas e um gene tolerante ao novo herbicida, o Dicamba, permitindo o alcance de novos patamares de produtividade. Através de modernas ferramentas e técnicas preditivas, o método de melhoramento genético da Bayer, chamado 3,0, confere uma adaptabilidade regional e um pacote de proteção de doenças mais completo. A plataforma também traz variedades de refúgio de alta produtividade com tolerância ao Glifosato e ao Dicamba. (BAYER, 2020).

A Nidera oferece uma gama de cultivares que proporcionam diferentes benefícios. Alguns deles apresentam uma maior tolerância a déficit hídrico, outros alta produtividade e estabilidade em diferentes ambientes e outros ainda com alta produtividade e estabilidade, suportando as variações climáticas durante o cultivo. (NIDERA, 2020).

Todas essas empresas, além de fornecerem as sementes, também oferecem uma orientação detalhada acerca de seu uso, como a recomendação de população (plantas/m²) de acordo com a época de plantio e de acordo com a localização geográfica da lavoura.
5.1.6 Máquinas Agrícolas

Segundo a NBR 12973:1993, máquina agrícola é definida como a máquina projetada especificamente para realizar integralmente ou coadjuvar a execução de operações agrícolas. Implemento agrícola, por sua vez, é definido como a máquina na sua forma mais simples, cujos órgãos não apresentam movimentos relativos para realizar ou coadjuvar a execução de operações agrícolas. (ABNT, 2019). Ferramenta é o implemento em sua forma mais simples, constituindo a parte ativa de outro implemento ou máquina. (SCHLOSSER et al., 2019). Na área comercial e entre os produtores rurais, é comum generalizar o termo máquina para todos os equipamentos utilizados para a produção agrícola. De um modo geral, as máquinas agrícolas podem ser divididas em tratores, semeadoras, pulverizadores e colheitadeiras. Além destes principais, há os escarificadores (para descompactar o solo), niveladores de solo e subsoladores. As inovações mencionadas são referentes a tratores, pulverizadores, semeadoras e colheitadeiras, por serem vistos como os mais representativos para a produção agrícola.

O desenvolvimento da agricultura de precisão, que leva em conta a variabilidade existente em uma lavoura, influenciou o desenvolvimento tecnológico das máquinas agrícolas. A tecnologia embarcada nas máquinas começou com a adoção do GPS (Global Positioning System), no final da década de 1990, e se desenvolveu ao longo dos anos 2000. As máquinas para a agricultura de precisão mais conhecidas no mercado são as colheitadeiras, com grande capacidade para mapear a produção, e as aplicadoras de insumos à taxa variada. (INAMASU, BERNARDI, 2014). Dentre as tecnologias ou operações agrícolas referidas como agricultura de precisão, destacam-se a utilização de sistemas de guia do maquinário por satélite e de implementos dotados de monitores e controladores automáticos de fluxo nos aplicadores. Sistemas de posicionamento por satélite, como dispositivos de guia (barra de luz) e piloto automático permitem o deslocamento preciso de máquinas como semeadoras, pulverizadores e colheitadeiras, contribuindo para maior rendimento operacional e eficiência nas operações mecanizadas de semeadura, tratos culturais e colheita. (RESENDE et al., 2014).

De um modo geral, pode-se dizer que houve um grande número de inovações nestes equipamentos, com um consequente melhor aproveitamento da terra em termos de produtividade. A digitalização de dados e o uso da internet representaram um avanço considerável na otimização da operação destas máquinas. No entanto, a digitalização ainda enfrenta desafios, como o acesso à internet em regiões mais remotas e a grande diversidade de aplicativos ou bases de dados de cada fabricante. Muitas vezes, os produtores possuem máquinas de diferentes fabricantes, o que ocorre devido a oportunidades de negócio e pela
opção de investir na melhor tecnologia disponível no momento. Muitos dados são gerados em formatos diferentes, o que dificulta a comparação. Para aqueles produtores que possuem máquinas de diferentes fabricantes, diante do avanço da digitalização, o desafio é conectar em plataformas comuns informações geradas por inúmeras máquinas, sensores e softwares. O mercado percebeu essa lacuna e passou a oferecer programas específicos para gerenciamento de dados. Há a necessidade de uma plataforma universal de dados multimarcas que possibilite compartilhamento de informações entre máquinas e os aplicativos usados na lavoura para que se tornem simples e amigáveis para a interpretação por parte do produtor.

As empresas estão buscando se diferenciar por serviços (ex: Case, AGCO e John Deere). Empresas que já têm um nome consolidado com o fornecimento de máquinas, viram a oportunidade de agregar serviços onde antes forneciam somente equipamentos. Nos últimos anos, grandes empresas aliaram-se a empresas de tecnologia para oferecer soluções de análise de dados para a tomada de decisão. Essa é uma brecha que está sendo ocupada por empresas menores, como as startups, que oferecem soluções específicas para determinadas situações. Oferecer informações ao produtor que resultem em melhor gestão dos recursos e mais produtividade é a chave para um serviço ser bem-sucedido no agronegócio.

Um grande aliado do produtor é a transmissão instantânea de dados. A telemetria permite uma série de ações por parte do produtor que antes levava tempo para ocorrer, comprometendo a produtividade da lavoura. Entre essas novas possibilidades, por exemplo, está a de acionar os pivôs de irrigação com o celular ou definir no computador de bordo da máquina a quantidade exata de sementes que deve ser colocada no plantio. Desse modo, é possível saber se há sobreposição na pulverização ou se houve falha na aplicação. Se alguma área ficou sem pulverização pode haver incidência de pragas. Diversos aplicativos oferecidos pelos próprios fabricantes das máquinas possibilitam a otimização de sua utilização. O acompanhamento remoto das máquinas em operação reduz riscos operacionais, como uma máquina fundir seu motor por alta temperatura. A conectividade no meio rural, baixa ou inexistente, é um dos limitantes para o uso de dados que possam apoiar decisões rápidas e assertivas. (COLUSSI, 2019a). No entanto, já existem ações nesse sentido, como a associação de fabricantes de equipamentos com empresas de telefonia com o objetivo de instalação na propriedade de uma torre de transmissão com receptor.

O conforto do operador da máquina agrícola na cabine foi bastante aperfeiçoado. A integração dos diferentes controles em um mesmo local, composto por uma tela, permite a navegação em todas as funções da máquina. Em muitas delas, o operador apenas faz a
programação do roteiro através de informações das diferentes condições da lavoura. Após isso, somente acompanha a movimentação da máquina através do percurso programado pelo GPS.

A tecnologia nas máquinas agrícolas está se expandindo em termos de quem pode usá-la. Não se trata mais somente dos grandes equipamentos. Os fabricantes de tratores e colheitadeiras estão desenvolvendo equipamentos mais baratos, para pequenos e médios agricultores, com a mesma tecnologia de modelos mais potentes. Essas máquinas se encaixam na linha de crédito criada em 2008 pelo Governo Federal e ampliada em 2015.

5.1.6.1 Tratores

Os tratores são os equipamentos mais versáteis na lavoura, sendo utilizados em conjunto com vários tipos de implementos agrícolas, como carretas agrícolas, distribuidores de sementes, corretivos fertilizantes, plainas, plantadeiras e semeadoras. Na EXPONTE 2012, uma empresa gaúcha apresentou em seus tratores os kits rodado duplo com sistema de engates rápidos, com patente adquirida pela empresa. Até então, os rodados duplos não tinham esse sistema. Esse sistema permite que o trator simples seja equipado com os rodados duplos, o que possibilita uma série de vantagens. No preparo do solo, este proporciona melhor tração e menor compactação de solo, possibilitando que o trator puxe implementos maiores, como semeadoras com mais linhas. Na pulverização, esse sistema de engate rápido possibilita que o trator trabalhe com rodagem simples para a aplicação de defensivos, assim não passando com o pneu sobre a planta, amassando-a. No cultivo, o sistema de rodado duplo também possibilita o deslocamento de implementos maiores.

Os tratores sem operador na cabine, em testes nos Estados Unidos, já foram apresentados em exposições no Brasil. Ele é capaz de executar as mesmas tarefas de um modelo convencional, com o operador o controlando à distância. Esse trator tem um sistema de telemetria, podendo trabalhar de maneira pré-programada. Radares e câmaras permitem que o veículo detecte obstáculos no terreno e pare sozinho.

5.1.6.2 Plantadeiras

A semeadura ou plantio, operação em que as sementes são colocadas no solo, é objeto de grande atenção por parte dos produtores. A variação de distância entre as plantas e a profundidade de semeadura estão entre as causas que reduzem a produtividade das culturas. O aumento da produtividade devido ao manejo de densidade populacional e a uniformidade de
distribuição estão relacionados com o adequado aproveitamento da área foliar das culturas para interceptação da radiação solar. (RAMPIM et al., 2019). As plantadeiras utilizam dosadores de precisão para obter quantidades regulares e uniformes de fertilizantes, alterando essa dosagem quando necessário para evitar o uso excessivo de fertilizantes onde não é necessário. Equipamentos agora possuem dois reservatórios independentes de fertilizantes e sementes para distribuição a taxa variável. O sistema de deposição dos fertilizantes também foi aperfeiçoado. A deposição do fertilizante da primeira caixa é feita após a passagem do disco de corte, onde um defletor faz uma dispersão sobre a largura da linha de plantio na superfície do solo. O segundo reservatório deposita normalmente no sulco aberto pelo sulcador. A semente é depositada logo após a dosagem do fertilizante na linha de semeadura, encontrando os fertilizantes próximos para serem extraídos.

A agricultura de precisão forneceu instrumentos necessários para a determinação da fertilidade de diferentes solos. Decorrente disso, um procedimento importante é o ajuste da população de plantas que promova melhor desempenho da cultura, conforme características favoráveis ou limitantes dos diferentes ambientes de cultivo eventualmente presentes dentro de uma mesma lavoura. A disponibilização de plantadeiras aptas a operar com taxa variável de distribuição de sementes representa uma flexibilidade que pode ser conveniente ao agricultor, principalmente devido ao fato de o gasto com sementes, atualmente, apresentar participação expressiva no custo de produção das lavouras. (RESENDE et al., 2014).

5.1.6.3 Pulverizadoras

A pulverização consiste na aplicação, na forma de minúsculas gotas, de produtos que visam proteger a lavoura contra ataques de insetos e microrganismos, como fungos, por exemplo. A pulverização convencional conta com a gravidade para chegar à planta ou ao solo. Quanto menor a gota, mais suscetível ela está à ação do vento e à evaporação. As condições ideais para pulverização é uma umidade do ar acima de 50%, temperatura entre 15°C e 30°C e velocidade do vento de no máximo 12 km/h. (DONINI; KERVALT, 2019). A deriva ocorre quando o produto que deveria atingir a planta a partir do pulverizador se espalha pelo ar. As consequências disso são de duas naturezas: primeiro, o produto não atinge sua finalidade, ou seja, a planta; segundo, o produto pode acabar sendo arrastado para outros cultivos que são sensíveis a esse defensivo. Já é viável tecnicamente a construção de um pulverizador com sensor que meça a velocidade do vento e pare a aplicação se a condição climática se mostrar
desfavorável. Condições de vento, temperatura, umidade do ar e tamanho da gota são fatores que interferem na eficácia dessa operação.

Basicamente, a evolução dos equipamentos com a inclusão de dispositivos de posicionamento por satélite e dosadores eletrônicos permite um controle mais efetivo do fluxo de calda nos bicos de pulverização, mantém taxa de deposição constante independente de variações na velocidade de deslocamento, além de eliminar os riscos de sobreposição e de aplicação em áreas não-alvo. Evita-se, assim, o desperdício de produtos fitossanitários e minimiza-se a contaminação ambiental. (RESENDE et al., 2014). A fabricante Stara utiliza GPS para o sistema bico a bico, que identifica áreas já pulverizadas e desliga automaticamente algumas ponteiras da barra para não haver sobreposição de produto. A John Deere, por sua vez, apresenta um pulverizador com dois bicos por torre, chamado de sistema de pulverização inteligente. Sua eficiência está atrelada a outras tecnologias, como barra de fibra de carbono e a estação meteorológica móvel. A estação meteorológica móvel informa a temperatura, velocidade do vento e umidade relativa do ar. Esses fatores interferem na qualidade de aplicação e na deriva. O sistema controla a taxa de aplicação bico a bico e faz a gestão da gota por compensação. Quando o pulverizador chegar ao fim da lavoura e precisa fazer meia volta, a ponta da barra que fica parada solta menos produto do que a outra extremidade. O pulverizador da Jacto utiliza o princípio eletrostático para redução da deriva.

O piloto automático orientado por GPS mantém o veículo no percurso pré-definido pelo operador e contorna obstáculos. Esses veículos podem vir equipados com sensores de aproximação, que desaceleram o veículo quando o fim da lavoura estiver próximo, o que permite fazer a manobra de retorno com mais segurança. Os sensores de solo, por sua vez, regulam a altura da barra de pulverização em relação à terra. Com esse sensor, o equipamento que aplica o produto oscila de altura se adequando às irregularidades do solo.

Os pulverizadores mais modernos apresentam uma nova estrutura de quadro central e barras, com maior estabilidade das barras de pulverização, favorecendo a homogeneidade na distribuição e deposição de gotas. Essas barras podem ter até 30 metros de comprimento, com sistema pendular por roletes de baixo atrito, garantindo uma altura homogênea durante toda a aplicação, mesmo em terrenos irregulares. As barras de pulverização são divididas em seções (até 7), o que possibilita que algumas possam ser desligadas automaticamente para evitar a sobreposição (para pulverização) quando o veículo passar sobre uma área aplicada e que tenha sido registrada pelo sistema. O resultado é a ampliação da eficiência nas aplicações e diminuição dos desperdícios.
Avanços na transmissão, com duas bombas hidráulicas alimentando os quatro motores de rodas em circuitos distintos em diagonal, aumentam a performance em terrenos escorregadios. Redutores acoplados aos motores das rodas permitem a operação em terrenos com declividade de até 30°. (SCHLOSSER; HERZOG; NEGRI, 2019). Para a segurança do operador, as cabines são pressurizadas, com filtros de carvão ativado que garantem o isolamento com o ambiente externo, teclas dos comandos são iluminadas, o que facilita a operação de pulverização à noite. Para orientação do operador, há o manômetro da pressão de pulverização para o controle do padrão da gota pulverizada. O circuito de pulverização nas estruturas das barras de pulverização evoluiu na forma de fechamento pneumático instantâneo, minimizando desperdícios e reduzindo o impacto ambiental. Esse sistema promove uma grande economia quando comparado com os anteriores sistemas de válvulas elétricas convencionais.

A versatilidade é uma inovação incorporada às máquinas agrícolas. Um fabricante no Rio Grande do Sul conjugou em um mesmo equipamento as funções de pulverização, distribuição de produtos sólidos e semeadura de sementes. Isso foi obtido através da modificação da posição da barra central de pulverização e do depósito de líquido, o que possibilitou a colocação do depósito de sólidos e sementes na parte traseira da estrutura. A barra de pulverização passou a agregar, além dos bicos, os dispersores que proporcionam a distribuição das sementes. Nessa mesma máquina, o motor possui gerenciamento eletrônico que atende à legislação de controle de emissões vigente. Os técnicos dessa empresa estreitaram suas relações com o fabricante do motor, com o que se obteve o mapa de melhor rendimento do motor, resultando na possibilidade de dispor aos usuários uma função de modo econômico. Com um simples toque no monitor do sistema de gerenciamento da máquina, é selecionada a faixa ótima de funcionamento (1800 RPM), o que aumenta a economia de combustível. O desenho dos bicos de pulverização sofreu avanços no sentido de proporcionar uma melhor gota na pulverização. A pressão de pulverização nos bicos também foi alvo de inovação, para que permaneça constante independentemente de bicos serem fechados ou abertos em alguma seção da barra. (DONINI; KERVALT, 2019).

Percebendo a necessidade de aplicação tardia de defensivos e fertilizantes, algumas máquinas agrícolas apresentam um sistema chamado Sobe e Desce, composto por um conjunto de alavancas e um pistão hidráulico em cada roda que permite que a máquina aumente o seu vão livre (distância ao solo) em até 40 cm, para não prejudicar a plantação devido à sua altura.
5.1.6.4 Colheitadeiras

As colheitadeiras representam o último estágio do grão no campo. A eficiência de sua operação sustenta o aspecto crucial de colher o grão na hora certa para evitar prejuízos devido a intempéries. As colheitadeiras desenvolvem suas inovações visando uma alta qualidade de limpeza, baixo índice de quebra de grãos, maior produtividade e baixo índice de perdas. A adoção da agricultura de precisão representou um avanço para a otimização da operação de colheita, pois através de sensores de produtividade é possível elaborar um mapa de colheita, roteirizando o percurso da máquina.

Uma série de aspectos técnicos aumentaram o desempenho desta máquina. Uma barra de corte flexível permite o corte rente ao chão mesmo em terrenos ondulados. O módulo de alimentação desempenha um papel importante na produtividade das colheitadeiras e teve avanços significativos. O fluxo de material contínuo proporciona uma velocidade constante de colheita. Para isso, há a regulagem por acionamento hidráulico por dentro da cabine do ângulo de ataque do alimentador, possibilitando um melhor ajuste e melhor eficiência do material colhido para dentro da máquina. O desenvolvimento mais côncico do rotor do módulo de trilha e separação possibilita trabalhar com produtos mais úmidos e em condições extremas de colheita.

O sistema de limpeza, responsável por separar o produto do que será descartado imediatamente, tem sua eficiência aumentada através do aumento da área das peneiras superior e inferior e por um novo direcionamento de ar do ventilador. O sistema de limpeza teve desenvolvimento em seu material construtivo, tornando-o mais leve. As colheitadeiras desenvolveram um sistema de ajuste automático ao terreno, aumentando sua capacidade em terrenos inclinados. Esse novo sistema ajusta a velocidade do ventilador, a abertura e fechamento das peneiras de acordo com a inclinação do terreno. O material descartado é retornado ao campo. Esse retorno também teve melhorias, com um sistema que pica a palha de acordo com a necessidade e a distribui de maneira uniforme no campo, o que ajuda no posterior cultivo direta da próxima safra. Câmeras digitais localizadas nos elevadores de grãos limpos e de retrilha analisam continuamente a quantidade de grãos quebrados e impurezas, realizando automaticamente os ajustes necessários para minimizar perdas, dependendo menos do ajuste manual por parte do operador. (JOHN DEERE, 2019).
5.2 EQUIPAMENTOS PARA O BENEFICIAMENTO DE GRÃOS

Esta seção faz uma descrição dos equipamentos utilizados nas instalações do produtor após a colheita dos grãos. Para cada equipamento, após sua descrição, são ressaltados os avanços tecnológicos incorporados. Embora essas etapas possam variar dependendo do produtor de grãos, estes, uma vez colhidos, devem ser limpos (máquina de pré-limpeza), secos (secadores) e armazenados (silos). Entre cada uma destas etapas, os grãos são movimentados (transportadores verticais e horizontais) entre os equipamentos. Embora o produtor tenha a opção de não seguir estas etapas e vender o grão logo após a colheita, isso pode representar uma perda de valor no grão, tanto devido às impurezas e risco de deterioração do grão, quanto ao desconto pelo teor mais alto de umidade, além de não aproveitar o período de entressafra propiciado pelo armazenamento.

5.2.1 Equipamentos de Pré-limpeza de Grãos

Os grãos colhidos pelas máquinas colheitadeiras não apresentam uma condição ideal para serem logo em seguida armazenados com segurança. Por maior que seja o cuidado na colheita e na regulagem do equipamento que o realiza, os grãos apresentam um teor de impurezas e de umidade maior do que o recomendável para armazenamento. Por esta razão, devem passar por um processo de pré-limpeza nas instalações do produtor, e por uma etapa de secagem se a armazenagem for mais longa e o teor de umidade do grão colhido for alto. As operações de pré-limpeza e limpeza consistem na remoção de quaisquer impurezas, mas especialmente aquelas com massa específica e dimensões diferentes do grão. (WIMBERLY, 1983; ELIAS; OLIVEIRA; VANIER, 2017).

Desde já, cabe fazer a distinção entre as etapas de pré-limpeza e limpeza de grãos. As máquinas que realizam essas etapas consistem nos mesmos equipamentos. A diferença está em sua posição na sequência do beneficiamento. As máquinas de pré-limpeza são as que recebem o grão logo após a colheita e, consequentemente, apresentam maior teor de impurezas e umidade, estando entre 18% e 24%. Normalmente, os fabricantes estabelecem a capacidade nominal de suas máquinas para uma redução de impurezas de 8% na entrada e 4% saída.

As máquinas de limpeza, por sua vez, encontram-se nas instalações das empresas beneficiadoras. O grão já deve estar com uma umidade mais baixa, pois deve ter passado por uma etapa de secagem nas instalações do produtor ou do próprio beneficiador. A redução de impurezas na etapa de limpeza é de 4% até 1%, sendo este o valor determinado pela legislação
para a comercialização. Catálogos mais completos de equipamentos trazem uma tabela relacionando o tipo do grão, a umidade do grão e a capacidade de limpeza do equipamento. Os fabricantes tomam cuidado para especificar qual a redução no percentual de impureza que seu equipamento proporciona com a vazão máxima especificada, normalmente de 8% para 4% (pré-limpeza) e de 4% para 1% (limpeza). (MILMAN, 2002).

As máquinas de pré-limpeza efetuam uma separação física das frações desejáveis e indesejáveis. O processo de remoção das impurezas baseia-se em duas operações que ocorrem no mesmo equipamento: por uma coluna de ar que, através de exaustão, separa as impurezas com menor massa específica, e pela dimensão nas chapas perfuradas que compõem as peneiras. Estas impurezas consistem de pedras, galhos, animais mortos, terra, grãos imaturos, folhas e até partes que, porventura, se desprendam dos equipamentos de colheita e transporte. Para isso, baseiam-se na diferença de algumas propriedades físicas destas duas frações, tais como dimensão, massa específica e magnetismo. Além destes modos de separação, as máquinas apresentam separadores magnéticos para a separação de metais que vêm junto do grão e são potencialmente danosos para os equipamentos.

Na primeira metade do século XX, as máquinas de pré-limpeza não possuíam um sistema de exaustão para remoção de material mais leve, consistindo apenas de peneiras que faziam a separação pela dimensão. Por outro lado, existiam equipamentos que atuavam como sopadores, que, pela diferença de massa específica de cada material na massa de grãos, separava-os baseado no comportamento destes quando arrastados pelo ar. A combinação destes dois princípios de separação deu origem às máquinas de pré-limpeza modernas e estudadas nesse trabalho. (WIMBERLY, 1983).

A máquina de pré-limpeza de grãos consiste de um fluxo único de entrada e vários fluxos de saída, sendo o principal deles o do grão limpo, e os outros de impurezas. Os fluxos de impurezas serão separados em impurezas leves, separados pela exaustão, impurezas grosseiras com maior dimensão, separadas pelas chapas metálicas com maior abertura, através das quais o grão bom é o passante, e impureza final, como poeira e pedras pequenas, sendo estes os passantes. A segregação destes diferentes fluxos é importante por algumas razões. Primeiro, porque possibilita a utilização de alguma destas impurezas como combustível para a queima na fornalha, se houver uma disponível e, também, na utilização em rações das impurezas com algum nível de proteína. Segundo, porque sinaliza qual o tipo de impureza está mais presente, indicando ações de ajuste na colheitadeira ou no exame de algum equipamento que esteja soltando peças. Uma separação muito grande de grãos quebrados, por exemplo, significa a necessidade de ajuste de algum equipamento anterior. A presença de impurezas afeta
as etapas posteriores de secagem e aeração em silos. As impurezas podem ocupar os espaços intergranulares em secadores e silos, aumentando a pressão estática para a passagem de ar e forçando mais os motores dos ventiladores e exaustores.

Segundo Weber (2005), as máquinas de limpeza mais utilizadas desde os anos 1940 e 1950 têm sido as de dupla aspiração com quatro peneiras, e capacidade de aproximadamente 25 a 30 t/h como pré-limpeza e 15 a 20 t/h para a limpeza. A capacidade real das máquinas de pré-limpeza e de limpeza depende da umidade, do teor de impurezas na massa de grãos e do peso específico do grão. Um teor de umidade maior reduz a capacidade, assim como uma massa de grãos com um maior teor de impurezas. A capacidade das máquinas com grãos de massa específica mais baixa, como o arroz, é cerca de 45% menor do que seria com soja, a uma mesma umidade.

As máquinas de pré-limpeza constam de um sistema de alimentação de grãos, de um sistema de exaustão na entrada para separar a fração leve, de uma eclusa para controlar a entrada de grãos e distribuí-los o mais uniformemente possível ao longo das peneiras, e de saídas das frações indesejadas (grosso e finos) e da fração boa. Além disso, esses equipamentos costumam ter um separador magnético na entrada para efetuar a remoção de impurezas metálicas com potencial para prejudicar as chapas ou os sistemas de movimentação. A Figura 12 mostra uma máquina de pré-limpeza e seus principais componentes.

Figura 12 - Máquina de pré-limpeza

As partes da máquina de pré-limpeza que aparecem na Figura 12 são as seguintes.

(WEBER, 2005):

1- Entrada dos grãos e alimentação da máquina;
2- Corpo da máquina;
3- Compartimento de entrada;
4- Haste com contrapeso para posicionamento do registro;
5- Registro de distribuição dos grãos e regulagem do fluxo;
6- Limpeza por fluxo de ar e seleção pela diferença de massa específica;
7- Canal de seção variável de aspiração e separação;
8- Boca premente da saída do ar do ventilador;
9- Ventilador centrífugo;
10- Boca aspirante do ventilador;
11- Registro do fluxo de velocidade do ar;
12- Câmara de decantação para separar as impurezas do ar;
13- Janela com tampo de vidro para inspeção e limpeza;
14- Palhetas que mantêm a câmara fechada;
15- Calha coletora de parte das impurezas separadas pela ventilação;
16- Caixa de peneiras com duas peneiras: peneira A com furos maiores para a separação de impurezas graúdas e passam os grãos e impurezas médias e finas. Peneira B com furos menores que retêm os grãos e passam as impurezas finas e menores do que os grãos;
17- Calha de descarga das impurezas graúdas;
18- Calha de descarga dos grãos limpos;
19- Calha de descarga das impurezas finas;
20- Molas de fixação da caixa das duas peneiras;
21- Excêntrico do movimento das peneiras;
22- Eixo dos excêntricos;
23- Duas bielas do movimento da caixa das peneiras;
24- Estrutura da máquina;
25- Pilares de alvenaria ou concreto.

É comum a utilização da especificação do número de peneiras para a classificação das máquinas de pré-limpeza e limpeza de grãos. O número de peneiras pode ser entendido como o número de planos de separação do equipamento. Por exemplo, se o equipamento possui um
quadro com uma chapa perfurada que separa as impurezas maiores, seguido por um outro quadro, em um nível inferior, que separa as impurezas menores, diz-se que essa máquina de limpeza apresenta duas peneiras. Se, com o intuito de aumentar a capacidade do equipamento, for colocado mais um quadro com um nível de peneira, paralelo ao de separação de impurezas finas, o equipamento terá três peneiras. Não importa que um mesmo quadro, em um mesmo nível, tenha chapas de mesma furação separadas e colocadas uma após a outra. Esse conjunto continua contando como uma peneira. O aumento do número de peneiras, aumentando a altura das máquinas, continua sendo o principal meio de aumento de capacidade das máquinas mais modernas.

O primeiro aspecto construtivo que os fabricantes se detiveram foi a alimentação de grãos na máquina. Essa alimentação normalmente provém de um ponto mais elevado, seja a saída de um elevator de canecas, seja a de descarga de uma rosca transportadora ou esteira. Alguns grãos são muito suscetíveis à quebra, como é o caso do arroz. Para evitar isso, foram desenvolvidos amortecedores na linha de descarga do grão no equipamento. Esses amortecedores são de dois tipos. O primeiro é o amortecedor de linha, o qual consiste em uma expansão do duto de alimentação, fora da máquina de limpeza. Essa expansão no duto reduz a velocidade de queda do grão que escorre por dentro do duto. Deve ser salientado que os dutos que ligam os elevadores de caneca às máquinas de pré-limpeza devem ter uma inclinação mínima para que promovam a queda do grão, mas não devem ser totalmente verticais, pois isso aceleraria em demasiado o grão e este quebraria ao deparar-se com o anteparo final. O outro tipo de amortecedor localiza-se justamente no final desse duto inclinado de alimentação, logo antes de entrar na máquina, sendo, por isso, chamado de amortecedor de final de linha.

Os sistemas de alimentação nas máquinas de pré-limpeza executam duas importantes funções. Isto foi, e ainda é feito em muitas máquinas, através de um registro tipo contrapeso. Esse registro tem a responsabilidade de preencher completamente o compartimento de entrada, distribuindo os grãos transversalmente à chapa perfurada da máquina para uma boa limpeza por ventilação. (WEBER, 2005). O contrapeso tem a função de manter o duto de alimentação das peneiras fechado enquanto o peso do grão sobre ele não for suficiente para abri-lo. Uma vez que a coluna de grãos exerça uma força superior ao do contrapeso, ele se abre, garantindo um fluxo constante, sem falhas que possam criar passagens favoráveis ao ar de exaustão de arraste das impurezas leves. Além disso, eles espalham o grão através de toda a largura da chapa perfurada da peneira para assegurar uma altura uniforme de grão sobre ela e maior aproveitamento da área de separação. Adicionalmente, eles regulam o fluxo com uma vazão mássica constante. A distribuição sobre a chapa perfurada é de responsabilidade de um ou mais
defletores. Com o objetivo de melhorar a distribuição dos grãos, esses equipamentos melhoraram o duto de entrada, dividindo-o em duas ou mais seções paralelas possibilitando, dessa forma, a dosagem dos grãos em dois ou mais pontos no início das peneiras.

Após a entrada dos grãos na máquina de pré-limpeza, o primeiro processo é a separação das impurezas mais leves através de um sistema de exaustão promovido pelas pás de um ventilador. O sistema de aspiração nas máquinas de pré-limpeza mais antigas estava restrito à entrada dos grãos. Com o tempo, foi adotado um segundo sistema de aspiração na saída dos grãos bons. Para evitar a contaminação do ar no ambiente de trabalho por finos, a aspiração também pode ser realizada sobre a área de peneiramento, desde que a caixa do equipamento esteja adequadamente vedada para a eficiência da operação. (WIMBERLY, 1983).

O sistema de aspiração começa a atuar no momento em que a massa de grãos entra no equipamento. O sistema de exaustão realiza a separação através da diferença de massa específica entre os grãos e as impurezas mais leves. Os grãos apresentam diferentes massas específicas, o que requer diferentes ajustes na corrente de ar de exaustão. O arroz, por exemplo, possui uma massa específica de 580 a 600 kg/m³, enquanto o milho e a soja apresentam 750 kg/m³. (WEBER, 2005).

O canal de aspiração tem seção transversal variável, menor no início, no primeiro contato com os grãos, e maior no final. Dessa forma, a velocidade ascende no primeiro contato com a massa de grãos e vai reduzindo-se à medida que ascende. No caso de arraste indevido de grãos, o alargamento da seção transversal do duto e a consequente redução da velocidade de arraste fará que o grão caia na própria massa de grãos de onde provêm. Caso o sistema de ar não tenha seu fluxo corretamente determinado, haverá arraste do grão ou remoção ineficaz das impurezas. Na câmara gravitacional, logo após o canal de aspiração, haverá uma ampliação da seção transversal com grande redução da velocidade do ar, o que possibilita a queda do material particulado para a saída correspondente. O ar, com impurezas muito finas, continuará para o sistema de captação de finos (ciclone ou filtro de mangas).

O sistema de controle de vazão de ar é efetuado através de registros que, estando mais abertos ou mais fechados proporcionam maior ou menor entrada de ar e, consequentemente, maior ou menor capacidade de arraste de impurezas. A regulagem é feita manualmente e o resultado é verificado pela presença, ou não, de grãos bons na saída de impureza mais leve.

No entanto, é importante considerar que o cálculo e vazão para o sistema de aspiração deve levar em conta a massa específica do grão e das impurezas de modo individual. Por isso, um grão quebrado, embora tenha uma massa menor do que um grão inteiro, não será arrastado pela coluna de ar, pois a massa específica do grão quebrado e do grão inteiro são as mesmas. A
ação de arraste do ar ocorre durante o movimento dos grãos, por isso, os grãos e impurezas devem ser considerados individualmente.

A parte principal do equipamento é composta por várias estruturas metálicas ou de madeira chamada de quadros e chapas perfuradas presas a ela. Esse conjunto é denominado peneira. O número de quadros de uma máquina de pré-limpeza é um fator determinante para a capacidade em termos de toneladas por hora. No conjunto total de suas peneiras, as chapas perfuradas apresentam duas dimensões de furos. Na primeira, com furos geralmente circulares, o grão bom é o passante, enquanto que as impurezas grosseiras são retidas. Após esse estágio, a massa de grãos dirige-se para um outro quadro cuja chapa é composta por furos circulares ou oblongos, mas cuja principal função é reter a fração boa e deixar passar os finos.

Nas primeiras máquinas de pré-limpeza, os grãos seguiam um fluxo único, ou seja, passavam por dois quadros. Para evitar carga excessiva sobre a chapa, no entanto, e aumentar a capacidade do equipamento, o fluxo de grãos passou a ser dividido para mais de um quadro, criando fluxos paralelos cuja fração boa será novamente reunida na saída do equipamento.

Para efetuar a separação, as chapas perfuradas não são estáticas. O movimento do conjunto de peneiras é do tipo oscilatório circular (orbital). O movimento é gerado através de um excêntrico, acionado por um motor elétrico através de polias e correias. O acionamento de uma caixa de peneira exige dois excêntricos e as demais peças que o completa, como o rolamento, o mancal, bielas (que transmitem os movimentos dos excêntricos à caixa) e contrapesos, que fazem o balanceamento relativo aos esforços sofridos pelo eixo e mancais durante o funcionamento da caixa de peneiras. Quando a caixa das peneiras avança em um sentido, os pesos avançam em sentido oposto, equilibrando e diminuindo as tensões sobre o eixo. (WEBER, 2005).

Além disso, as peneiras são inclinadas de forma a promover o deslocamento dos grãos da parte superior das chapas, onde ocorre a entrada dos grãos, até a parte inferior, onde ocorre a saída. Ao longo do trajeto percorrido ocorre a separação entre grossos e finos. A regulagem correta do movimento oscilatório é crucial para a eficiência do equipamento. Caso o movimento seja muito baixo, afetará a vazão mássica de separação. Caso o movimento seja muito grande, a separação será prejudicada devido ao arraste. (MILMAN, 2002; WIMBERLY, 1983)

O ângulo dos quadros é um importante fator para a determinação da capacidade. Segundo Wimberly (1983), o ângulo adequado para a pré-limpeza do arroz é entre 4° e 12°. Quanto maior o ângulo de inclinação, maior será a velocidade com a qual o grão passará pelos orifícios. Os quadros das peneiras possuem um fundo com chapa cega que faz parte integrante
do quadro e que não é trocado, como ocorre com a chapa perfurada superior, que depende do grão sendo limpo.

Devido à grande possibilidade de haver bloqueio das aberturas da chapa superior por entupimento, as máquinas de pré-limpeza apresentam um mecanismo autolimpante composto por esferas de borracha com cerca de 2,5 cm de diâmetro em constante agitação devido ao movimento oscilatório do sistema. As esferas, ao movimentarem-se, chocam-se com a chapa acima delas, removendo os grãos presos nas aberturas. O quadro das peneiras não é inteirão. Ele é dividido em várias seções quadradas paralelas, separadas por anteparos metálicos que servem de suporte à chapa superior e com cerca de três esferas em cada uma. (WIMBERLY, 1983)

Os quadros das máquinas de limpeza são removíveis. Eles encaixam-se sobre suportes dentro da caixa do equipamento e são fixados por algum dispositivo para acompanhar o movimento oscilatório. A remoção dos quadros ocorre basicamente por dois motivos: para substituir alguma chapa rompida, ou para a troca da chapa por uma furação diferente.

Um aspecto essencial na eficiência do equipamento é a chapa perfurada com suas correspondentes aberturas ou furos. Estes podem ser redondos, oblongos, ovais ou triangulares, de acordo com a Figura 13.

Figura 13 - Aberturas para as chapas perfuradas

![Figura 13 - Aberturas para as chapas perfuradas](image)

Fonte: Bühler (2019).

O percentual de área aberta da chapa determina o quanto ocorrerá de separação. Normalmente, para o arroz, a chapa inicial de separação das impurezas grosseiras possui furos redondos, pois o interesse é ter os furos o menor possível para deixar o arroz passar e reter o
máximo possível de impurezas maiores. As chapas a seguir, cujo grão bom é o retido, apresenta furos oblongos, pois apresentam a maior abertura possível para a passagem dos finos, mas retendo o arroz. Os furos oblongos para o arroz separam o grão pela espessura, e não pelo comprimento. Para a soja, os furos oblongos são adequados para a separação de meio grão. As peneiras de furos oblongos são colocadas na máquina na posição em que o eixo maior do furo é paralelo ao deslocamento dos grãos.

Um meio de medir a eficiência de pré-limpeza de um equipamento é a área necessária em m² para cada tonelada de produto por hora. O arroz apresenta uma redução de até 45% em relação a capacidade de limpeza da soja no mesmo equipamento, sendo este um aspecto ressaltado pelos catálogos dos fabricantes quando relacionam capacidade nominal do seu equipamento.

O sistema de coleta de material separado era inicialmente feito com a colocação de sacos de ráfia ou outro material nas saídas correspondentes de material mais grosseiro ou mais fino do que o grão. Isto, no entanto, representa um grande trabalho manual de movimentação de material. Por exemplo, considerando que a vazão mássica do equipamento seja de 20 t/h, com uma taxa de separação de impurezas de 5%, isto significa que a cada hora tem-se 1 tonelada de impureza em sacos que devem ser fechados e colocados em pallets. Um aperfeiçoamento que surgiu em algumas empresas é a colocação de transportadores helicoidais até um sólido para essa remoção, evitando o excessivo trabalho humano. De qualquer forma, essa é uma alternativa que exige espaço e novos equipamentos, o que afasta muitos produtores de a adotar.

Um desafio encontrado pelas máquinas de limpeza tradicionais é a separação de pedras que tenham massa específica e dimensões muito próximas do grão. Nesse caso, houve o desenvolvimento das peneiras densimétricas, também chamadas de separadores de pedras, que operam através de um fluxo ascendente de ar por uma tela perfurada. Esse fluxo de ar fluidiza os grãos e os direciona a uma saída específica na parte inferior na estrutura. As frações mais pesadas continuam em contato com a tela vibratória e, por sua vez, são conduzidas para uma outra saída de impurezas na parte superior da estrutura da tela. Este equipamento necessita de um ajuste mais fino do que as tradicionais máquinas de pré-limpeza. Esse ajuste se realiza sob quatro aspectos. O primeiro é a vazão de ar para a fluidização. O segundo é a inclinação do equipamento. O terceiro é a intensidade e equilíbrio da vibração. Finalmente, o quarto, a própria taxa de vazão mássica na entrada.

A razão para a adoção e desenvolvimento das peneiras densimétricas foi de complementar o trabalho das máquinas de pré-limpeza e limpeza. Assim como no caso das máquinas de pré-limpeza, as peneiras densimétricas podem ser utilizadas tanto nas instalações
dos produtores quanto nas empresas de processamento e beneficiamento de grãos. No entanto, deve ser observado que quanto mais próximas forem as massas específicas do produto e da pedra, mais difícil será a separação. Um exemplo disso é a mistura de pedras no arroz com casca e no arroz sem casca. No primeiro caso, o conjunto casca e grão apresenta uma massa específica menor devido ao volume da casca, tendo a pedra uma massa específica significativamente maior. Já no grão de arroz descascado, a massa específica é maior, aproximando-se ao da pedra, sendo, por isso, mais difícil a separação.

Os equipamentos de limpeza foram aperfeiçoados ao longo dos anos tanto em termos de capacidade quanto em termos de eficiência de separação. As peneiras, que até os anos 1970 eram constituídas por quatro peneiras e duas aspirações, receberam outras duas peneiras, totalizando seis. Essas novas máquinas foram chamadas de máquinas sobrepostas, para diferenciar das outras que são chamadas de máquinas simples. (WEBER, 2005). Atualmente são construídas máquinas com capacidade de até 600 t/h na pré-limpeza de soja. A capacidade destes equipamentos foi obtida principalmente através de três ações: i-) instalação de mais níveis de telas em um mesmo equipamento, proporcionando fluxos paralelos de separação após o ponto de carga, o que significa aumento de área útil em m²; ii-) melhora no sistema de aspiração; iii-) ajuste na inclinação das peneiras.

Dois aspectos técnicos propiciaram uma maior eficiência de separação. Um melhor controle da vibração do equipamento pelo operador proporcionou uma adequação do tempo de residência dos grãos sobre a tela e um melhor efeito dinâmico para o cruzamento da chapa perfurada tanto pelo grão quanto pela impureza, dependendo da etapa de separação. O segundo aspecto técnico foi quanto à separação de pedras ou impurezas da mesma dimensão dos grãos. Isso foi efetivado com a utilização de peneiras densimétricas, ou separadoras de pedra. Estes últimos equipamentos, no entanto, são bem mais comuns nas primeiras etapas das instalações dos beneficiadores do que nas instalações dos produtores (limpeza).

O sistema de alimentação da massa de grãos na máquina de pré-limpeza teve duas inovações que auxiliaram no aumento de capacidade do equipamento. O primeiro foi a utilização de um amortecedor escalonado logo antes de um conjunto de defletores para uma distribuição uniforme dos grãos na largura da chapa perfurada, de acordo com a Figura 14. O outro foi a utilização de uma eclusa rotativa, com variador de frequência, conectado com o sistema de exaustão, de modo que uma maior massa de grãos passa por uma maior vazão de ar de exaustão e arraste de impurezas mais leves.
Figura 14 – Sistema de amortecimento e espalhamento

Uma alternativa para o aumento de capacidade foi o desenvolvimento de máquinas de pré-limpeza duplas. Nestas, um duto de alimentação abastece duas máquinas em paralelo, que apresentavam um único motor mais potente que, através de um só eixo no corpo, acionava os dois ventiladores e, através de um outro eixo mais abaixo, acionava as duas caixas de peneiras. Entretanto, elas não apresentavam nenhum avanço tecnológico em termos de capacidade individual. (WEBER, 2005).

Em um próximo estágio de desenvolvimento, o aumento de capacidade propiciou a substituição de máquinas mais antigas, com menor capacidade e que operavam em fluxo paralelo, por outra com mais capacidade, o que desobstruiu o ambiente nas instalações do produtor. Esses equipamentos são compostos por até nove peneiras sobrepostas. A máquina com maior número de peneiras e com melhor desempenho de separação eliminou a necessidade de equipamentos em paralelo. Evoluindo ainda mais em relação ao controle de alimentação, um dos fabricantes visitados desenvolveu um ajuste de fluxo de grãos para cada nível da peneira com o objetivo de se obter o maior fluxo de massa de grãos por tempo. A Figura 15 apresenta o corte de uma máquina de pré-limpeza de alta capacidade atualmente fabricada.
Figura 15 - Corte transversal de máquina de pré-limpeza

Fonte: TMSA (2019).

O ponto A representa a entrada de grãos, e o ponto H a saída de exaustão. O ponto B é a entrada dos grãos livres da fração leve no jogo de peneiras. Os pontos C, D, E, F são as saídas das diferentes frações de grãos e impurezas. A tela 1 é a de separação das impurezas grossas, seguida pelas telas número 2, 3,4 e 5 que separam as impurezas finas.

Os aspectos ambientais foram um forte determinante para que o sistema de exaustão das máquinas de pré-limpeza fosse equipado com algum sistema de captação de finos, evitando, assim, que fossem descartados na atmosfera. Esse sistema de captação adotou o uso de ciclones ou de filtros de manga, ou até mesmo a combinação dos dois. Ciclones são equipamentos mais simples e praticamente sem partes móveis, a não ser pelo ventilador de exaustão que movimenta o ar desde a máquina de pré-limpeza. Eles foram os primeiros a serem utilizados quando a questão ambiental ficou mais premente, ou quando a descarga da exaustão ocorria dentro do próprio ambiente em que estava o equipamento. As forças centrífugas criadas pelo cíclo fazem com que as partículas (mais densas que o ar) colidam contra as suas paredes. Isto provoca a redução da sua velocidade e queda das mesmas pelo cone inferior, enquanto o ar limpo sai pela parte superior.

Se, por um lado, a manutenção é praticamente nula nos ciclones, o seu dimensionamento deve ser feito com bastante cuidado para que sua eficiência de separação seja aceitável. Vários fatores devem ser levados em conta em seu dimensionamento, tais como a vazão de ar, a velocidade do ar e as características do material sendo arrastado. A abrasão que ocorre no
ciclone ao longo do tempo deve ser levada em conta para a troca de peças. (MACINTYRE, 1990).

Os filtros de mangas são equipamentos mais aperfeiçoados para a separação de material da exaustão. Sua eficiência de coleta é maior. No entanto, tem um custo de manutenção maior, de acordo com a troca das mangas filtrantes. Nesse sistema de separação, o ar contaminado é forçado a passar de fora para dentro por uma estrutura composta por um tecido cilíndrico (mangas) ao redor de uma estrutura cilíndrica metálica também cilíndrica que lhe dá suporte. É necessário que o sistema seja dotado de pulse-jet, ou seja, limpeza das mangas por jato de ar comprimido operado por meio de um temporizador. Caso não sejam limpos, os tecidos das mangas rapidamente ficarão saturadas e a separação prejudicada. (BETHEA, 1978).

A Figura 16 mostra uma máquina de pré-limpeza acoplada a um filtro de mangas.

Figura 16 - Máquina de pré-limpeza e filtro de mangas

![Diagrama de máquina de pré-limpeza e filtro de mangas]

Fonte: Carlos Becker (2019).

O aumento de capacidade na limpeza de grãos exigiu um aperfeiçoamento do sistema de exaustão responsável pela remoção de impurezas com menor massa específica. O melhor controle da vazão do fluxo de ar possibilitou que um mesmo equipamento possa ser regulado para a limpeza de diferentes tipos de grão, com massas específicas diferentes, como soja e arroz, e para diferentes fluxos mássicos. No lugar do ajuste manual para o ar de aspiração, foi adotado o variador de frequência para variação de velocidade do ventilador de exaustão e, consequentemente, da vazão de ar. O sistema de exaustão se diversificou em termos de pontos de coleta, agindo tanto na entrada dos grãos quanto na saída das peneiras com grãos bons. Esse complemento da limpeza remove cascas que, porventura, se soltem na passagem dos grãos pelas
telas ou impurezas que conseguiram escapar da primeira exaustão. Os sistemas de exaustão passaram a contar com uma recirculação do ar, evitando que todo ele passe no sistema de captação de finos. No projeto de um fabricante visitado, somente 30% do ar utilizado é expelido para o ambiente, o que viabiliza a instalação de filtros de mangas.

Uma outra alternativa para o aumento de capacidade foi o desenvolvimento de peneiras rotativas, como na Figura 17. Elas podem ser utilizadas de forma independente ou acopladas diretamente sobre a máquina (câmara de ar ou caixa das peneiras) para retirada de impureza grossa como palha, objetos estranhos, etc. Elas são indicadas para produtos provenientes de lavoura com grande quantidade de palha, ou que não tenham passado por nenhum processo de limpeza nas colheitadeiras.

Figura 17 – Peneira rotativa

O equipamento é dotado de um sistema de aspiração posterior ao peneiramento, utilizando o fluxo de ar para separar impurezas levas da camada de grãos já isenta de impurezas grossas. Os sistemas de troca rápida de peneiras e de regulagem de inclinação do tambor agilizam a configuração da máquina para diferentes condições e produtos. A capacidade destes equipamentos pode chegar até a 300 t/h. (KEPLER WEBER, 2019).

As máquinas de pré-limpeza com mais capacidade exigiram mais motores do que as anteriores. Anteriormente, um motor somente era necessário para o acionamento de todas as peneiras. Nas máquinas atuais, um motor foi adicionado, totalizando três. Um está dedicado
exclusivamente para o ventilador, e tem sua velocidade controlada por variador de frequência: Outro é dedicado para a caixa superior de peneiras; um terceiro aciona as duas caixas localizadas mais abaixo. Os motores mais eficientes reduziram a relação de consumo de energia por kg de grão limpo. Em uma máquina de pré-limpeza de soja com 18% de umidade e 5% de impurezas com capacidade de 212 t/h, há a razão de 7504 kg/CV de motores de 60Hz 4 e 6 polos, considerando os motores: caixa de peneiras, ventiladores da câmara, eclusa da câmara, ventilador do ciclone, acionamento da peneira rotativa, e eclusa do filtro de mangas pulse-jet. (KEPLER WEBER, 2019).

O quadro elétrico dos motores adotou algumas inovações que tornaram a operação mais segura. A partida e a parada dos motores seguem uma ordem pré-determinada, o que garante o funcionamento adequado do equipamento. O quadro possui incorporado um sistema de freio elétrico para o motor da caixa das peneiras. As peneiras são dotadas de sensores, os quais têm a função de desligar os respectivos motores em caso de movimento além da trajetória padrão. Para acionamento da peneira rotativa é utilizado um inversor de frequência que permite a variação de sua rotação. O conjunto pode ter um sistema de contagem de horas trabalhadas, com alertas pré-configurados de manutenção. (KEPLER WEBER, 2019; TMSA, 2019).

A estrutura dos quadros das peneiras evoluiu tecnologicamente sob dois aspectos. A operação de remoção dos quadros foi facilitada pela utilização de engates rápidos. Alguns dos fabricantes já desenvolveram um dispositivo de troca somente da chapa perfurada, evitando a remoção do quadro quando houver necessidade de troca da chapa. Outra inovação foi a gradual troca dos quadros de madeira para quadros metálicos. Com isso, houve o benefício do aumento da durabilidade do equipamento e melhor ajuste das partes, evitando a disseminação de finos no ambiente. Para evitar o desgaste nas seções dos equipamentos que mais entram em contato com grãos abrasivos, com o arroz, está sendo utilizado um polímero substituindo algumas partes metálicas.

5.2.1.1 Inovações nas Máquinas de Pré-Limpeza

Ao longo das últimas décadas, as máquinas de pré-limpeza e limpeza dos grãos incorporaram algumas inovações técnicas que podem ser divididas nos seguintes aspectos:

- aumento de capacidade (t/h) sem um correspondente aumento da área ocupada pelo equipamento;

- desenvolvimento de dispositivos que tornam mais fácil a remoção e colocação dos quadros, melhorando os aspectos de segurança e rapidez da operação;
• melhoria no sistema de captação de finos no sistema de exaustão;
• reaproveitamento do ar de exaustão e melhor controle de sua vazão, através de um variador de frequência;
• melhoria no sistema de dosagem da massa de grãos para uma melhor distribuição nas peneiras, conectando o mesmo com a regulagem da vazão do sistema de exaustão;
• utilização de motores de melhor desempenho, representando economia de energia;
• utilização de um sistema de comando dos motores e sensores de intertravamento;
• utilização de metal no lugar de madeira para a estrutura dos quadros;
• substituição do material construtivo de algumas partes mais sujeitas a desgaste devido à abrasividade do grão.

5.2.2 Equipamentos de Secagem de Grãos

A secagem tem sido usada para a preservação de alimentos desde os primórdios da civilização. No princípio, as forças da natureza, como o calor proporcionado pelo sol e o vento eram os responsáveis por esse processo na própria planta. Os produtores esperavam que o grão estivesse com uma umidade baixa para colhê-lo e armazená-lo. Esse protelamento na colheita apresentava seus inconvenientes, como intempéries que podiam provocar perdas na lavoura, ou uma excessiva perda da massa seca, o que desvaloriza o grão. Em um segundo momento, depois de colhidos, os grãos eram colocados ao ar livre e os processos naturais, como calor do sol e vento, eram responsáveis por reduzir a sua umidade para níveis mais baixos. Esse processo exigia trabalho e era pouco produtivo devido à demora. Além disso, como os grãos, nesse processo, esquentam durante o dia e resfriam durante a noite, são criadas tensões internas que, posteriormente, resultam em quebra do grão e redução de seu valor econômico. (WIMBERLY, 1983).

Embora a secagem artificial date de mais de 200 anos, foram nas últimas cinco décadas que os processos de secagem aprimoraram-se mais rapidamente. (BROOK, 1992). A arte e a ciência da secagem artificial tiveram avanços significativos em um tempo relativamente curto. No Rio Grande do Sul, a secagem mecânica iniciou na década de 1930. Mas foi a partir das décadas de 1960 e 1970 que os secadores passaram a processar grandes volumes de grão, chegando, até as torres modeladas atuais que podem secar até 400t/h. (WEBER, 2005).

Embora tenham ocorrido inúmeros avanços técnicos, ainda persiste no Brasil e em outros países a secagem em terreiro, que consiste em espalhar os grãos de modo a evaporar sua
umidade ao sol. Esse método pode ser usado quando o produtor não possui uma estrutura de secagem ou mesmo quando a sua estrutura não tem a capacidade de secar os grãos no ritmo necessário. Outra vantagem que a secagem natural apresenta é a menor utilização de combustível, pois os secadores modernos necessitam de alguma fonte térmica (lenha, carvão, gás, óleo combustível, gás natural, gás liquefeito de petróleo) para a geração do calor.

A secagem consiste na evaporação da água contida nos grãos, rompendo o equilíbrio das pressões entre a massa e o ar que a circunda, tendo como condição que durante todo o processo a umidade relativa do ar seja menor que a atividade de água do grão no equilíbrio. (ELIÁS; OLIVEIRA; VANIER, 2017). Isso pode ser obtido de diferentes formas, existindo basicamente três formas de secagem de grãos. A primeira, já mencionada anteriormente, é a secagem natural. A segunda, é através de secadores de grãos. A terceira é através da utilização de silos secadores. Estas três formas apresentam vantagens e desvantagens. A primeira forma apresenta a vantagem do custo, mas as desvantagens de tempo e perdas.

A forma de secagem através de secadores apresenta a vantagem de rapidez, mas envolve um investimento inicial de aquisição do equipamento e o gasto de combustível. Essa forma utiliza mais intensamente o calor como forma de secagem, fazendo com que o aumento da temperatura dos grãos aumente a pressão de vapor interna pelo aumento da energia cinética, facilitando a difusão. Como o aumento da temperatura dos grãos ocorre devido ao contato com ar quente, o aumento da temperatura do ar reduz a sua umidade relativa, aumentando a sua capacidade em receber água e reduzindo a atividade de água em que o grão entra em equilíbrio higroscópico, reduzindo o grau de umidade em que o grão pode atingir na secagem. (ELIÁS; OLIVEIRA, VANIER, 2017).

A terceira forma, através de silos secadores, apresenta a vantagem de secar grandes volumes, mas apresenta um tempo mais longo de secagem e custo investimento em equipamentos. Essas duas últimas formas podem ser conjugadas, como secadores e silos secadores utilizados nessa sequência. (BAILEY, 1992). Os equipamentos analisados nessa seção restringem-se aos secadores, ou seja, a segunda opção. Os silos secadores serão analisados na seção correspondente ao armazenamento.

Há vários aspectos que diferenciam os secadores. O mais comum é a sua capacidade, normalmente dita como capacidade estática, ou seja, a quantidade de grãos (em toneladas ou sacas) que cabem no secador estando este sem circulação. Este valor se diferencia da capacidade dinâmica, que é a capacidade de secagem nominal em toneladas por hora. Os secadores se diferenciam quanto: i-) ao tipo de movimentação que os grãos apresentam em seu movimento; ii-) à direção do fluxo de ar que cruza os grãos para a secagem; iii-) à presença de câmara de
secagem e resfriamento; iv-) o ritmo de operação do secador (intermitente ou contínuo); v-) o tipo de descarga dos grãos; vi-) o tipo de ventilador utilizado e sua posição, resultando em insuflamento ou exaustão; vii-) o tipo de fornalha e combustível utilizado para aquecimento do ar. No entanto, todos utilizam os fatores volume de ar e temperatura para a secagem.

O princípio básico da secagem é o contato do grão úmido com o ar quente em movimento. O ar retira a umidade do grão, saturando-se e sendo expelido do secador. Essa transferência de massa do grão para o ar é possibilitada pela temperatura e volume do ar no secador. A umidade no grão está presente de diversas formas. A secagem remove a água de duas dessas formas, A primeira e mais fácil de remover é a umidade superficial. Esta umidade está ao redor do grão e o próprio vento na lavoura ou o calor do sol podem em parte removê-la. Quando o grão está no secador, esta é a primeira e mais rápida umidade a ser removida. Por esta razão, quando o grão entra no secador a uma umidade de 20%, por exemplo, a sua redução para 16% é mais rápida do que a redução deste valor para 13%. Isto porque essa segunda etapa de secagem afeta a umidade intersticial, ou seja, a umidade que está presente nos interstícios do grão, em seus canais interiores. (ELIAS; OLIVEIRA, VANIER, 2017; WEBER, 2005; BROOK, 1992).

Enquanto a umidade superficial pode ser removida de uma só vez, a umidade intersticial deve ser removida em etapas, principalmente no caso do arroz. Quando se inicia esta etapa de secagem, estabelece-se um gradiente de pressão osmótica entre a parte interna e externa do grão, fazendo com que ocorra a migração da umidade interna para a superfície. Como isso leva algum tempo para ocorrer, é necessário dar ao grão o tempo de descanso, ou tempering, para uma nova secagem. (WEBER, 2005). A situação de uma umidade uniforme e baixa tem muito menos chance de prejudicar a conservação dos grãos do que uma situação em que a umidade no interior do grão ainda é alta e que se espalhará com o tempo por todo o grão podendo atingir níveis arriscados. (BROOK, 1992).

A taxa de secagem é determinada por características do grão, como sua umidade inicial, temperatura e variedade. Ainda, a taxa é afetada pela temperatura do ar, umidade relativa e pelo volume de ar passando pelo grão. Adicionalmente, o método de secagem, o tipo de secador e a eficiência do equipamento afetam a taxa de secagem. (WIMBERLY, 1983). Quanto mais alta for a umidade inicial do grão, mais tempo levará para secar até a umidade final desejada de armazenagem. Em geral, quanto mais alta for a temperatura do ar, mais rápida ocorrerá a secagem. Uma temperatura excessivamente alta do ar, no entanto, provoca tensões internas no grão, especialmente no arroz, e posterior quebra. Como a umidade mais facilmente removível
é aquela na superfície, uma secagem muito rápida irá causar um gradiente de umidade muito grande no grão, provocando a tensão interna no mesmo.

Especialmente no caso de secagem de sementes, a temperatura deve ser mais moderada do que a secagem de grãos para consumo, pois pode haver a inativação de enzimas decorrentes de desnaturação proteica. Efeitos de altas temperaturas de secagem podem ocasionar problemas, como os grãos oleaginosos se tornarem mais sensíveis à rancidez; alteração das ligações de amido, alterando sua capacidade de gelatinização; escurecimento não enzimático, como caramelização de açúcares e/ou formação de melanoidinas por reação de Maillard. (ELIAS; OLIVEIRA, VANIER, 2017; SHI; WU; QUAN, 2017; SHAFIEKHANI; WILSON; ATUNGULU, 2018).

O choque térmico durante a secagem é prejudicial ao grão. Ele pode ocorrer quando a secagem é feita com ar muito aquecido e seguida de um resfriamento rápido, ou quando os grãos inicam a uma temperatura muito baixa e o ar está com temperatura inicial muito alta. Segundo Elias, Oliveira e Vanier (2017), os principais efeitos verificados são o trincamento e o endurecimento da periferia. A dilatação, seguida de contração causa rachaduras na superfície, pois o grão não tem plasticidade para suportar estas tensões.

O processo de secagem apresentou uma série de aprimoramentos ao longo dos últimos 50 anos. Esses aprimoramentos verificaram-se tanto em termos de volume de secagem quanto de um melhor controle e automatização do processo. Os primeiros secadores utilizados no Estado, ainda na década de 1930, eram chamados de secadores estáticos de leito fixo, como representado na Figura 18.

Figura 18 – Secador estático de leito fixo

Fonte: Elaborada pelo autor.
Estes secadores consistiam em uma caixa com fundo perfurado sobre a qual eram colocados os grãos. Um ventilador movimentava o ar aquecido em uma fornalha por um fluxo ascendente através da massa estática de grãos, saindo pela parte superior com uma temperatura menor e carregando parte da umidade. A altura da camada de grãos dependia do sistema, mas não era recomendável ser maior do que 1,2 metros. Este é um processo lento e usado primitivamente em pequenas propriedades. A temperatura do ar não podia ser muito alta, limitada a 50°C, pois não havendo movimentação dos grãos, o momento de tempering, ou de descanso para uniformização da umidade, era impossibilitado. O volume de ar utilizado nestes equipamentos podia variar de 0,6-0,8 m³/minuto, para 20,5 kg (1 bushel) de arroz. A área perfurada da chapa deve ter entre 10 e 15% da área total e a velocidade do ar devia ser entre 300 a 450 m/minuto. Embora o carregamento destes equipamentos fosse fácil, simplesmente enchendo-os com os grãos a partir de sacos, o descarregamento podia ser problemático. Caixas basculantes com descarregamento lateral foram posteriormente desenvolvidas para facilitar a operação de descarregamento. (WIMBERLY, 1983).

Alguns desses secadores podiam ser montados sobre rodas e transportados até perto da lavoura, onde eram colocados para secar os grãos assim que colhidos. Um avanço em relação a estes secadores foi a recirculação de sua carga, ao invés de mantê-la estática. Isso era feito através da movimentação dos grãos via rosca transportadoras (helicoides) internas à caixa. O modo de operação destes secadores estáticos são a base dos silos secadores hoje utilizados, e que serão objeto de estudo mais adiante na seção de armazenagem.

5.2.2.1 Circulação de Ar

A movimentação dos grãos nos secadores estáticos de leito fixo foi o início do desenvolvimento dos secadores modernos. Nestes secadores, de um modo geral, os grãos entram pela parte superior do equipamento e deslocam-se para baixo, a uma velocidade lenta, até a descarga. Durante este trajeto, entram em contato com ar quente que remove a umidade do grão antes de sair pela exaustão. O volume de secagem, a vazão de ar, a forma de contato dos grãos com o ar aquecido, e o tempo de secagem são variáveis que diferenciam os tipos de secadores e caracterizam os principais aspectos evolutivos do equipamento. Devido aos grandes volumes de grãos na secagem, esses equipamentos requerem sistemas de movimentação de grãos, como elevadores de canecas e transportadores helicoidais. (WEBER, 2005).

Um secador pioneiro utilizando esse sistema foi desenvolvido pela Louisiana State University, conhecido como LSU, na década de 1940, dedicado à secagem de arroz e que serviu
de modelo a muitos outros secadores subsequentes. Nesse secador, o tempo médio de residência desde o topo até a descarga é de 30 minutos. (TAGGART, 1947).

Um fator-chave na secagem é a distribuição de ar. Isso é importante para garantir que não ocorram correntes preferenciais de modo a secar mais determinadas partes da massa de grãos do que outras. Os secadores diferenciam-se quanto à direção do fluxo de ar em relação à massa dos grãos, podendo este ser fluxo cruzado, concorrente, contra-corrente ou misto. Nos secadores que operam com fluxo cruzado, o ar atravessa a massa de grãos horizontalmente. Nos secadores com fluxo concorrente, o fluxo de ar acompanha o sentido de movimento dos grãos. No fluxo contra-concorrente, o fluxo de ar desloca-se em sentido oposto ao dos grãos. Finalmente, o fluxo misto representa uma combinação do fluxo concorrente e contra-corrente em diferentes seções do secador. A Figura 19 mostra estes diferentes fluxos.

Figura 19 – Fluxos de ar no processo de secagem

Fonte: Elaborada pelo autor.

Dentro do princípio de movimentação dos grãos, os secadores podem operar com colunas de grãos que não se misturam, ou seja, um simples movimento vertical descendente sem obstáculos que façam os grãos mudarem de posição entre eles; ou com um proposital cruzamento de fluxo dos grãos com o objetivo de os misturarem. O primeiro tipo de secador é de uma concepção mais antiga e deu lugar ao segundo, mais atual. No primeiro tipo, o ar aquecido entra em um plenum localizado no centro do secador que se prolonga até o topo deste, enquanto que os grão passam entre duas telas verticais que ficam em torno desse plenum. O ar aquecido, ao sair do plenum através de uma tela, cruza o fluxo de grãos e vai para a exaustão. A Figura 20 mostra seu funcionamento.
Figura 20 – Secador com um *plenum* central

Fonte: Termográos (2019).

A velocidade de descarregamento dos grãos e, consequentemente, seu tempo de secagem é regulado por uma chapa de ajuste de descarga abaixo da coluna de grãos. O descarregamento ocorre em uma rosca helicoidal transportadora que conduzirá o grão para um outro passe na secagem ou para um silo. Para esse tipo de secador, é recomendado um fluxo de ar de 125-150 m³/min por tonelada e uma temperatura do ar de até 60°C. (WIMBERLY, 1983).

Em uma concepção mais moderna na secagem dos grãos por coluna, o ar quente vindo da fornalha atravessa as paredes de chapas perfuradas, passa através da coluna de massa de grãos por um fluxo cruzado e sai do outro lado da coluna, em uma coluna de ar para a exaustão. Essa concepção é apresentada na Figura 21, em que é possível visualizar colunas de grãos alternando-se com colunas de circulação de ar.
Figura 21 – Secador com múltiplas colunas

Nos secadores em cujas colunas os grãos se misturam, a trajetória dos grãos é alterada através de ductos ou cavaletes que cruzam transversalmente a massa de grãos. Ao invés de um plenum único, o ar quente distribui-se por estes ductos localizados em diferentes alturas. Esses ductos que alteram a trajetória dos grãos são os caminhos através dos quais, em alguns deles, o ar entra na massa de grãos, cruzando-os e, em outros, ocorre a exaustão. Nesses secadores, devido à maior movimentação dos grãos, é utilizada uma temperatura mais alta do ar de secagem e uma menor velocidade do que os secadores sem mistura. A Figura 22 representa esse processo.

Figura 22 – Fluxo de ar em um secador de cavaletes

Os secadores que utilizam esse sistema são montados em módulos, como o mostrado na Figura 23. Deve ser ressaltada a importância de um correto ajuste entre os módulos no momento da montagem para evitar fluxos irregulares de ar.

Figura 23 – Módulo de montagem de secadores.

A movimentação do ar quente através do secador pode ser feita por insuflamento ou por exaustão/aspiração. No modo de insuflamento, um ventilador localizado antes do secador força o ar a passar pelos grãos, causando uma pressão dentro da câmara de secagem e resfriamento. A secagem por aspiração é o modo mais utilizado atualmente. Nesse modo de operação, um ventilador localizado após o secador causa uma depressão na câmara de secagem e resfriamento, de modo que o ar proveniente da fornalha (no caso da secagem), ou do ambiente, no caso do resfriamento, segue o fluxo de menor pressão até o secador, passa pelos grãos e pelo ventilador. A Figura 24 mostra os fluxos de ar por insuflamento e exaustão.

Figura 24 – Fluxo de ar quente por insuflamento e por exaustão

Fonte: Elaborada pelo autor.
Há dois tipos de ventiladores: i-) de fluxo axial; ii-) de fluxo centrífugo. Nos secadores mais modernos, os ventiladores centrífugos deram lugar aos ventiladores axiais. Os ventiladores centrífugos predominaram nos anos 1960 e 1970, mas foram substituídos pelos axiais, mais leves, de menor vazão sendo, por esta razão usados dois ou mais para substituir os centrífugos. Os ventiladores são selecionados pelos fabricantes considerando o fluxo de ar (m³/min), a pressão estática e potência necessária. O fluxo de ar é determinado pelos requisitos de secagem e o tipo de secador utilizado. A pressão estática é determinada pela resistência de passagem na massa de grãos pela qual o ar irá se mover. (WYMBERLI, 1983).

Além da remoção da umidade do grão, o processo de secagem tem o efeito de reduzir seu volume. Após uma ou mais passagens do grão por um secador intermitente, o volume de grãos vai gradualmente se reduzindo, podendo chegar ao ponto de que a coluna de secagem não mais fique completa. O resultado é que parte do secador passa a não ser utilizado, com o efeito ainda mais grave de os dutos de ar ficarem descobertos e o ar quente escoar diretamente deles para a atmosfera, não passando pelos grãos. Para solucionar isso, os fabricantes colocam sobre a torre de secagem um depósito com grãos para compensar essa diminuição de volume. Nesse depósito não passa ar quente. Outra solução é a utilização de uma tulha com grãos ao lado do secador que participa do ciclo de secagem e repõe o volume perdido. Em instalações mais automatizadas, há um controle de nível mínimo que alerta o nível baixo de grãos no secador. Este pode estar intertravado com a mesa de descarga, parando-a para que o nível seja recuperado. (WEBER, 2005).

5.2.2.2 Capacidade de Secagem

Uma distinção que surgiu com o tempo e que serviu para ampliar a capacidade de secagem foi entre secadores intermitentes e secadores contínuos. Nos secadores intermitentes, a redução desejada da umidade não é alcançada de uma só vez, o que exige que os grãos, tendo atravessado uma vez o secador, sejam repassados através de uma nova alimentação via elevador de canecas. O processo prossegue até que a umidade desejada seja atingida. Nos secadores contínuos, por sua vez, fatores como o tempo de residência, fluxo de ar e temperatura do ar possibilitam que o grão passe somente uma vez pelo secador, sendo logo em seguida conduzidos ao silo de armazenagem. A Figura 25 mostra esquematicamente esses dois sistemas.
Figura 25 – Secadores de fluxo intermitente e de fluxo contínuo

O **sistema contínuo** com secagem e resfriamento é realizado em um secador pelo qual os grãos passam uma única vez, do topo para a base. Durante a passagem pela torre de secagem, o grão passa por uma seção onde tem contato com o ar quente, removendo, dessa forma, sua umidade e aumentando a temperatura do grão. A seguir, passa por uma região de resfriamento, onde ar ambiente cruzará a massa de grãos, reduzindo sua temperatura. O ventilador que faz a exaustão é o mesmo para ambas as zonas, mas há uma separação física entre o duto de ar quente e o duto de ar frio, fazendo com que não se cruzem. Cada um tem um registro de controle próprio, podendo-se abri-los mais ou menos para o controle de temperatura e vazão.

O sistema contínuo também pode ser utilizado somente com seção de ar quente, sem o resfriamento. O mesmo secador poderá ser utilizado, mas somente com circulação de ar quente proveniente da fornalha. Nesse caso, o registro externo de entrada de ar ambiente fica fechado, e o registro interno do secador que separa as correntes quentes e frias dentro do secador permanece aberto para que o ar quente também circule na seção originalmente dedicada ao ar ambiente de resfriamento. A vantagem desse sistema é o aumento de capacidade do secador, já que a seção de resfriamento também será utilizada para isso. Esse ganho pode representar 30% em termos de área de secagem, pois é o que representa a seção de resfriamento no total da coluna do secador. Deve-se tomar cuidado, no entanto, onde serão colocados os grãos quentes. Eles devem ser colocados em silos aerados que possibilitem o resfriamento do grão de modo uniforme. (WEBER, 2005).
Na **secagem intermitente**, os grãos passam mais de uma vez pelo secador, removendo um certo percentual de umidade em cada passagem. Normalmente esse sistema é utilizado quando os grãos estão com uma umidade inicial elevada, acima dos 20%, por exemplo. A circulação dos grãos ocorre através de elevadores de canecas que coletam o produto na parte inferior do secador e o transferem para o seu topo. Na operação intermitente de secagem, o secador opera com toda a torre de secagem com ar quente. Não há o resfriamento após cada passagem. O resfriamento com ar ambiente ocorre somente na última passagem antes de direcionar os grãos para o silo. Do mesmo modo que na secagem contínua, é possível a retirada dos grãos quentes do secador sem a última etapa de resfriamento. No entanto, isso exige o armazenamento em um silo com aeração.

Os secadores intermitentes que trabalham com arroz exigem um *tempering* antes de uma nova passagem pela câmara de secagem do secador. No *tempering*, o grão, após passar pelo contato com o ar quente, fica afastado deste de modo a possibilitar que a umidade em seu interior migre para a superfície para ser removida. Por esta razão, boa parte dos secadores de grãos são chamados intermitentes. Ou seja, o grão circula por eles em estágios alternados de secagem e *tempering*. Por fim, ar com umidade relativa mais baixa tem maior capacidade de absorção da umidade do grão e, consequentemente, proporciona uma secagem mais rápida.

Quando o secador não apresenta esta seção para o *tempering* em sua estrutura, como os mais antigos, essa etapa era realizada em silos fora do secador, onde o grão ficava em repouso por algumas horas antes de ser repassado. Nesse caso, devia haver um rígido controle da ordem de repasse dos grãos novamente no secador. O tempo do *tempering* fora do secador era muito longo, o que afetava em muito a capacidade de secagem da instalação. Aos poucos, novas alternativas surgiram, como um tempo de *tempering* no próprio equipamento. Este *tempering* é realizado em uma seção superior do secador pela qual não flui o ar quente, e tem a função de uniformizar a umidade no grão, de modo a evitar uma sobresecagem de sua superfície e consequentemente geração de tensões que provocarão quebras.

A partir dos anos 1980 foram desenvolvidos os secadores com reaproveitamento de calor. Nestes equipamentos, o ar utilizado na refrigeração de grãos, no último terço da torre de secagem, remove o calor da massa e o reaproveita na câmara de secagem. O reaproveitamento pode representar uma economia de combustível em torno de 8%. (WEBER, 2005).

A combinação de secagem e armazenagem pode ser considerada de três formas. Na primeira, os secadores secam os grãos até a umidade segura para armazenamento, como 13% ou 14%, e entregam o grão a uma temperatura mais baixa pelo fato dele ter passado pela seção de resfriamento do secador. Em uma segunda situação, os grãos são secos até os mesmos 13%, mas houve uma ampliação da seção de secagem do secador, não havendo a passagem por uma zona de resfriamento. Nesse caso, os grãos saem a uma temperatura mais elevada. Em um terceiro caso, a secagem não é feita até a umidade final segura (13% ou 14%), mas somente até uma umidade intermediária, como 16% ou 17%. Sendo assim, o papel que os silos posteriores ao secador terão serão diferentes para cada caso.

É possível fazer a secagem parcial dos grãos no secador, de modo contínuo ou intermitente até certo nível mais alto de umidade do grão, transferindo-o para um silo aerado para que este termine a secagem. Nesse sistema, ao invés de reduzir a umidade do grão até 13%, a unidade seria reduzida somente até 16% ou 17% no secador. O resto seria feito no silo com aeração. É importante ressaltar que quanto menor for o teor de umidade do grão, mais lenta é a secagem, ou seja a variação da umidade por unidade de tempo. A redução de 16% para 13% é lenta, podendo ser feita em silos de secagem para desafogar o secador.

A vantagem desse sistema é que a passagem pelo secador é mais rápida, desafogando um possível ponto de gargalo para o produtor. Além disso, proporciona um menor dano por utilizar temperaturas mais moderadas e evitar choques térmicos. O risco é que o silo não tenha uma boa distribuição de ar, podendo prejudicar por deficiência de secagem alguma área específica dentro dele. Além disso, a secagem é bem mais lenta no silo do que no secador. A secagem nos silos exige um maior número de ventiladores do que se fosse um simples armazenamento de grãos já secos. A secagem em silos fica prejudicada quando a umidade do ar estiver muito elevada. Nesse caso, o sistema de aeração do silo deve estar munido de algum tipo de aquecimento e secagem do ar antes que este venha a entrar em contato com o grão.

Em qualquer sistema de secagem que seja escolhido, deve ser evitada uma temperatura muito alta do ar, pois isso gera estresse e trinças no grão. Por essa razão, a temperatura do ar quente deve ser constantemente monitorada. Muitas vezes, a fumaca está distante do secador, com perdas térmicas durante o deslocamento do ar. Nesse caso, justifica-se aquecer o ar a temperaturas superiores a 100°C ou 110°C. Uma temperatura tão alta talvez não se justifique em uma fumaca mais próxima. Um modo mais efetivo é controlar a temperatura do ar quente na entrada do secador. Mais correto do que o controle dessa temperatura, é monitorar a temperatura do grão, pois esse é o ponto final do contato do ar quente com a massa de grãos. Para o arroz, é recomendável que a temperatura dos grãos não ultrapasse 42°C, e para a soja,
45°C. Quando forem secas sementes, essa temperatura será mais baixa, abaixo de 40°C para ambos os grãos.

O arroz é um cereal mais sensível a quebras no processo de secagem do que a soja. Por algum tempo, acreditou-se que não fosse possível realizar o resfriamento dos grãos de arroz no seador com o risco de quebra. Secadores mais modernos, no entanto, alcançaram com algum sucesso esse resfriamento, evitando, assim, que os grãos fossem conduzidos úmidos para os silos. Esse seador é composto por duas câmaras de secagem, operando com ar concorrente, ou seja, no mesmo sentido da descida dos grãos. Essas duas câmaras de secagem podem ter temperaturas diferentes do ar de entrada. Na câmara superior, quando o arroz estiver mais úmido, a temperatura poderá ser cerca de 100°C. Na segunda câmara, já com menor umidade, a temperatura do ar deve ser menor, cerca de 80°C, para evitar tensões no grão. Essa diferença de temperatura é obtida através da mistura de ar ambiente com o ar que vem da formalha para a segunda câmara. Em uma terceira câmara, a mais inferior de todas, ar ambiente em contracorrente entra em contato com o grão. Pelo fato de ele estar em contracorrente, o ar mais frio entra em contato com o fluxo final de grãos e vai aquecendo à medida que sobe, entrando em contato com o arroz mais quente com uma diferença menor de temperatura entre eles.

A recomendação geral é de remover aproximadamente 2% de umidade por hora de secagem. Deve ser levado em conta de que o processo de secagem terá uma taxa de redução da umidade maior no início e menor no final pelo fato da umidade superficial ser mais fácil e rápida de remover do que a de dentro do grão.

5.2.2.3 Controle de Descarga dos Grãos

Uma vez que os grãos se movimentam dentro do seador, eles devem ser removidos para o silo de secagem ou para uma nova etapa de secagem, no caso de secagem intermitente. O fluxo de descarga dos grãos, localizado na parte inferior do seador, pode ser controlado de diferentes formas, a saber: (WEBER, 2005).

- descarga mecânica, de bandejas planas, acionadas mecanicamente através de um sistema de eixo centrífugo e fluxo contínuo;
- descarga pneumática de bandejas planas, acionadas por um sistema pneumático, de fluxo intermitente;
- descarga mecânica, de bandejas côncavas, pendulares de fluxo contínuo;
- eclusas rotativas de fluxo contínuo, autolimpante.
Esses diferentes modos de descarregamento dos grãos têm a importante função de controlar o tempo de residência dos grãos no equipamento. Quanto mais rápido eles operarem a abertura, mais rápida será a passagem do grão pelo secador e, consequentemente, menor seu tempo de residência. É a descarga que permite que, independentemente da umidade inicial dos grãos, se obtenha a umidade desejada através da correta regulagem do sistema de saída dos grãos. (WEBER, 2005).

O sistema mecânico de bandejas tem sido utilizado desde os anos 1960, mas está atualmente fora de fabricação. As bandejas localizadas no fundo do secador apresentam um movimento horizontal que, alternadamente, possibilitam o descarregamento dos grãos. Esse movimento é feito através de biela, excêntrico e haste conectados ao eixo da rosca transportadora que leva os grãos para um elevador de canecas. O volume de descarregamento dos grãos pode aumentar ou diminuir de acordo com a posição de fixação da haste no excêntrico e também por um ajuste manual através de uma alavanca da altura das bandejas. Esse tipo de regulagem possibilita o ajuste individual das bandejas, compensando áreas do secador em que os grãos descem com maior velocidade e, consequentemente, com menor tempo de residência.

O importante é que a massa de grãos tenha a mesma umidade na saída. Este sistema é altamente dependente de uma verificação da umidade dos grãos em diferentes seções do secador, para verificar em qual delas os grãos têm uma umidade maior. De nada adianta medir a umidade depois que houver a descarga, quando os grãos das diferentes seções do secador estiverem misturados, pois o aparelho de medição fará uma média, mascarando a umidade alta. Como este sistema é altamente dependente da ação do operador, fica muito sujeito a erros caso não ocorra a devida orientação. (WEBER, 2005).

Em aperfeiçoamento do sistema anterior, o eixo que movimenta as bandejas torna-se independente da rosca transportadora e possui um motor próprio, com variador de frequência e um excêntrico. Desse modo, não se necessita posicionar manualmente a biela mais para o centro ou mais para a periferia do disco excêntrico para diminuir ou para aumentar, respectivamente, a velocidade de descarregamento dos grãos. Com o variador de frequência, o operador pode manter fixa a posição da haste e variar sua velocidade e, consequentemente, o tempo de secagem.

Uma variação que utiliza as bandejas planas de descargas é o acionamento pneumático. Este sistema é intermitente, realizando movimentos intercalados de abertura e fechamento, cujo acionamento ocorre por ar comprimido, e temporizadores com um tempo pré-determinado de abertura e fechamento. O tempo em que o sistema fica fechado, sem descarregamento de grãos,
depende da umidade e é regulado manualmente no temporizador. Com grãos mais úmidos, o tempo de fechamento é mais longo, aumentando o tempo de residência no secador.

O sistema de descarga contínua com eclusas rotativas é de simples funcionamento e regulagem. O acionamento através do redutor do motor ocorre em apenas uma das eclusas, que transmite, através de rodas dentadas na extremidade de seu eixo, o movimento para as outras eclusas através de uma corrente. Desse modo, todas as eclusas giram no mesmo sentido, na mesma velocidade e descarregam a mesma quantidade de grãos. Nos sistemas mais antigos, a variação da velocidade das eclusas era realizada através de uma polia de diâmetros escalonados. Através da seleção de um determinado diâmetro, era possível aumentar ou diminuir a velocidade das eclusas (maior diâmetro, maior velocidade de rotação das eclusas). A mudança da corrente de acionamento era feita manualmente. Nos sistemas mais modernos, a modificação da vazão de descarregamento ocorre através da alteração da rotação do sistema de descarga através de um variador de frequência.

Um aspecto relevante desse sistema é que ele é autolimpante. Assim, caso exista alguma impureza grosseira no meio dos grãos, ele sairá junto através das calhas que envolvem cada eclusa. Essas calhas são flexíveis, o que permite o arraste dessa impureza junto com a massa de grãos. Essa característica autolimpante não é encontrada nos dispositivos com bandejas planas, que devem ser limpas pelo operador. Se isso não for feito, a descida dos grãos fica prejudicada. (WEBER, 2005).

No descarregamento de grãos, uma importante inovação foi conectar a avaliação da umidade dos grãos na saída do secador e a consequente regulagem necessária. Um sistema de medição informatizado lê a umidade em diferentes seções transversais do secador e corrige o sistema de descarga, aumentando ou reduzindo sua velocidade, de modo a uniformizar a umidade dos grãos, sem a necessidade de constante ação do operador.

O sistema de descarga é composto por um funil de descarga, que direciona o grão após passar pelas bandejas para o transportador, que pode ser um transportador de corrente, um transportador de correia ou uma rosca transportadora. Alguns fabricantes proporcionam um revestimento nesse funil para a redução de ruído e desgaste.

5.2.2.4 Termometria e Malhas de Controle

A temperatura do secador é o principal parâmetro de operação na secagem, pois pode afetar tanto a velocidade de secagem quanto a qualidade dos grãos. A termometria na secagem consiste em verificar e possibilitar o controle da temperatura tanto do ar de secagem quanto dos
grãos em diferentes momentos do processo. Os termômetros analógicos foram os primeiros a serem utilizados, mas tinham o inconveniente da visualização caso estivessem em local muito alto. Embora estes ainda sejam usados, deram lugar a termômetros de visualização digital em um painel de controle. A leitura no painel de controle deve indicar a temperatura do ar na entrada do secador e a temperatura da massa de grãos em um ou mais pontos.

Inicialmente, os termômetros eram utilizados como indicadores que sinalizavam a necessidade de uma ação através de sinais sonoros ou visuais. Em um segundo momento, foi criado um intertravamento com o ventilador de circulação de ar, parando o mesmo em caso de necessidade. O posicionamento dos sensores no corpo do secador é de fundamental importância para a detecção de pontos mais frios, ocasionados por fluxo preferencial do ar quente em alguns pontos e falta de circulação em outros.

Visando aprimorar a operação, os secadores modernos possuem uma malha de controle que mede a temperatura dos grãos, ou a temperatura de entrada de ar, e a corrige, para mais ou para menos, abrindo ou fechando automaticamente um registro de entrada de ar ambiente localizado entre a fornalha e o secador. Como a alimentação das fornalhas ainda é predominantemente manual, esse controle fica altamente sujeito a erro humano, principalmente quando o combustível for pedaços de toras de lenha. Em algumas ocasiões, o operador da fornalha pode carregar mais lenha do que o necessário, aumentando, consequentemente, o volume de queima. Em outras ocasiões, pode alimentar menos, reduzindo a chama na fornalha, com redução da temperatura dos gases de combustão para o secador. Em algumas instalações de maior porte, com alimentação de casca de arroz como combustível, isso é possível através de válvulas rotativas moduladas pela malha de controle.

As malhas de controle mais modernas utilizam como parâmetro de operação as variáveis: umidade de entrada, umidade de saída e temperatura dos grãos. A partir das leituras proporcionadas por termopares e sensores de umidade, comandam os dispositivos de descarga (excêntrico de acionamento direto de bandejas planas ou côncavas, eclusas rotativas, sistema pneumático) de modo a proporcionar o tempo necessário de secagem para atingir a umidade final programada. No caso dos secadores intermitentes, essa malha de controle também determina o direcionamento da massa de grãos para o silo, através do comando do direcionador do elevador de canecas. Estudos comparativos entre secadores iguais apontam uma eficiência de até 35% a mais para os secadores controlados eletronicamente. (WEBER, 2005).

O controle de temperatura mais importante é o da massa dos grãos, pois um aquecimento excessivo pode levar à geração de trincas no grão. No caso do arroz, evita-se ultrapassar a temperatura de 42°C na massa de grãos. Para a soja, esta temperatura é de 45°C para a
agroindústria e 38°C para a secagem de sementes. Com essa informação é possível determinar a temperatura de saída do ar quente da fornalha. Essa temperatura vai depender de cada instalação. Nas instalações onde a fornalha estiver muito afastada do secador, deve haver uma compensação para a perda de calor durante o deslocamento de ar quente. Para fornalhas mais próximas, essa diferença será menor.

A umidade é outro parâmetro de fundamental interesse na secagem. Inicialmente, a umidade era, e em algumas instalações ainda é, medida através da coleta manual de uma amostra na saída do secador, sendo este o indicativo de que a secagem chegara ao fim para a batelada, caso o sistema fosse intermitente. A instalação de um monitoramento contínuo através de sensores permite um monitoramento mais efetivo e reduz a mão-de-obra, inclusive evitando a retirada de amostras de locais perigosos, como proximidade de eclusas e outros equipamentos em movimento. O monitoramento em tempo real da umidade permite saber exatamente o momento em que o grão pode ser desviado do secador para o silo de armazenamento.

A medição de umidade dos grãos pode ser feita por métodos diretos ou por métodos indiretos. Os métodos diretos utilizam estufas e baseiam-se na diferença de massa da amostra após a evaporação de água. Embora mais preciso, é um método que depende muito da operação. Os métodos indiretos são os que utilizam equipamentos específicos, que podem diferenciar-se em elétricos, que indicam o grau de umidade pela maior ou menor facilidade com que a corrente elétrica atravessa a massa de grãos, ou dielétricos, que utilizam a propriedade da capacitância elétrica. (ELIAS; OLIVEIRA; VANIER, 2017).

O monitoramento da temperatura e da umidade em diferentes pontos permite a visualização em um painel de controle na sala de operação, o que diminui a movimentação dos operadores. Tanto o controle de umidade quanto o de temperatura permitem o registro histórico através de um coletor de dados gerando tabelas e gráficos que servirão posteriormente para um possível rastreamento do produto em caso de necessidade.

O monitoramento eletrônico da secagem também inclui a medição do nível de produto na torre de secagem. Como visto anteriormente, um secador operando sem estar com a torre cheia está tendo perda de energia devido ao escape de ar quente pela parte superior, onde os dutos não estão cobertos pelos grãos. Esta malha de controle pode atuar sobre o sistema de descarga, permitindo a restrição de fluxo de saída dos grãos e, consequentemente, aumentando o nível de produto no secador. Um maior tempo de residência pode ocasionar uma secagem excessiva dos grãos, mas como o sistema de medição de umidade também estará atuante, haverá a compensação com uma redução da temperatura de secagem.
5.2.2.5 Fornalhas e Combustíveis

O ar que passa através do secador é aquecido através da queima de um combustível em uma fornalha. A secagem de grãos pode ocorrer por fogo direto ou por fogo indireto. O primeiro caso predomina no Rio Grande do Sul, e consiste na passagem direta dos gases de combustão da fornalha através da massa de grãos no secador. No segundo caso, os gases de combustão irão aquecer uma tubulação por dentro da qual passará o ar ambiente a ser aquecido. Esse segundo sistema é usado na secagem de grão de café, quando não se deseja odor de fumaça no produto. O sistema por fogo indireto foi tentado nos anos 1990 pelo próprio pesquisador para a secagem de arroz, pois se desejava um produto com menor aroma de fumaça na produção de arroz parboilizado. Uma outra vantagem é que o sistema indireto reduz o risco de fagulhas serem carregadas para dentro do secador. Esse sistema, no entanto, apresenta a desvantagem de perdas térmicas, além da necessidade da instalação de um trocador de calor na fornalha. O sistema de fogo direto, por isso, acabou predominando no Estado.

A ligação da fornalha ao secador ocorre de diferentes formas e depende bastante da disposição física dos equipamentos nas instalações. O ideal é que a fornalha esteja perto do secador, evitando perdas por irradiação para a atmosfera. Isso, no entanto, requer um espaço aberto suficiente para a movimentação do combustível, muitas vezes lenha. A ligação entre a fornalha e o secador pode ser através de uma tubulação metálica, suspensa ou ao nível do solo, ou mesmo por um túnel subterrâneo até perto do secador, quando então se servirá de um difusor metálico para a alimentação do mesmo.

O que geralmente é encontrado, independente do sistema de condução do ar quente, é a presença de uma entrada de ar ambiente, entre a fornalha e o secador, como recurso para o resfriamento do ar quando necessário. O controle de abertura ou fechamento dessa entrada é função da temperatura no secador e pode ser feita manualmente ou estar interleigada a uma malha de controle.

As fornalhas são dimensionadas para trabalhar com determinados combustíveis e para gerar determinada taxa de calorias/ quilograma. Existem diferentes tipos de fornalha. Uma fornalha bastante comum possui uma estrutura externa de alvenaria e tijolos refratários em seu interior. Outras possuem o seu exterior metálico, mas não prescindem dos refratários internos. Independentemente da fornalha, deve possuir uma entrada para o combustível, como uma porta para a colocação de lenha, e uma entrada de ar primário para promover a combustão e a retirada de cinzas no caso de combustíveis sólidos. As fornalhas devem ter um redemunhador externo
ou canal com labirinto para apagar as fagulhas carregadas pelos gases de combustão. No caso de queima de lenha, é necessária uma grelha horizontal ou inclinada.

As fornalhas podem utilizar combustível sólido, líquido ou gásoso. A sua escolha muitas vezes é determinada pelo preço do combustível na conjuntura do momento. No primeiro grupo estão a lenha e a casca de arroz. No segundo grupo estão os óleos BPF (Baixo Ponto de Fluídez), APF (Alto Ponto de Fluídez), *fuel-oil* e óleo diesel. No terceiro grupo estão o GLP (gás liquefeito de petróleo) e gás natural (GN). Alternativas como óleo e Gás Liquefeito de Petróleo (GLP) são menos usados, assim como gás natural, que depende de linhas de distribuição. A utilização de um ou outro combustível depende de seu custo. A utilização de *fuel-oil* requer um pré-aquecimento do combustível para reduzir sua viscosidade, facilitando seu uso e reduzindo a fumaça preta.

As fornalhas podem ser verticais ou horizontais. As fornalhas verticais operavam com secadores de menor porte, enquanto as horizontais são para secadores para mais de 40 t/h. Ambas são munidas de uma bomba de alta pressão e de um vaporizador, além dos necessários tanques de armazenamento e filtros. O fluxo de combustível é regulado de acordo com a temperatura desejada dos gases de combustão e da massa dos grãos.

Os combustíveis gásosos (GLP e GN) são muitos práticos de utilizar, utilizam fornalhas simples e econômicas, apresentam um melhor controle de temperatura do que a lenha, é mais fácil de limpar o sistema, possibilita uma automação, seu manuseio é simplificado e utilizam menos mão-de-obra. Mesmo com amplas vantagens sobre os combustíveis sólidos, o preço ainda desencoraja seu uso. O gás natural apresenta um custo menor, mas como seu poder calórico é menor do que o GLP, necessita uma vazão maior para liberar a mesma energia. Por isso, sua utilização é restrita à proximidade de linhas de abastecimento contínuo.

Nas regiões com grande produção e beneficiamento de arroz, a casca deste cereal, antes descartada nos campos, passou a ser usada no lugar da lenha, representando uma boa economia para aqueles que não dispunham de fontes baratas de lenha. O poder calórico da casca de arroz é de 3300 kcal/kg. Sua utilização requer um sistema de armazenamento, dosagem e queima que a lenha muitas vezes não exige. As vantagens econômicas acabaram tornando a casca de arroz um combustível desejado e mais utilizado. Como a casca de arroz tem um manuseio difícil e ocupa um grande espaço devido à sua baixa massa específica (117-128 kg/m³), foram desenvolvidas alternativas, como o briquete de casca. Os briquetes são compostos por cascas compactadas em formato cilíndrico ou retangular e apresentam três vantagens principais: menor ocupação de volume, aumento do poder calorífico (até 4000 kcal/kg) e melhor manuseio, com a possibilidade de automatização da alimentação na fornalha.
Para a queima de combustível sólido, como os briquetes de casca de arroz e de lenha, o sistema de alimentação e a grelha assumem elevada importância. Os combustíveis sólidos devem estar espalhados o melhor possível sobre a grelha e fundido para que sua queima seja uniforme. Por esta razão, as fornalhas de grande porte podem possuir mais de uma porta frontal de alimentação e até mesmo portas laterais, se necessário. A grelha deve ter um espaçamento tal que permita a queima sobre ela e deixe passar as cinzas. O ar de combustão primário entra por uma abertura inferior à grelha e permite a combustão sobre ela. A entrada de ar deve estar aberta de tal forma que não restrinja a entrada de ar de modo a resultar em uma combustão incompleta e formação de fumaça, que será aspirada para dentro do secador.

A utilização de casca de arroz requereu algumas inovações nas fornalhas. Inicialmente a própria alimentação na fornalha teve que ser transformada, pois a utilização de casca requer uma alimentação muito mais frequente, para não dizer contínua, do que a lenha. Para isso foram desenvolvidos sistemas como válvulas rotativas ou roscas transportadoras que mantêm uma alimentação contínua sobre a grelha. Na queima da casca de arroz, se usada de forma solta, sem briquete, a grelha deverá ser inclinada. Se usada na forma de briquete, como lenha, a grelha será horizontal.

A operação com a casca de arroz, no entanto, requereu outra inovação devido à grande formação de cinza. Enquanto a queima de lenha gera uma quantidade de cinza que pode ser removida manualmente, com uma frequência menor, a casca de arroz gera muita cinza e deve ser constantemente removida para evitar arraste para dentro da fornalha. Por isso, foi desenvolvida uma grelha móvel que recebe a casca, promove sua queima e conduz até um ponto de descarga, onde normalmente um redler a retira da câmara de combustão até algum depósito. A utilização da cinza da casca de arroz tem sido objeto de vários estudos, como Incorporação no solo para a correção de pH do solo e incorporação em materiais de construção. (GURSEL; MARYMAN; OSTERTAG, 2016; PADHII et al., 2018; MEDINA et al., 2018, CHABANNES et al., 2017).

De forma a proporcionar uma maior flexibilidade ao produtor, foram desenvolvidas fornalhas que podem queimar tanto casca de arroz quanto lenha. Esta fornalha apresenta duas grelhas. A primeira inclinada, usada para casca. A segunda plana, para lenha.

5.2.2.6 Inovações nos Equipamentos de Secagem

Aalisando o desenvolvimento tecnológico dos secadores, as seguintes inovações tecnológicas foram realizadas:
• Aumento da capacidade de secagem;
• Melhor circulação de ar no secador, proporcionando uma secagem mais uniforme e mais rápida;
• Utilização de malhas de controle para um melhor controle de temperatura do ar e da massa de grãos, efetuando correção da temperatura de secagem e evitando oscilações (choques térmicos), que podem causar tensões e quebras nos grãos;
• Controle de descarga, com regulagem de velocidade e amplitude, fazendo parte da malha de controle;
• Alternativas para diferentes combustíveis na fornalha;
• Controle de temperatura de secagem, com uma interface entre secador e fornalha através de uma malha de controle;
• Recirculação de ar quente para reduzir consumo de energia;
• Automação no quadro de comando, reduzindo a interferência do operador para fazer correções;
• Melhor sistema de captação de finos, evitando particulados na exaustão;
• Segurança dos acessos.

5.2.3 Equipamentos de Armazenagem de Grãos

A armazenagem de alimentos sempre foi uma necessidade do ser humano. A necessidade da armazenagem de grãos nasce da contraposição entre o volume pontual de produção das safras e o consumo, que tende a ser distribuído ao longo do tempo. No cenário de produção agrícola, a armazenagem abre a possibilidade de uma maior flexibilidade para o produtor comercializar seu grão. (WIMBERLY, 1983; ELIAS; OLIVEIRA; VANIER, 2017; BAILEY, 1992). A partir dos anos 1960/1970, há uma evolução da concepção em um foco único de armazenamento para uma lógica de preservação dos grãos. A maior disponibilidade de tecnologia fez com que a função de armazenagem fosse cada vez mais complementada com sucesso pela função de conservação dos grãos. As perdas econômicas determinadas pela deterioração dos grãos criaram um mercado avido por este tipo de inovações. Ao mesmo tempo, uma legislação mais rigorosa fez com que o controle termométrico dos grãos se tornasse um requisito necessário para certificações.

Com o passar do tempo, uma série de diferentes formas de armazenagem foram desenvolvidas. Anteriormente, havia o predomínio de armazenagem em sacarias, ou
armazenagem convencional. A utilização de sacaria proporciona flexibilidade, versatilidade para estocar diferentes produtos sob o mesmo teto, mas é intensiva em trabalho, lenta, apresenta o custo de embalagens e envolve um controle mais difícil de roedores, insetos e pássaros. A relação tonelada/m³ na armazenagem por sacaria apresenta desvantagem em relação à armazenagem a granel, pois mais espaço será necessário para armazenar a mesma quantidade de grãos devido ao espaço necessário para circulação entre os paletes. A armazenagem convencional pode ocorrer em paíóis, galpões ou celeiros e armazéns convencionais. São unidades não herméticas, onde a circulação de ar ocorre por convecção natural do ar ambiente não aquecido. Quando armazenado em sacaria, os grãos necessitam conter 1% menos de umidade do que a recomendada para silos acrados. (ELIAS, OLIVEIRA, VANIER 2017).

A opção à armazenagem convencional é o armazenamento sem as embalagens, ou a granel. A armazenagem a granel pode ocorrer em armazéns granelizados ou em silos. A armazenagem a granel não é tão flexível e não se pode armazenar diferentes produtos em um mesmo local. Por outro lado, exige menos trabalho, é mais rápida, exige menos controle sobre insetos e outros animais (para silos metálicos), e envolve maiores investimentos iniciais para aquisição de equipamentos de movimentação e do próprio silo. A armazenagem a granel é realizada em ambientes semi-herméticos. Pode ser realizada ou não a circulação forçada de ar, com este ar podendo ou não ser aquecido. (BAILEY, 1992).

Existem várias diferenças entre a armazenagem a granel em armazéns e em silos. Nos silos predomina a dimensão vertical. Nos armazéns graneleiros predomina a horizontal. Por isso, há altas pressões estáticas nos silos e uma maior dificuldade para sistemas de aeração nos segundos. (ELIAS, OLIVEIRA, VANIER 2017). Arroz e soja por apresentarem diferentes ângulos de repouso e massa específica, exercem diferentes pressões nas paredes dos silos. Isto deve ser levado em consideração no projeto dos silos e no enchimento dos mesmos caso sejam usados para ambos os tipos de grão.

Os armazéns granelizados são construções externamente semelhantes aos armazéns de sacaria, mas com equipamentos complementares que possibilitam a carga e descarga a granel e a conservação dos grãos por termometria e aeração. A resistência das paredes deve ser bem calculada, pois sofrem a pressão dos grãos armazenados quando a parede serve como contenção. O sistema de aeração ocorre através de canais no piso do armazém, devidamente protegidos para que através deles não escorram os grãos, nem que ceda ao seu peso. Ventiladores externos insuflam ar através desses canais para a massa dos grãos. O sistema de termometria é através de pêndulos fixos no teto cujos sensores estão localizados a diferentes alturas do cabo para uma tomada transversal em diferentes pontos da temperatura da pilha de
grãos. O carregamento do armazém graneleiro ocorre por sua parte superior, através de um elevador de caçambas podendo estar acompanhado de uma correia ou outro transportador horizontal para uma melhor distribuição dos grãos ao longo de toda área útil. Sendo o fundo plano, o descarregamento ocorre por canais abaixo do piso, onde os grãos caem por gravidade.

Devido à extensão do armazém, e como esses canais não se localizam por toda a extensão do piso, deve ser feito um arraste com tratores. Uma opção é que estes armazéns graneleiros tenham um fundo em “V”, ao invés de fundo plano, apresentando a vantagem de proporcionar uma descarga mais rápida por aproveitar a força da gravidade. O sistema de descarga (correia) encontra-se no vértice do “V”. Como o armazém com fundo em “V” penetra alguns metros no solo, a existência de lençóis freáticos pode ser um limitante à sua utilização. Toda umidade presente no piso dos armazéns graneleiros, seja plano, seja inclinado, será prejudicial à conservação dos grãos.

À medida em que os silos metálicos foram sendo desenvolvidos, apresentaram variações quanto à dimensão principal de armazenamento, tipo de fundo, material de construção, capacidade de armazenamento, sistema de descarga e acessórios para a preservação dos grãos, como termometria e aeração. Todas estas modificações tiveram os seguintes propósitos: i-) aumentar capacidade de armazenamento; ii-) preservar a qualidade do grão; iii-) melhorar a carga e a descarga.

Uma primeira divisão dos silos é quanto à sua principal dimensão. Os silos verticais possuem a altura maior do que a dimensão da base, enquanto que os silos horizontais têm uma
altura menor do que seu comprimento. Uma outra distinção é quanto ao fundo, que pode ser plano ou côncico. Nos silos com fundo plano, o sistema de descarregamento está abaixo do nível do solo e, normalmente, são de maior capacidade e com paredes cilíndricas. Os silos de fundo côncico, normalmente de menor capacidade do que os anteriores, são elevados em uma estrutura metálica e seu descarregamento ocorre por uma estrela, rosca ou redler. Cabe destacar que existem de silos cujo fundo côncico fica localizado abaixo do nível do solo, dando a impressão de ser de fundo plano. Os silos de fundo côncico dispensam o uso das rosas varredora e extratora, e permitem descarga total por gravidade em alta velocidade. O Quadro 3 apresenta uma classificação de silos de acordo com Weber (2005).

<table>
<thead>
<tr>
<th>Critério</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relativos à sua principal dimensão</td>
<td>Silos verticais</td>
</tr>
<tr>
<td></td>
<td>Silos horizontais</td>
</tr>
<tr>
<td>Quanto ao projeto e edificação</td>
<td>Silos de tela</td>
</tr>
<tr>
<td></td>
<td>Silos tipo paíol</td>
</tr>
<tr>
<td></td>
<td>Silos tipo bolsa</td>
</tr>
<tr>
<td></td>
<td>Armazéns granelizados</td>
</tr>
<tr>
<td></td>
<td>Silos granelêiros (com vários tipo de fundo)</td>
</tr>
<tr>
<td></td>
<td>Silos metálicos</td>
</tr>
<tr>
<td></td>
<td>Silos de concreto</td>
</tr>
<tr>
<td>Quanto ao sistema de aeração</td>
<td>Aeração de manutenção</td>
</tr>
<tr>
<td></td>
<td>Aeração de resfriamento</td>
</tr>
<tr>
<td></td>
<td>Aeração de secagem</td>
</tr>
<tr>
<td>Quanto à aplicação</td>
<td>Silo armazenador</td>
</tr>
<tr>
<td></td>
<td>Silo secador</td>
</tr>
<tr>
<td></td>
<td>Silo de espera/pulmão</td>
</tr>
<tr>
<td></td>
<td>Silo de expedição</td>
</tr>
</tbody>
</table>

Os silos secadores combinam duas funções: i-) armazenar o grão; ii-) manter sua umidade baixa. O princípio de secagem é através de ar quente, mas de uma forma diferente, já que, nos silos, o grão está estático, e não em movimento como nos secadores. A opção pela utilização de silos secadores provém de duas razões: i-) manter a integridade do grão em períodos longos, o que é recomendável quando se visa atingir melhores condições de negociação de preço; ii-) reduzir o tempo de secagem nos secadores, com estes, inicialmente, retirando a maior parte da umidade de forma rápida para, na sequência, enviá-los para os silos que a reduzirão de uma forma mais lenta até um nível seguro.
Os silos metálicos são compostos por chapas galvanizadas onduladas aparrasadas entre si. Como reforço de sustentação, os silos apresentam montantes dobrados de chapa galvanizada, posicionados verticalmente para melhor estruturar o silo. Inicialmente, estes montantes eram colocados internamente, mas, por motivo de limpeza e higiene, eles passaram a ser colocados externamente. Na medida em que o custo por tonelada armazenada cresce muito quanto menor for o silo, há a tendência de construir silos maiores do que de pequenas dimensões. (BAILEY, 1992).

Os silos apresentam diferentes capacidades. A escolha de seu tamanho depende da operação do produtor e do beneficiador. O silo com mais capacidade apresenta a vantagem de um menor custo por tonelada armazenada, mas impede uma segregação de grãos, se necessário, como grãos com umidade diferentes ou diferentes variedades. Os silos de maior capacidade possuem fundo plano e são a melhor opção para armazenagens de longo período.

Em algumas instalações é comum, junto à moagem de recebimento, a existência de silos elevados e fundo côncico, com uma capacidade menor (cerca de 1300 toneladas) e para uma armazenagem mais curta. A inclinação do fundo geralmente é entre 45° e 60°. Esses silos podem ser equipados com sistema de aeração caso a umidade do grão seja elevada. A segregação dos grãos permite a racionalização dos processos posteriores, como a secagem, destinando as cargas com umidade de entrada uniforme ao secador, gerando ganhos de tempo e rendimento de secagem. Os silos elevados são utilizados em conjunto com secadores para a regulagem do fluxo no processo. Como forma de armazenagem temporária há silos menores, chamados de tulhas de expedição. Esses equipamentos, que podem ter seção quadrada, possuem um funil de descarregamento com um registro mecânico (manual) ou pneumático e são utilizados para o carregamento de vagões ou caminhões.

5.2.3.1 Aspectos Construtivos

Quase todos os silos metálicos são feitos com chapa galvanizada, ondulada, calandrada e parafusada formando anéis no cilindro armazenador. (WEBER, 2005). Os silos de fundo plano possibilitam ampliações verticais através do aumento do número de anéis no corpo, otimizando o espaço físico das instalações. Outro importante aspecto construtivo dos silos é o número de montantes por chapa lateral que, por conferir maior segurança estrutural, agiliza o recebimento e expedição através do aumento do fluxo de carga e descarga. No aspecto de segurança, os silos metálicos apresentam os anéis de vento, estruturas projetadas para garantir ao silo uma resistência à flambagem quando há ocorrência de rajadas de vento com velocidades de até 144
km/h e duração de 3 segundos, considerando uma altura de 10 metros em relação ao solo. (WEBER, 2019).

Alguns fabricantes passaram a investir em diferentes materiais que conferem maior durabilidade ao silo, principalmente contra a corrosão. Em um caso, o fabricante utiliza no telhado uma chapa que possui maior refletividade térmica, resultando em uma melhor eficiência térmica de armazenagem. A vida útil dessas chapas é de duas a quatro vezes maior do que a de uma chapa galvanizada. As chapas laterais recobertas com uma camada de zinco (450g/m²) confere uma maior vida útil ao equipamento. Os fixadores das chapas de aço são tratados pelo processo de bicromatização, evitando danos por corrosão. Além disso, possuem dupla vedação e são posicionados de dentro para fora, ao contrário de antes, cuja maior parte do fixador ficava para dentro do silo. Isso evita o acúmulo de produto nos fixadores na parede interna do silo.

A vedação entre as chapas do silo é outro ponto importante que passou a ser mais desenvolvido. Se a vedação entre as chapas não for boa, há o risco de infiltração de água, perda do ar insuflado por aeração e perda da substância usada para fumigação, caso seja necessária.

Os aspectos de segurança do silo envolvem a necessária inspeção por parte dos operadores. Os silos aperfeiçoaram esses acessórios devido à legislação específica, ou mesmo acima das exigências legais. Os fabricantes proporcionam escadas marinheiro com guardacorpo e plataforma de descanso, escadas do telhado com corrimão e plataforma com guardacorpo no telhado onde ocorre o carregamento dos grãos no silo. Essa entrada complementa portas laterais, com a finalidade de permitir o acesso ao interior para manutenção e limpeza. A escada caracol é disponível e utilizada para silos de grande porte, sendo uma alternativa à escada marinheiro.

5.2.3.2 Carregamento dos Silos e Armazéns

O carregamento do silo consiste em armazenar o grão proveniente do secador ou de um outro ponto de recebimento, como uma moega de recepção de caminhões ou vagões, através da alimentação pela sua parte superior. O ângulo de talude, ou ângulo de repouso, é uma importante propriedade a ser considerada no armazenamento. Ele pode ser definido como o ângulo formado quando o grão a granel é descarregado em uma superfície horizontal, como o solo, ou quando ele é carregado dentro de um silo, formando um ângulo entre o cone central e as paredes laterais do silo. Em ambos os casos ele é diretamente proporcional ao atrito entre os grãos e inversamente proporcional à capacidade de escorrimeto. Embora esse ângulo varie para cada cereal e para seu teor de umidade, ele aproxima-se de 27°. Grãos mais úmidos ou
contendo mais impurezas apresentam um ângulo de talude maior do que o mesmo grãos seco e limpo. (BAILEY, 1992).

A capacidade de carga em um silo é inversamente proporcional ao ângulo de talude, na medida em que quanto maior for o ângulo, maior será a inclinação do cone de grãos e menor o volume útil ocupado. A pressão da carga depende desse ângulo: se o ângulo de talude for grande, predomina a componente vertical das tensões e a pressão será maior sobre o piso do silo. Se o ângulo de talude for pequeno, predomina a componente horizontal das tensões e a pressão será maior nas paredes. Arroz e soja apresentam diferentes ângulos de talude. Para o arroz, o ângulo é maior devido ao atrito proporcionado pela casca. Logo, o cone interno nos silos será mais inclinado. Para a soja, este ângulo é menor, o cone será menor e as pressões laterais serão maiores, o que exige paredes mais espessas para o seu armazenamento. (ELIAS; OLIVEIRA; VANIER, 2017).

Os silos são, normalmente, carregados por um sistema na parte superior central. Dessa forma, à medida que caem, os grãos formam um cone devido ao seu ângulo de talude. Se não houver algum dispositivo que espalhe os grãos, o topo do cone vai alcançar o ponto de entrada e boa parte do espaço dentro do silo não será aproveitado. (BAILEY, 1992). Sistemas de alimentação baseados em espalhadores foram desenvolvidos para evitar isso. Um carregamento com distribuição adequada evita a concentração de finos ou impurezas em um ponto do silo. O distribuidor reduz a altura do cone devido ao ângulo do talude, tornando a superfície a mais horizontal possível, o que auxilia em uma aerização mais equilibrada.

Um distribuidor utilizado é o espalhador de disco, que consiste em um disco motorizado com aletas que, girando a uma velocidade adequada espalha o produto pela área circular do silo. Outro sistema encontrado é o de calha autopropelida, sem o uso do motor. Nesse sistema, a calha tem três canais de diferentes comprimentos para espalhar os grãos em diferentes raios. O sistema é autopropelido porque se move devido à pressão dos grãos junto às curvas nas extremidades dos condutos das calhas. (WEBER, 2005). A Figura 26 mostra um sistema autopropelido com três dutos de distribuição.
Figura 26 – Distribuidor autopropelido de grãos

![Figura 26](image)

Fonte: Termogrãos (2019).

A Figura 27 mostra um sistema distribuidor de grãos em um silo graneleiro, em que fica bem ressaltada a formação preferencial da pilha de grãos.

Figura 27 – Distribuidor de grãos em um silo graneleiro

![Figura 27](image)

Fonte: Termogrãos (2019).

Os grãos tendem a se separar em componentes leves e pesados quando carregados em um silo. (BAILEY, 1992). No momento da queda, a fração mais pesada cai em linha reta e mais rapidamente, enquanto que a fração leve se espalha mais pela área do silo. Para evitar efeitos dessa segregação, deve ser providenciado algum sistema de uniformização da carga (roscas mescladoras, transilagem, intra-silagem), o que será visto mais adiante. O carregamento dos silos vazios com grãos pode provocar quebra dos primeiros grãos descarregados devido ao impacto com o piso. Essa quebra pode ser atenuada com a colocação de dispositivos de redução de velocidade na saída do elevador de carga. Um outro modo utilizado pelos produtores é o de
ligar o ventilador de aeração no sentido de insuflação quando os primeiros grãos estiverem caindo. Se isso não for feito, haverá uma concentração de grãos quebrados na parte inferior do silo.

O carregamento excessivo e sem controle do silo pode resultar na saída de grãos pelo beiral, como é chamado o espaço entre a parede do silo e o teto. Para evitar isso, os silos passaram a apresentar um controle de nível de haste ou membrana no último anel que, quando tocado, emite um sinal para o operador ou para o sistema de carregamento, caso seja automatizado. Seu funcionamento baseia-se na vibração da haste metálica por um cristal piezoelétrico colocado em seu interior, sendo acionado quando o produto toca a haste.

Além de indicar quando o nível do silo está cheio, foram desenvolvidos medidores de nível, para que o produtor tenha uma ideia de quantas toneladas há dentro do silo. Essa informação é obtida através de transdutores, um dispositivo que converte uma informação de algum fenômeno físico captada por um sensor em um sinal detectável que pode ser elétrico, mecânico, ótico, entre outros.

Como a superfície dos grãos dentro do silo é irregular e muda constantemente, mesmo utilizando os distribuidores, a localização correta dos transdutores de medição de nível e sondas montadas no topo dos silos levará a uma maior precisão e confiabilidade na medição do conteúdo do produto. Normalmente, os transdutores são instalados no topo do silo e medem a distância até a superfície do material. Esta distância medida pode então ser convertida no volume do material. As tecnologias utilizadas para este fim incluem radar (scanners de sólidos 3D), laser, ultrassom e TDR (Time Domain Reflectometry).

Esses medidores não possuem qualquer parte mecânica em contato com os grãos. O funcionamento dos medidores de ultrassom é baseado na emissão de pulsos de ultrassom por um sensor instalado no tanque/silo que são refletidos pelo material que está sendo monitorado. (FOCKING, 2019). Os medidores que utilizam a tecnologia de radar/ scanner 3D são baseados na tecnologia acústica phased-array, e possuem três antenas que geram uma mistura de sinais acústicos e recebem múltiplos sinais de eco do conteúdo de um silo. A análise digital desses sinais ecoados produz vários pontos de medição para obter medições contínuas precisas em termos de nível e volume.

5.2.3.3 Descarga dos Silos e Armazéns

O descarregamento de silos e armazéns graneleiros ocorre por seu fundo. O silo não consegue descarregar a totalidade de seu conteúdo por gravidade, pois o sistema de descarga
normalmente localiza-se no centro do silo, sobrando os grãos na forma de um cone invertido como parte alta nas paredes do silo. Para proporcionar uma descarga completa, os silos podem apresentar uma rosca varredora, que movimenta os grãos que não saíram por gravidade, arrastando-os da periferia para o centro, movimentando-se ao longo de toda a base circular do silo, fazendo um trajeto de 360°. (WEBER, 2019).

Além da obrigatória descarga central, os silos podem ter saídas secundárias excêntricas, no piso, para remover o produto que fica no cone invertido. A descarga excêntrica deve ocorrer somente após finalizada a descarga central. A descarga lateral dos silos é uma opção. Nesse caso, há um ou dois dutos conectados ao corpo do secador. Caso sejam dois dutos, devem estar instalados de forma diametralmente oposta (a 180° uma da outra). Caso o silo possua somente um duto, há o risco do tombamento ou sanfonamento do silo no momento da descarga. Isto porque um dos lados terá mais grãos apoiados na parede (oposto ao duto) e, consequentemente, uma pressão maior. Os silos que utilizam esse sistema de descarga têm um dispositivo chamado tubo antinâmico que evita uma diferença muito grande da altura lateral nas paredes com grão. A descarga lateral não é feita para descarregar todo o volume do silo, pois o duto de descarga fica a uma certa altura da base. O resto dos grãos deve ser desencarregado por descarga central e excêntrica. Uma das vantagens da descarga lateral é que ela pode ser feita diretamente na carroceria do caminhão, não utilizando equipamentos de movimentação como roscas, esteiras e elevadores. (WEBER, 2005).

Uma vez que os grãos sejam removidos do silo, eles são transportados para outro lugar. A rosca extratora é responsável pela remoção dos grãos do silo e tem a função de transportar os grãos do silo para outro equipamento, normalmente um elevador de canecas para a descarga sobre um caminhão.

Os silos são providos de portas de acesso para a realização de inspeção e limpeza. Estas portas localizam-se nos anéis inferiores, mas não no mais inferior. Esta porta deve estar localizada acima do nível do cone invertido após o descarregamento total dos grãos por gravidade, do contrário, se a porta ficar mais abaixo, os grãos que restarem no silo não permitirão a abertura da mesma.

5.2.3.4 Sistemas de Aeração e Termometria

A aeração é o principal meio de preservação dos grãos armazenados, e consiste na circulação de ar ambiente por entre os grãos de forma a evitar o aumento de temperatura na massa dos mesmos. A termometria consiste no acompanhamento da temperatura dos grãos
através de sensores posicionados dentro do silo ou do armazém. Embora possam ser considerados e operados individualmente, nas últimas décadas os dois sistemas passaram a atuar de forma conjugada nas instalações mais modernas, através de uma malha de controle que aciona os ventiladores de acordo com a necessidade. A termometria passou a ser obrigatória através da Instrução Normativa 29/2011, que estabelece os controles e monitoramentos necessários de termometria e aeração nos silos e armazéns granleiros. (BRASIL, 2019).

Como principal forma de manutenção da qualidade dos grãos, os silos de armazenamento passaram contar com um sistema de aeração cuja eficiência foi evoluindo ao longo do tempo. Segundo Weber (2005), a aeração pode ser feita com o objetivo de manutenção da temperatura de um grão já seco, para complementar a secagem iniciada, mas não finalizada no secador, e para agir contra um aumento de temperatura dos grãos no silo. A aeração remove odores indesejáveis quando o grão estiver armazenado por muito tempo. Para qualquer uma dessas finalidades, o objetivo da aeração é resfriar o grão até uma temperatura baixa o suficiente para reduzir ou inibir a atividade de fungos e insetos, e estabelecer uma temperatura uniforme na massa de grãos prevenindo, desse modo, a migração de umidade. (BAILEY, 1992).

Segundo Elias, Oliveira e Vanier (2017, p. 84),

A aeração pode ser definida como a prática de se ventilar os grãos com fluxo de ar cientificamente dimensionado, para promover a redução e a uniformização da temperatura na massa de grãos armazenados, visando uma boa conservação, pela redução das atividades metabólicas dos próprios grãos e dos organismos associados.

A aeração remove o calor proveniente da respiração dos grãos e uniformiza a temperatura do sistema, evitando a formação de pontos quentes. A respiração aeróbia dos grãos produz dois fatores de autoaceleração: a água e o calor, que tendem a continuar aumentando uma vez iniciados. (ELIAS; OLIVEIRA; VANIER, 2019).

A aeração forçada nos silos evita a formação de pontos úmidos decorrentes da diferença entre as temperaturas interna e externa do silo. O ar parado é isolante, mas quando em movimento forma correntes e propaga o calor por convecção. O silo estando ao calor do sol, com temperatura externa superior à interna, cria correntes convectivas dentro dele. Os grãos mais próximos das paredes do silo se aquecem fazendo com que o ar diminua sua densidade e crie correntes ascendentes de ar junto à parede, resultando na formação de uma corrente convectiva descendente no centro do silo de ar mais frio. Nesse caso, a circulação convectiva de ar no silo propicia a condensação da umidade do ar, por ter sido atingido seu ponto de orvalho, na região central do terço inferior do silo. Se, ao contrário, a temperatura interna do silo for inferior à externa (em dias frios, por exemplo), o ar próximo à parede se esfria e forma
uma corrente convectiva descendente, provocando uma corrente convectiva ascendente do ar que está no centro do silo. Nesse caso, a ocorre a formação de uma região de condensação no topo da camada de grãos, já que a cobertura do silo está fria. (ELIAS; OLIVEIRA; VANIER, 2017).

Os ventiladores de aeração podem ser axiais ou radiais e são selecionados de forma a proporcionar o volume adequado de ar (m³/tonelada) operando contra uma pressão estática determinada pela altura do leito de grãos. A movimentação de ar nos silos pode ocorrer através de insuflamento (o ar é empurrado), por exaustão ou sucção (o ar é puxado), de baixo para cima, ou de cima para baixo. A insuflação e a sucção têm eficiências praticamente iguais, desde que sejam corretamente dimensionadas. A eficiência da aeração depende em grande parte da homogeneidade da distribuição do ar. (ELIAS; OLIVEIRA; VANIER, 2017).

É prejudicial para o produtor uma sobresssecagem dos grãos, pois estaria dessa forma vendendo um produto com menos umidade do que poderia. Por exemplo, se o grão estiver com 10% de umidade ao invés de 12%, esses 2% de matéria seca que poderiam ser de umidade representam perda em termos de tonelada vendida. Dessa forma, os grãos armazenados em silos devem ter uma variação de umidade em um momento preciso a menor possível. Com essa finalidade, foram desenvolvidos sistemas que tanto distribuem o ar insuflado da maneira mais uniforme possível em todo o volume do silo, como equipamentos que movimentem o grão dentro dos silos.

Para promover a distribuição de ar, foram desenvolvidos diferentes sistemas ao longo do tempo: i-) duto vertical central; ii-) duto no piso; iii-) fundo perfurado. Para silos com diâmetro menor, o sistema de duto vertical central pode ser usado. O ar dentro do silo sofre exaustão por um duto perfurado localizado verticalmente no centro do silo. Este tubo central apresenta perfurações menores do que os grãos ao longo de sua metade inferior. A parte superior do tubo não é perfurada para evitar que seja exaurido o ar que está sobre o leito de grãos. O exaustor localiza-se no topo do duto, no teto do silo. Em um outro sistema, dutos perfurados são colocados no piso, sendo o ar exaurido através de um exaustor no lado de fora, no chão. Quanto maior for o diâmetro do silo, mais tubos serão necessários para não deixar seções do silo sem circulação de ar.

Os silos com fundo perfurado são os mais utilizados atualmente. Esse sistema permite uma melhor distribuição de ar ao longo de toda a seção do silo. O fluxo de ar é predominantemente de baixo para cima, com um ventilador localizado no chão no lado externo do silo. Esse sistema de ar empurrado possibilita que o ar passe por aquecimento antes de entrar em contato com o grão. Mais de um ventilador pode ser usado caso a instalação requeira. A
perfuração do piso deve ter uma distribuição e dimensão tal que promova a aeração mais uniforme possível.

Para uma melhor uniformização da umidade nos silos secadores, estes passaram a vir munidos de rosca-similares. Estas rosca localizam-se verticalmente no silo e possuem seu sistema de acionamento em um suporte na parte superior do silo. À medida em que giram a baixa velocidade, revolvem o grão dentro do silo e evitam que o grão mais próximo do piso perfurado por onde entra o ar fique muito mais seco do que os grãos em camadas superiores. Segundo Weber (2005), também diminuem a pressão estática devido à compactação dos grãos, facilitando a entrada do ar.

Como na aeração há entrada de ar, este ar deve sair do silo depois de passar pelos grãos. Isso é possibilitado pelos respira e por um espaço entre o silo e o telhado. Os respira encontram-se no teto do silo, com uma curvatura adequada para evitar a entrada de água da chuva. Eles devem ser em quantidade suficiente e dimensionados de tal modo que não obstruam a vazão de ar que está sendo insuflada. Caso isso aconteça, há o risco de haver condensação na parte interna do teto do silo e gotejamento sobre os grãos. Outra forma de exaustão do ar é através de um espaçamento entre o corpo do silo e o teto do mesmo, ao longo de toda sua circunferência. Esse recurso complementa os respira e deve ser dimensionado de forma tal que impeça a entrada de água da chuva. Exaustores eolicos sem motor têm sido utilizados em alguns silos para complementar a saída de ar. Weber (2005) cita a adoção de um dispositivo multifunção, localizado no topo do silo, no duto de descarregamento do elevador de alimentação do silo. Este dispositivo, além do tradicional amortecedor para queda dos grãos conduzidos através do tubo, tem um respiro junto à descarga dos grãos, com a finalidade de evitar que o ar quente e úmido suba pelo tubo de descarga do elevador, condensando nas paredes do mesmo e gotejando sobre os grãos. Esse dispositivo apresenta um registro de chapa resistente ao desgaste na saída da tubulação de descarga, permanecendo fechado devido ao seu peso quando não houver descarga de grãos, e abrindo por meio do peso dos grãos quando há descarregamento. Dessa forma, o ar quente ascende vindo do silo não consegue subir pelo tubo e é obrigado a sair pelo respiro mencionado anteriormente.

Mesmo que a finalidade do silo não seja de aeração forçada, deve haver um sistema de exaustão para expulsar o ar aquecido durante a exposição ao sol, do contrário, esse ar, à noite, irá resfriar a condensar no teto do silo ou no graneleiro. A circulação de ar é proporcionada por exaustores axiais motorizados ou por exaustores eolicos sem motor que funcionam pelo efeito venturi. A finalidade de ambos é provocar a circulação de ar aquecido por ar ambiente com entrada de ar por pontos tais como o espaço entre o corpo do silo e o teto. Desse modo ocorre
o equilíbrio entre a temperatura externa e interna do silo ou graneleiro. Weber (2005) salienta que os exaustores eólicos proporcionam a iluminação natural para o silo, uma vez que sua parte superior pode ser feita em polímero branco translúcido. Nos armazéns graneleiros, o sistema de exaustores eólicos substituiu o dos lanternim, um sistema de abertura longitudinal sobre a cumeira dos armazéns.

Quando as condições atmosféricas não estiverem propícias, como uma alta umidade do ar fora do silo, o aquecimento do ar se torna crucial, pois, do contrário, a aeração estará levando umidade para o grão ao invés de retirá-la. A temperatura interfere inversamente na umidade relativa, pois quanto maior for a temperatura, menor será a umidade relativa do ar.

Há diferentes formas de aquecimento do ar. Todos utilizam alguma forma de fonte de energia para o seu aquecimento. Consequentemente, seu custo depende do tipo de fonte utilizada e do contexto econômico no momento. Na década de 1990, os sistemas de aquecimento que prevaleciam utilizavam resistência elétrica ou fornalha para queima de lenha e biomassa. Em menor quantidade havia os que utilizavam Gás Liquefeito de Petróleo (GLP). Com a instalação de mais linhas de distribuição de Gás Natural (GN), este passou a ser mais utilizado, embora dependa da existência das linhas nas proximidades.

A Figura 28 apresenta um ventilador de aeração munido de um queimador a GLP.

Figura 28 – Ventilador com queimador a GLP

![Ventilador com queimador a GLP](image)

Fonte: Termogrãos (2019).

O sistema de aeração pode fazer parte de uma malha de controle que inclui o sistema de termometria. Esse sistema é composto por cabos com diversos sensores que medem a temperatura da massa de grãos em diferentes pontos do silo para a identificação de pontos quentes em seu interior. Os sistemas de aeração e termometria podem ser integrados de modo
que uma alteração acima do limite da temperatura em determinada região do silo acione o sistema de aeração, não dependendo da leitura e ação por parte do operador.

O sistema de medição de temperatura em silos evoluiu da simples leitura da temperatura através de um termopar com indicador analógico para um complexo sistema de cabos termométricos localizados verticalmente nos silos e munidos de sensores em diferentes alturas de seu comprimento. Todo sensor de cada cabo em contato com o grão envia um sinal para um mostrador e registrador.

Existem diferentes tipos de sensores. Entre os que variam a tensão estão os termopares. Já entre os que variam a corrente estão os termistores. Os termistores baseiam-se no princípio da resistência elétrica variável com a temperatura e são imunes à corrosão e desgaste com o tempo, diferente dos termopares, que possuem vida útil de aproximadamente 5 anos. (GARTEN, 2019). A Figura 29 ilustra a distribuição dos cabos e sensores em um silo.

Figura 29 – Distribuição de sensores em um silo

![Distribuição de sensores em um silo](image)

Fonte: Focking (2019).

A malha de controle que comanda a operação dos ventiladores axiais ou radiais para a aeração é baseada em dados fornecidos pela termometria, mas envolve outros dados referentes aos aspectos ambientais externos que devem fazer parte da decisão de ligar ou não os ventiladores. Dependendo da temperatura e umidade externa os ventiladores não serão ligados, pois há o risco de levar umidade externa para dentro do silo. Caso o sistema esteja equipado com algum tipo de aquecimento do ar, este deverá ser acionado, o que a malha de controle fará automaticamente se a alimentação de combustível possibilitar. Os sistemas mais avançados apresentam um sistema modulador da chama do gás visando manter a temperatura do ar
aquecido por volta de 60°C. Sistemas de aquecimento manual, que dependem da alimentação de biomassa, necessitam da ação direta do operador.

Além da aeração, há outros modos de ventilar o grão armazenado através da transilagem e da intra-silagem. Na transilagem, o conteúdo de um silo é movimentado totalmente para um outro silo, fazendo com que os grãos passem através do ar em repouso. Na intra-silagem, o conteúdo de um silo é movimentado para o mesmo silo, através de um elevador que recolhe o grão no fundo do silo e o realimenta no topo do mesmo silo.

5.2.3.5 Inovações nos Equipamentos de Armazenagem

Uma síntese das inovações tecnológicas realizadas nos silos está apresentada a seguir:

- Silos com maior capacidade de armazenamento;
- Material de construção mais resistente das chapas dos silos;
- Vedação mais eficiente contra entrada de umidade entre as chapas dos silos;
- Ventiladores axiais ou radiais para proporcionar melhor aeração aos grãos;
- Utilização de ar aquecido na aeração para complementar a secagem dos grãos no silo;
- Sistemas de carregamento nos silos com espalhadores de grãos para um maior aproveitamento do espaço interior;
- Mecanismos internos de movimentação dos grãos para evitar pontos quentes e úmidos;
- Controle de nível para carregamento do silo, visando evitar sobrecarregamento;
- Sistema de medição da quantidade armazenada (ultrassom);
- Sistema de descarregamento do silo com rosca varredora, possibilitando um descarregamento mais uniforme;
- Melhor sistema de termometria, com uma medição em diferentes pontos do silo para uma efetiva localização de pontos de aquecimento;
- Transmissão digital dos dados visando possibilitar que o sistema de aeração seja operado à distância;
- Sistema de aeração e fundo perfurado para melhor preservação dos grãos;
- Sistema de aberturas no teto do silo para possibilitar circulação do ar.
5.2.4 Equipamentos para a Movimentação de grãos

Em um processo com várias etapas de limpeza, secagem e armazenagem, a movimentação de grãos entre os equipamentos assume elevada importância tanto em termos de capacidade quanto em termos de preservação da qualidade do que está sendo movimentado. Originalmente, predominava a movimentação manual dos grãos, através de sacos de ráfia ou outro material. O trabalho excessivo, a má preservação dos grãos, as perdas e uma crescente tecnologia disponível induziu a uma mecanização dessa operação com a movimentação dos grãos a granel.

Hoje em dia predominam diferentes tipos de transportadores, que podem ser classificados em três grupos de acordo com o sentido da movimentação: i-) transportadores verticais; ii-) transportadores horizontais; iii-) transportadores inclinados como uma variação do transportador vertical. Complementando a operação dos sistemas de movimentação, há os dispositivos de distribuição, como interligações e registros. Como a versatilidade foi um requisito cada vez mais exigido das unidades de beneficiamento de grãos, a possibilidade de várias alternativas de carregamento e descarregamento, de diferentes equipamentos para diferentes silos, os sistemas de interligação exigiram maior atenção em seu desenvolvimento tecnológico.

5.2.4.1 Transportadores Verticais

O principal representante desses equipamentos e de uso amplamente difundido entre as instalações de beneficiamento são os elevadores de canecas ou de caçambas.

5.2.4.1.1 Elevador de Canecas

Os transportadores verticais mais utilizados na indústria de grãos são os elevadores de canecas, também chamados de elevadores de caçambas. Os elevadores de canecas se constituem em um meio econômico de transporte vertical de material a granel. Eles são fabricados em vários tipos em função do produto a ser transportado. Esses elevadores podem ser centrífugos ou contínuos, com as canecas fixas em correias ou em correntes. A elevação por eles proporcionada pode ser de poucos metros até mais do que 50 metros de altura, e capacidade de até 400 t/h nos modelos em propriedades agrícolas. A nível industrial essa capacidade pode
chegar a 2000 t/h. (MILMAN, 2002). A Figura 30 mostra um típico elevador de canecas, sendo ressaltada a entrada do produto pela parte inferior e a saída pela parte superior.

Figura 30 – Elevador de canecas

Fonte: Fábrica do projeto (2019).

Os elevadores de canecas são compostos pelas seguintes partes:

1. Correia
2. Canecas
3. Tambor de acionamento
4. Tambor de retorno
5. Cabeça do elevador
6. Estrutural central
7. Pé do elevador
8. Janelas de inspeção
9. Unidade de acionamento
10. Esticador
11. Contra-recuo (freio)
12. Descarga
13. Alimentação
14. Porta de inspeção e limpeza

Na parte superior do elevador, chamada cabeça do elevador, está localizado o tambor de acionamento, juntamente com a unidade de acionamento, o contra-recuo e a calha de descarga. A unidade de acionamento está constituída de motor com base e redutor de velocidade, que pode ser ligado direto ao tambor de acionamento. O contra-recuo é um dispositivo de segurança ligado diretamente ao eixo do tambor de acionamento e tem livre movimentação no sentido de elevação. No caso de uma parada do elevador com as canecas carregadas, como por falta de energia, o contra-recuo trava, evitando o retorno da correia e consequente descarga do material no fundo do elevador. A descarga do elevador, sempre localizada no lado descendente, conduz os grãos via tubulação para um próximo dispositivo de transporte ou armazenamento. Nesse ponto se localizam os distribuidores, possibilitando
diversas alternativas de destino dos grãos. O desenho interno da cabeça do elevador deve ter um formato apropriado com dimensão adequada e contornos suaves. O essencial para uma correta descarga é o posicionamento da tubulação de saída em relação às canecas, para que a força centrífuga jogue com precisão os grãos na descarga. Na Figura 31 está representada a cabeça do elevador de canecas com o motor e a boca de descarga.

Figura 31 – Módulo superior do elevador de canecas

Fonte: Pagé (2019).

Na parte inferior do elevador, também chamado de pé do elevador, está localizado o tambor de retorno. O tambor de retorno não é motorizado, e deve ser aletado para que, no caso de utilização de correia, evite danos na mesma. Nessa parte está localizada a alimentação e o esticador. A alimentação é uma tubulação que tem como origem outro equipamento de movimentação ou mesmo uma abertura mais ampla para descarga manual de sacos. A entrada de produto pode ser feita por qualquer um dos lados do pé do elevador, garantindo versatilidade para o posicionamento do equipamento na instalação do produtor. De ambas as formas o produto ficará acumulado no fundo e será escavado e recolhido pelas canecas. O esticador possui a função de manter as tensões ideais para a movimentação dos materiais. Os esticadores mais comuns no mercado funcionam através de um parafuso acionado manualmente. Em elevadores mais altos e de maior capacidade, um dispositivo por gravidade (contra-peso) é utilizado, o que garante a adequada tensão todo o tempo. Como é usual o acúmulo de material no pé do elevador, este deve ser provido de portas de limpeza, fundamental para a remoção periódica de material acumulado e sob risco de putrefação. O pé do elevador pode ter dois modelos: com o módulo convencional e com o módulo autolimpante (Figuras 32 e 33).
A parte central do elevator, chamada de corpo do elevator, nada mais é do que uma seção por onde passa a correia ou correntes no movimento ascensional e no movimento descensional. O corpo é modulado. Os módulos têm comprimentos que dependem do fabricante, mas normalmente entre um e dois metros. Esses módulos são fabricados em aço 1010/1020 com espessura variável dependendo da altura do elevator. (MILMAN, 2002). Os módulos são flangeados em suas extremidades, sendo este um ponto fundamental para evitar a penetração de umidade no equipamento e no produto. Essa parte do elevator deve apresentar janelas de inspeção e manutenção. Tanto o corpo do elevator, quanto o pé e a cabeça são geralmente fabricados em chapas galvanizadas. Requisitos de diferentes materiais podem ser atendidos por alguns fabricantes.

Finalmente, os elementos que efetuam a movimentação dos grãos são as canecas e a correia/corrente. As correias/correntes devem resistir ao peso do material e à força centrífuga, sem se desprender. (MILMAN, 2002). As correias devem estar sempre tensionadas para evitar seu deslizamento. Já com as correntes, este problema é minimizado por elas estarem presas a uma polia dentada. O cálculo da espessura da correia é um importante fator para evitar rompimento durante o transporte, sendo função da altura do elevator e da carga, inclusive considerando o peso específico do material.

As canecas efetuam a movimentação dos grãos e são geralmente fabricadas em aço ou plástico de diferentes tipos. O material com o qual são construídas dependem do que movimentarão. Tem sido comum, devido ao desgaste, a utilização de canecas de polietileno de ultra alto peso molecular (UHMW – *ultra high molecular weight*). O UHMW é um polietileno de alta densidade com alto peso molecular e baixo peso específico (0,96g/cm3). Apresenta um
conjunto próprio de características, que o faz superior aos outros termoplásticos em termos de resistência à abrasão, resistência à fratura por impacto, resistência ao tenso fissuramento, inércia química, baixíssimo coeficiente de atrito, autolubrificação, absorção de ruidos e não absorção de água. É um material indicado para peças localizadas em ambiente abrasivo, mas que pode ser facilmente usinado, cortado, furado, fresado e torneado. Esse material pode ser aditivado com outras substâncias para aprimorar algumas características de acordo com sua aplicação. (PLASTECNO, 2020).

As canecas são caracterizadas pelas dimensões de profundidade, altura e projeção, o que inclui a altura de suas paredes e o rebaixo da parte frontal. Isso é fundamental para permitir um rápido enchimento e descarga das mesmas, e leva em consideração o ângulo de repouso do material que está sendo transportado. Outro cálculo para o rendimento do equipamento é a distância entre as canecas. Se estiverem muito afastadas, a capacidade do elevador é prejudicada. Se estiverem muito próximas, seu enchimento fica prejudicado. Desse modo, a capacidade de um elevador de canecas é função de: i-) tamanho das canecas; ii-) espaçamento entre elas; iii-) velocidade de rotação da correia/corrente. Para aumentar a capacidade, alguns fabricantes já fabricam equipamentos com mais correias ou correntes paralelas, aumentando a largura total do elevador - Figura 34.

Figura 34 – Canecas em paralelo

A velocidade da correia depende da velocidade dos tambores. A velocidade recomendada do tambor depende de seu diâmetro. Se a velocidade for baixa, os grãos não utilizarão a força centrífuga na descarga e cairão no pé do elevador. Se a velocidade for muito elevada, as canecas não encherão adequadamente e os grãos serão jogados com muita força no
momento da descarga, gerando quebras e espalhamento dos grãos pela cabeça do elevador. (WIMBERLY, 1983).

Os elevadores centrífugos podem ser fabricados com correntes ou com correias. Em ambos o caso o espaçamento entre as canecas varia entre 15 a 30 cm. (MILMAN, 2002). O elevador centrífugo de corrente é utilizado normalmente para materiais de escoamento fácil, não abrasivos, que podem ser escavados ao pé do elevador. A roda dentada de acionamento não permite deslizamento e garante o alinhamento das correntes e das canecas. O deslocamento das canecas é feito em velocidades elevadas, para garantir o descarregamento do material por ação da força centrífuga ao passar pela roda dentada da cabeceira. As canecas são fixas a uma corrente central ou a duas correntes laterais.

O elevador tipo centrífugo de correia é normalmente utilizado para materiais finos, secos e materiais de escoamento fácil que não tenham lascas ou pontas que possam danificar a correia. Uma vantagem do elevador centrífugo sobre o contínuo é que seu ponto de alimentação é consideravelmente mais baixo, o que diminui o tamanho do conjunto do pé e o custo do equipamento. Suas canecas são fixadas diretamente na correia por parafusos, com o espaçamento ideal para permitir o basculamento da caneca.

Os elevadores contínuos podem ter as canecas presas a corrente ou correia. Em ambos os tipos, as canecas não são projetadas para escavar o material e são normalmente carregados por uma calha, o que exige a elevação do seu ponto de alimentação. A descarga do material é feita por gravidade, o que exige que o conjunto da cabeceira seja maior do que os dos elevadores centrífugos e uma velocidade de rotação mais baixa. As canecas são pouco espaçadas entre si, e possuem fundo vazado, sendo que, de oito em oito, uma tem fundo, o que impossibilita altas velocidades de rotação, como nos elevadores centrífugos. (MILMAN, 2002). Esses elevadores têm a possibilidade de trabalhar em plano inclinado de 30º com a vertical. Sua inclinação e baixa velocidade lhe proporcionam excelente rendimento devido à facilidade de alimentação total das canecas, assim como descarga mais suave. Entre as canecas praticamente não existe espaçamento e o seu formato faz com que na descarga a caneca da frente sirva de calha de descarga para a caneca seguinte.

Os elevadores utilizados para a movimentação vertical de grãos são os elevadores centrífugos. Os elevadores centrífugos têm suas canecas mais espaçadas do que nos contínuos, e podem atingir velocidades de até 250 m/min. A descarga do material é feita pela ação da força centrífuga desenvolvida quando as canecas passam ao redor do tambor de acionamento, o que justifica a velocidade elevada. As canecas são carregadas quando de sua passagem pelo pé do elevador, escavando o material que ali se encontra depositado. A altura do elevador deve ser
determinada de tal forma que propicie um ângulo de caimento adequado para os grãos. Ângulos muito pequenos podem ocasionar obstruções na tubulação de descarga.

Os seguintes itens devem ser observados na seleção do elevador de canecas:

- Características do material transportado (abrasividade, corrosividade, higroscopia, tipo de escoamento, ângulo de repouso, grau de aderência, grau de fluidez, granulometria);
- Peso específico do material (kg/m³);
- Altura de elevação;
- Capacidade desejada (t/h);
- Condições de operação (características do ambiente).

Para grãos muito abrasivos, como o arroz, as peças que sofrem mais desgaste, como as canecas e a boca de descarga, devem ser de fácil substituição. O uso de um elevador impróprio ao material acarreta problemas tais como: (FABRICA DO PROJETO, 2019).

- Arrancamento das canecas;
- Carregamento inadequado;
- Descarregamento insuficiente;
- Degradação do material;
- Consumo excessivo de energia;
- Formação excessiva de poeira;
- Desgaste anormal das canecas, correias ou correntes.

5.2.4.1.2 Inovações dos Transportadores Verticais

As inovações incorporadas nos elevadores de canecas referem-se à sua capacidade de transporte, robustez, versatilidade, durabilidade, integridade do produto transportado, facilidade de instalação e manutenção. O seu princípio básico de funcionamento, assim como as partes que o compõem, não foram substancialmente alterados. As seguintes inovações foram encontradas com alguns fabricantes destes equipamentos (TMSA, Condor, Kepler Weber, Pagé, Horbach, Carlos Becker, Engegran):

- Polia do acionamento emborrachada para maior atrito e durabilidade;
- Canecas de polietileno de alta densidade, nylon ou poliuretano com composição antiestática e atóxica. As canecas são as partes do equipamento que mais sofrem desgaste com materiais abrasivos (como o arroz em casca);
• Utilização de correias em paralelo para dar maior capacidade ao elevador;
• Diferentes modelos de canecas, como as high-flow (vazadas);
• Aprimoramento da vedação do corpo do elevador, assim como do pé e da cabeça, com juntas soldadas de forma contínua, para evitar entrada de umidade;
• O pé do elevador construído com chapas resistentes ao desgaste, enriquecido com perfis;
• Moega de carga em aço SAE 1045 resistente ao desgaste;
• A polia no pé do elevador do tipo gaiola, autolimpante, que evita o esmagamento dos grãos entre correia e a polia;
• Vedação em borracha silicone das uniões parafusadas, evitando infiltrações de umidade e saída de pó;
• Baixo nível de ruído de funcionamento;
• Cabeça do elevador com cobertura dividida em duas peças basculantes removíveis, o que proporciona a facilidade de manutenção e alívio de pressão em caso de explosão de pó;
• Cabeça do elevador inteiramente fabricada em chapa de aço galvanizado com reforços em chapa SAE 1045 nos pontos de contato do grão;
• Facilidade de acesso ao interior do pé do elevador através de tampas removíveis dos dois lados.

5.2.4.2 Transportadores Horizontais

Os transportadores horizontais possibilitam o transporte do grão horizontalmente ou com pouca inclinação. Os transportadores horizontais mais utilizados são os transportadores helicoidais (roscas transportadoras), transportadores de correia e transportadores de correntes.

5.2.4.2.1 Transportador Helicoidal

Os transportadores helicoidais são indicados para curtas e médias distâncias. Consistem em um helicoide sem fim apoiado em mancais nos seus dois extremos e com mancais intermediários para impedir sua flexão. O transporte dos grãos se dá por arraste, devido ao giro do helicoide. À medida que o helicoide gira, os grãos são transportados em uma calha no formato de “U”. O equipamento possui tampa plana removível superior por razão de segurança,
e diversas saídas para diferentes pontos de descarga. O motor de acionamento com redutor está localizado em uma das extremidades do equipamento. A capacidade de transporte depende do diâmetro do helicoide, do passo (distância entre dois pontos na mesma posição do helicoide), e da velocidade de rotação. Para grãos, usa-se o passo igual ao diâmetro externo do helicoide. (WIMBERLY, 1983; MILMAN, 2002).

O material de construção mais comumente utilizado é a chapa galvanizada, embora construção em aço inoxidável possa ser utilizada em casos especiais do produto a ser transportado. O material do helicoide sofre grande desgaste durante a operação, exigindo um material mais resistente, como o aço 1020. A Figura 35 ilustra um transportador desse tipo.

Figura 35 – Transportador helicoidal

O ponto de carregamento ocorre em uma das extremidades pela parte superior, através de uma abertura na tampa, com descarregamento possível em diversos pontos ao longo de seu corpo. Os pontos de descarregamento são compostos de tampas acionadas manual ou pneumaticamente. No uso desses equipamentos no enchimento de vários silos em série, cada ponto de descarregamento na boca do silo é composto por uma gaveta pneumática de descarregamento que pode estar na posição fechada ou aberta.

O carregamento do transportador helicoidal não ocupa 100% de sua seção. Normalmente, um carregamento de 30% é recomendado, com velocidades recomendadas de cerca de 120 RPM. Segundo Milman (2002), a rotação recomendada do helicoide é função do diâmetro do mesmo e do peso específico do grão. Com esses parâmetros parcialmente definidos, a capacidade de transporte fica em função do diâmetro do helicoide. Esse equipamento não deve operar vazio, pois o peso do helicoide e a oscilação devido à rotação podem fazê-lo bater na carcaça, provocando o desgaste das partes.

Embora seja predominantemente utilizado para movimentação horizontal, é possível a instalação destes equipamentos com alguma inclinação, normalmente até 30°. Ângulos maiores
pode ser alcançados, mas com grande perda de capacidade. Um transportador helicoidal padrão inclinado em 15° carregará 75% de sua capacidade na posição horizontal. Com uma inclinação de 25%, terá 50% da capacidade na horizontal, exigindo, consequentemente, um motor com maior potência. Para operação em ângulos maiores do que 25°, uma carcaça tubular é exigida (ao invés da tampa plana). Em alguns lugares, equipamentos desse tipo, com helicoides e carcaça tubular, são chamados de “chupim”. Esta denominação é dada para dispositivos móveis, que funcionam com helicoides inclinados, e que podem ser deslocados pela instalação. (WIMBERLY, 1983).

5.2.4.2.2 Transportador de Correia

O transportador de correia é composto por uma correia ou fita sem-fim que se desloca sobre roletes ou polias loucas (sem acionamento) fixados em cavaletes. Os roletes são levemente inclinados e localizam-se no lado inferior da correia, o que propicia um formato de calha ao transportador. A correia sem-fim se desloca entre esses dois roletes, um de mando e o outro para esticá-la. A vantagem desse equipamento é o transporte a pequenas, médias e longas distâncias sem ocasionar danos mecânicos aos grãos, pois não há movimento relativo entre os grãos e a correia. (MILMAN, 2002).

A inclinação máxima destes equipamentos pode variar de 8° a 15°. Um ângulo maior do que este pode ocasionar um escorregamento dos grãos para trás. Dependendo do fabricante, a capacidade pode ser de poucas toneladas por hora até 400 t/h no uso agrícola. Em usos industriais e portuários, a capacidade pode chegar a 4000 t/h. A capacidade de carga é grande porque velocidades relativamente altas são possíveis, podendo chegar a 4,0 m/s. No entanto, essa velocidade, é função da largura da correia. (MILMAN, 2002). Um transportador de correia adequadamente projetado e mantido possibilita um longo tempo de operação e baixos custos operacionais. Quanto ao custo de projeto, ele é grande para correias de pequenas distâncias e baixo para longas distâncias quando comparado com outros transportadores horizontais. (WIMBERLY, 1983). A Figuras 36 mostra um transportador de correia sem cobertura.
Figura 36 – Transportador de correia

Fonte: TMSA (2019).

A Figura 37 mostra a parte inferior, da correia, onde estão posicionados os roletes. A correia tem um ângulo nas extremidades devido à inclinação dos roletes, evitando o derramamento de produto durante o transporte. O recomendado para o transporte de grãos é um ângulo de 20°, para o arroz, até 45°, devido ao seu baixo escoamento. (WIMBERLY, 1983).

Figura 37 – Rolos do transportador de correia

A estrutura principal desse equipamento é o perfil metálico composto de roletes sobre os quais está a correia. A cabeça de mando é onde se localiza a polia motriz e o acionamento, que pode ser feito com polias e rodas dentadas e correias/corrente, ou com o uso de redutores. Na outra extremidade se localiza a cabeça para esticar a correia. O sistema para esticar pode ser feito com parafusos sem-fim, para equipamentos com até 50 metros de comprimento, ou com contrapesos, para equipamentos mais compridos.

O transportador de correia pode ter cavaletes com dois ou três roletes. Para correias mais largas, é recomendável o uso de um conjunto transversal com três roletes, estando os dois das
extremidades inclinados e o do centro sem nenhuma inclinação. Para correias menos largas, o usual são dois roletes inclinados.

O transportador de correia pode ser simples ou duplo. Os transportadores simples transportam os grãos em uma direção de cada vez. Os transportadores duplos utilizam a mesma força motriz e, pelo fato de possuir dois perfis sobrepostos, possibilitam que no retorno da correia ela possa transportar grãos em sentido oposto ao da correia de ida. Nesse caso, no perfil inferior deve haver roletes de suporte.

A parte do equipamento que merece mais atenção quanto à manutenção são os roletes e a própria correia. O mau funcionamento dos roletes, devido à pouca lubrificação ou danos nos rolamentos, forçam o motor de acionamento. Os roletes são tubos metálicos fechados em suas extremidades onde estão os rolamentos blindados. A entrada de água ou pó prejudica seu desempenho.

A correia é a parte do transportador efetivamente em contato com o grão. A correia deve ter flexibilidade, pois deve adaptar-se a qualquer diâmetro de polia sem se tornar quebradiça. Deve ter resistência à tensão. Deve ter resistência ao que está transportando, principalmente resistência à abrasão quando transportar arroz.

O carregamento do transportador de correia pode ocorrer em qualquer ponto. No entanto, cuidados devem ser tomados para evitar o espalhamento dos grãos. Isso é evitado com o fechamento lateral do dispositivo de descarga até perto da correia. Quanto à descarga, ocorre no final da correia, com os grãos sendo jogados para baixo pela ação conjunta das forças centrífugas e da gravidade, por meio de um obstáculo sobre a correia que desvia os grãos para fora da mesma, ou através de um dispositivo chamado tripper. A utilização de um anteparo para desviar os grãos da correia apresenta a desvantagem de não operar bem com grãos menores, como o arroz, pois este passa por baixo do anteparo. A proximidade deste com a correia deve ser controlada para que não haja contato e desgaste da correia. Os trippers podem ser manuais, autopropelidos ou automáticos e, sendo um dispositivo móvel, podem descarregar em qualquer ponto ao longo da esteira. No entanto, seu princípio de funcionamento é o mesmo, consistindo em duas polias livres sobrepostas que dão à correia a configuração de um “S” invertido, e uma calha de descarga.

Os transportadores de correia podem ou não ser enclausurados. É comum ver nas instalações agrícolas esse tipo de transportador sem cobertura, ao menos quando dentro de instalações. O fechamento de sua parte superior pode limitar a operação do tripper de descarga, reduzindo a versatilidade do transporte. Por outro lado, proporcionam uma proteção aos grãos
quanto à queda de impurezas e segurança à operação. Quando posicionados do lado externo das instalações, os grãos ficam expostos à umidade.

5.2.4.2.3 Transportador de Corrente

O transportador de corrente, também chamado de redler, é constituído de uma corrente com raspadores que se movem entre duas extremidades com rodas dentadas, um cabeçote de mando e outro cabeçote esticador. É um equipamento robusto e resistente, podendo ser utilizado para diferentes tipos de materiais, inclusive em minas de carvão. Na agroindústria, é indicado para o transporte de grãos em curtas e médias distâncias, sendo muitas vezes utilizado nas moegas de descarga dos caminhões. Uma variação desse equipamento é o drag, que funciona com corrente, mas apresenta os raspadores com a forma de meia lua e com polietileno de alta densidade nas suas extremidades. O drag é mais utilizado para produtos acabados e apresenta menor capacidade.

A movimentação dos grãos ocorre pelo seu arraste por meio de raspadores dentro de uma caixa metálica fechada de seção retangular. O acionamento ocorre através de um moto-redutor acoplado diretamente ao eixo da roda motriz. A velocidade recomendada para a corrente é de 0,6 m/s. Sua capacidade de transporte em toneladas é função da velocidade da corrente, da largura de arraste do raspador e do peso específico do que está sendo transportado. Este equipamento pode trabalhar inclinado, mas dessa forma sua capacidade deve ser multiplicada por um fator de redução que pode chegar a 0,55 em inclinações de 30°. (MILMAN, 2002). No entanto, os fabricantes desses equipamentos recomendam sua utilização para no máximo 14° de inclinação.

Os redlers são totalmente fechados, eliminando a infiltração de água e evitando a saída de particulados provenientes da movimentação do grão para o ambiente. Devido à sua forma construtiva, é um equipamento seguro para a operação e integridade física dos trabalhadores. Pode apresentar vários pontos de descarga, desde que tenha as aberturas correspondentes abaixo da estrutura.

Sua estrutura (caixa) é fabricada em chapa galvanizada. O cabeçote motriz é robusto, com rasgos laterais para desmontagem do eixo, engrenagem bipartida em aço carbono ou modular, que permite a sua substituição sem a remoção do eixo. As correntes são fabricadas com perfilado de aço plano em formato “L” com alta resistência. O trilho inferior e a guia de retorno são fabricados em polietileno UHMW (ultra high molecular weight).
Este equipamento pode ser construído em corpo duplo, o que permite o transporte dos grãos em ambos os sentidos. A Figura 38 representa um transportador de corrente.

Figura 38 – Transportador de corrente

5.2.4.2.4 Inovações dos Transportadores Verticais

A seguir, são apontadas as inovações para cada classe de transportadores verticais. As inovações identificadas nos transportadores helicoidais referem-se a:

- Qualidade do processo de soldagem da fita no eixo do helicoide;
- Mancais mais robustos e com melhor vedação;
- Tampas fechadas com fecho rápido;
- Testeiras com rolamentos autocompensadores;
- Utilização de polietileno UHMW (ultra high molecular weight) nos pontos de contato com grãos abrasivos.

As inovações mais significativas nos transportadores de correia são:

- Revestimento dos tambores de acionamento com borracha, cerâmica ou carbeto de tungstênio;
- Adoção do sistema de tripper para descargas intermediárias;
- Sistemas de segurança com alarme para desalinhamento da correia;
- Aumento da vida útil dos roletes, com facilidade de acesso para inspeção, manutenção e lubrificação;
- Sistema de captação de particulados, quando a correia estiver enclausurada;
- Tambor de retorno autolimpante;
• Sistema auxiliar de esticamento por macacos hidráulicos;
• Tambores de acionamento fabricados em aço carbono e revestidos com sulcos tipo diamante para garantir maior atrito entre a coroa e o tambor;
• Mancais autocompensadores de rolos para garantir maior resistência;
• Rolos em aço carbono estampado e soldado com vedação dupla para garantir total vedação contra pó.

As inovações adotadas nos transportadores de corrente referem-se a:
• Material construtivo mais resistente ao desgaste provocado pelo escoamento dos grãos;
• Rolamentos autocompensadores de rolos;
• Boca de alívio com contrapeso;
• Sensores de embuchamento;
• Projeto de equipamento em corpo duplo para transporte de grãos nos dois sentidos;
• Cabeçotes motriz e esticador com rasgos laterais para desmontagem do eixo, engrenagem ou roda guia bipartida em aço carbono ou modular, que permite sua substituição sem a remoção do eixo.

5.3 SÍNTESE DAS INOVAÇÕES TECNOLÓGICAS NAS UNIDADES DE ANÁLISE

As seções anteriores descreveram as inovações tecnológicas identificadas nesse trabalho nas unidades de análise de produção e beneficiamento de arroz e soja. A descrição dessas inovações mostra que suas trajetórias seguiram dinâmicas distintas. Na unidade de análise de produção de grãos, a tecnologia surgiu de forma mais evidente, na própria concepção do equipamento ou insumo. Na unidade de análise de beneficiamento, ela surgiu de forma mais acessória, para dar suporte ao modo de funcionamento do equipamento e aumentar sua capacidade.

Os equipamentos e insumos envolvidos na produção de grãos até sua colheita apresentaram inovações que resultaram em um grande aumento de produção por hectare. Isso foi obtido através de diferentes ações. Primeiro, pelo desenvolvimento genético de sementes adaptadas a diferentes situações geoeclimáticas e resistentes a defensivos agrícolas cada vez mais efetivos. Os defensivos foram desenvolvidos em sucessivas gerações para dar conta da crescente resistência das pragas. Segundo, as operações na lavoura beneficiaram-se das inovações trazidas pela agricultura 4.0, em que a agricultura de precisão se tornou possível
graças a uma maior conectividade dos equipamentos. Os grandes equipamentos e máquinas utilizados no plantio, proteção e colheita dos grãos aprimoraram-se no sentido de serem mais precisos, gerando menos perdas e conseguindo o máximo de produtividade de cada área do terreno. O desenvolvimento de técnicas de plantio, adubação e irrigação tornou a terra mais produtiva. A agricultura de precisão deu possibilidades ao produtor de segmentar sua lavoura e realizar as operações de acordo com o momento e as necessidades de cada parcela.

Os equipamentos relativos à unidade de análise de beneficiamento de grãos seguiram uma trajetória de inovação dentro das linhas que já estavam seguindo nas décadas anteriores. As inovações nesses equipamentos tiveram como foco não perder a qualidade dos grãos que foram colhidos e aumentar a sua capacidade de processamento. Silos, secadores, máquinas de pré-limpeza e transportadores de grãos tiveram um aumento de escala de modo a escoar o crescente volume de grãos vindos da lavoura. As máquinas de pré-limpeza tiveram um aumento da área de peneiramento através do aumento do número de quadros. Os secadores tiveram um aprimoramento no fluxo de ar de secagem, além do aumento do volume de grãos secados por unidade de tempo. Um melhor controle das variáveis de secagem, através das malhas de controle, possibilitou uma secagem mais segura e uniforme. Novos silos com mais capacidade foram desenvolvidos e providos de um sistema de termometria e aeração para preservar o grão com mais segurança. Os equipamentos de movimentação de grãos tiveram um aumento de sua capacidade e a implementação de materiais mais resistentes à abrasividade. Além dos requisitos anteriores, esses equipamentos adotaram dispositivos de segurança exigidos pela legislação, e inovações visando facilitar a intervenção mecânica nos mesmos.
6 ANÁLISE E DISCUSSÃO DOS RESULTADOS

Este capítulo de análise e discussão de resultados está organizado da seguinte forma. Na primeira e na segunda seções estão comentadas as respostas do roteiro de entrevista dos fabricantes, divididos nas duas Unidades de Análise de Produção (UA1) e Beneficiamento de Grãos (UA2), e dos produtores. A resposta de cada entrevistado se encontra no apêndice dessa tese. Na terceira seção foi elaborado um quadro resumo das constatações feitas no decorrer do trabalho, que estabelece diferenças entre as duas unidades de análise, e são discutidas as proposições elaboradas no capítulo 2.

6.1 ANÁLISE DAS ENTREVISTA – FABRICANTES DE EQUIPAMENTOS

Análise das respostas da questão 1

O que motivou o desenvolvimento de insumos/equipamentos com mais tecnologia?

Um fator predominante, tanto entre os fabricantes da Unidade de Análise de Produção de Grãos (UA1) quanto entre os fabricantes da Unidade de Análise de Beneficiamento (UA2), é a preocupação em permanecer no mercado. Por permanecer no mercado, entende-se que o cliente, nesse caso o produtor de grãos, seja atendido em suas necessidades. É no modo em que essas necessidades são criadas e atendidas que há a maior diferença entre as razões pelas quais as empresas inovam.

Os fabricantes de equipamentos da UA1 atendem os produtores na forma de lhes proporcionar menor custo de produção, melhor aproveitamento da área plantada, menor desperdício e maior produtividade por hectare. Foi ressaltado o fato de que uma maior tecnologia nas máquinas agrícolas tende a proporcionar uma menor dependência de mão de obra. Como o produto final do produtor é uma commodity, a relação custo/volume de produção afeta diretamente a lucratividade do produtor. Por isso, todos os aspectos relacionados ao que o produtor consegue tirar a mais da terra, em termos de sacas por hectare, ou tudo aquilo que ele pode evitar perder devido a pragas ou estiagem, afeta diretamente seu resultado econômico-financeiro\(^9\). Novas variedades de sementes são lançadas com o objetivo de incrementar a produtividade e com maior resistência a pragas ou estresse hídrico.

\(^9\) Por resultado econômico-financeiro, este trabalho entende que seja a diferença entre o que foi investido em equipamentos, insumos, preparo da terra, mão de obra e energia e o que foi obtido a partir da receita dos grãos vendidos.
Os fabricantes da UA1 estão inseridos em uma cadeia produtiva que apresenta um forte estímulo na forma de novas tecnologias. Esse estímulo provém de duas origens. Primeiro, a própria concorrência em termos de inovação que existem entre eles, principalmente entre os fabricantes de máquinas agrícolas e as empresas de melhoramento genético de sementes. A presença preponderante desses dois ramos de empresas nas feiras de agropecuária (EXPOINTER e EXPODIRETO COTRIAL) foi percebida pelo pesquisador. Um segundo aspecto é a necessidade de inovar pela própria indução dentro da cadeia produtiva. Inovações promovidas por determinadas empresas induzem inovações à montante ou à jusante para que os equipamentos sejam adaptados para essa inovação uma vez que ela tenha sido provada viável em termos de mercado.

Existem aspectos específicos que induzem a inovações em determinados ramos da UA1. A deriva, em que herbicidas e outros defensivos são carregados pelo vento quando este está a uma velocidade superior a 12 km/hora, provoca efeitos indesejáveis em plantações vizinhas, especialmente quando estas são de frutas, tais como, por exemplo, videiras. O problema de deriva se mostrou particularmente alarmante nas safras 2018/2019 e 2019/2020, com ampla cobertura pela mídia. Para evitar a deriva, principalmente com o herbicida 2,4-D, já utilizado, e o Dicamba, que logo estará disponível, foram focados três aspectos: i-) tipo de ponta do bico de aplicação; ii-) velocidade de aplicação; iii-) tamanho da gota. Isso motivou o desenvolvimento de novos bicos de aplicação por parte de uma das empresas entrevistadas. Por parte de outra, estimulou o desenvolvimento de herbicidas com uma nova tecnologia que evita a deriva e o odor.

Aspectos relacionados a uma melhor produtividade por hectare, como aumentar a precisão na lavoura e otimização na tomada de decisão por parte do produtor, levaram ao desenvolvimento de novas tecnologias. A aplicação pontual de defensivos levou a uma maior utilização de drones na lavoura para a identificação de áreas com problema e para a aplicação do que for necessário neste local. Isso representa uma redução no total aplicado de defensivo, já que otimiza sua aplicação. Essa nova atribuição para esses equipamentos está estimulando o desenvolvimento de drones que tenham uma maior autonomia em sua operação de voo. A agrometeorologia, por sua vez, evoluiu no sentido de proporcionar mais informações ao produtor quanto a condições climáticas localizadas e em tempo real, o que possibilita uma decisão mais assertiva por parte do produtor e menor chance de ocorrência de perdas na lavoura.

Os fabricantes UA2 orientam suas ações relativas à inovação com o objetivo de atender ao mercado, pois somente assim eles assegurarão sua permanência no mesmo. Esse segmento de fabricantes orienta de maneira mais direta e visível suas inovações às necessidades
individuais dos produtores de grãos. Vários deles desenvolvem projetos específicos para a necessidade do cliente, não sendo comum a produção em larga escala e a existência de estoques.

Os fabricantes dos equipamentos da UA2 veem-se em face de quatro necessidades específicas dos produtores. A primeira é a questão do volume de grãos que devem ser limpos, secos, transportados e armazenados. Esses volumes aumentaram muito, e consequentemente, as capacidades requeridas dos equipamentos. O aumento de capacidade dos equipamentos requereu uma modificação em alguns componentes e materiais. A produtividade crescente por hectare de todos os grãos, mas especialmente do arroz, tornou premente a necessidade de um escoamento mais rápido da produção. Isso significa maior capacidade dos equipamentos à jusante da colheita, o que inclui transportadores, máquinas de limpeza, secadores e silos. O significativo aumento da área plantada de soja aumentou a necessidade de silos e transportadores maiores que implicam em ganhos de escala em relação a equipamentos menores.

A segunda necessidade é a manutenção da qualidade do grão. Depois de ser possibilitado o aumento de produtividade por hectare, função de todo o grupo de equipamentos à montante da colheita, o produtor não quer perder no beneficiamento. Por esta razão foram desenvolvidos equipamentos de transporte que danificam menos os grãos, máquinas de limpeza que fazem uma melhor separação do material desejável do indesejável, secadores que modulam de forma mais suave a temperatura, e silos que possibilitam uma melhor conservação do grão através de sistemas de aeração, resfriamento e iluminação. Uma observação pertinente quanto aos secadores é que os produtores se beneficiaram de um monitoramento mais automatizado, reduzindo sua dependência da intervenção do operador e fornecendo a eles dados em tempo real sobre as condições de secagem. Dessa forma, o que foi colhido se mantém em termos de quantidade e qualidade.

A terceira necessidade do produtor é referente ao custo da operação. Nesse aspecto, o foco dos fabricantes foi a redução do consumo de energia através de motores mais eficientes. A redução do custo também resultou dos ganhos de escala no beneficiamento com o aumento da capacidade dos equipamentos. Um exemplo é a nova relação Kwh/tonelada processada e a relação kg ou m³ de combustível nos secadores em relação às toneladas processadas. Outro aspecto relacionado a custo é o tempo de máquina parada. De modo a reduzir os tempos de troca de partes (set up), foram adotadas medidas que facilitassem essas intervenções, como engates rápidos e peças padronizadas.

A quarta necessidade surge devido à legislação e normas de segurança. Aspectos referentes à legislação trabalhista, segurança da operação, facilidade de intervenção nos
equipamentos e normas relativas a evitar incêndios passaram a ser mais consideradas no projeto dos equipamentos.

Embora tenha sido percebida uma padronização nos equipamentos à jusante da colheita, alguns fabricantes procuram diferenciar-se no mercado. Essa diferenciação surge a partir de propostas técnicas resultantes da falta de informação dos produtores para alguns aspectos específicos que lhe trarão maior benefício. A identificação de nichos de mercado ainda não explorados tem sido uma motivação para alguns fabricantes agregarem mais engenharia e tecnologia na proposta de seus produtos.

Análise das respostas da questão 2

De que forma a dinâmica do setor agrícola estimula ou não a inovação dos equipamentos produzidos?

Pela análise das respostas, percebe-se que a dinâmica do setor agrícola estimula o desenvolvimento de novas tecnologias. Adicionalmente fica claro que, dependendo do tipo de grão e seu dinamismo econômico no momento, há um maior ou menor direcionamento dos investimentos em tecnologia. Em linhas gerais, o investimento em pesquisa para a inovação só será remunerado pelo setor que estiver mais capitalizado. Como visto anteriormente, em virtude do mercado promissor, a área de cultivo de soja no Rio Grande do Sul tem aumentado a cada ano, inclusive em áreas que até então eram exclusivas do arroz, como no Sul do Estado do RS. Já a área cultivada com arroz tem sofrido bastante flutuação, compreendendo ao redor de 1 milhão de hectares. Em várias situações, os produtores de arroz estão fazendo rotação de cultura entre esses dois grãos, ou estão destinando parte de sua área de cultivo que antes era exclusiva de arroz, para a soja. Mais amplamente, é feita a integração lavoura pecuária (ILP), com incentivo inicial da Embrapa, tendo o Rio Grande do Sul o maior percentual de áreas integradas no Brasil.

Os fabricantes da UAI reconhecem que há um estímulo maior na pesquisa voltada para aquela cultura agrícola que remunera melhor no momento, como é o caso da soja. Esse estímulo para a inovação está dentro da cadeia produtiva em que o grão está inserido. Se a soja está rendendo mais no momento, as inovações que ocorrem em melhoramento genético, herbicidas e insumos, que estão no início da cadeia, se propagam para todos os seus elos, passando pelas máquinas agrícolas, silos e secadores. O custo em pesquisa para o desenvolvimento genético de novas variedades é elevado, pois envolve biotecnologia e muitos testes até a nova variedade ser permitida e disponibilizada no mercado. Essa pesquisa só é viável financeiramente se o produtor reconhecer o benefício trazido por essa nova variedade e pagar por ele. Isso tem
acontecido com as variedades de soja RR, RR2 e com a futura Intacta 2xtend, a terceira geração de biotecnologia para sementes. Somente desse modo o ciclo de inovação permanece viável.

Há a percepção de que o produtor de arroz tem estado descapitalizado nos últimos anos, o que o faz conter mais seus custos e investir menos nos equipamentos com mais tecnologia. Um outro fator identificado foi que, devido ao arroz ser cultivado em terrenos inundados, há um receio maior por parte do produtor de equipamentos com tecnologias que possam ser prejudicadas por estas condições.

Dentre os equipamentos e insumos analisados na pesquisa, alguns deles são intercambiáveis, como sistemas de termometria e máquinas agrícolas, que podem ser utilizados com diferentes tipos de grãos com ligeiras modificações. No entanto, outros são específicos para soja ou para arroz. Como muitos produtores de arroz estão fazendo rotação de culturas, a sua opção em investimento em equipamentos tem sido para aqueles que podem trabalhar com os dois tipos de grãos, com ligeira alteração de algumas peças, como no caso de bicos de pulverização. Isso tem gerado uma resposta por parte dos fabricantes, especialmente aqueles que tinham em seu produto uma identificação com um ou outro grão. Os silos e os secadores são um bom exemplo. Se o projeto visa as características de um ou outro grão, eles terão algumas diferenças. O silo de soja, por exemplo, terá uma estrutura mais robusta do que o do arroz para uma mesma quantidade, pois a soja tem um componente do peso mais forte nas laterais do silo. A secagem do arroz é mais delicada do que a da soja, pois exige um tempo de resfriamento (tempering) para evitar tensões internas que quebrem o grão. A soja é mais resistente a esse processo de secagem.

Para os fabricantes de equipamentos da UA2, os grandes volumes de produção da soja, principalmente em virtude de um crescente mercado exportador, justificam equipamentos de alta capacidade, principalmente transportadores, máquinas de limpeza e silos, instalados tanto na propriedade do produtor como nos terminais portuários. Para os equipamentos que mantêm a estrutura basicamente a mesma para soja e arroz, as modificações são feitas visando uma necessidade do produtor de soja, sendo estas, depois, migradas para os equipamentos voltados para o arroz. Ou seja, há o estímulo para a inovação e investimento por parte de uma das culturas, mas essa tecnologia pode acabar sendo adaptada para a outra.
Análise das respostas da questão 3

Como ocorreu o aprendizado tecnológico para o desenvolvimento de um novo equipamento ou o aperfeiçoamento de um já existente?

As rotinas de aperfeiçoamento tecnológico de equipamentos já existentes ou o desenvolvimento de equipamentos novos seguem diferentes caminhos, tanto entre os fabricantes da UA1 quanto entre os fabricantes da UA2. Dentre os modos identificados de aprendizado e rotinas para o desenvolvimento tecnológico estão: i-) um setor atuante de pesquisa e desenvolvimento (P&D); ii-) acompanhamento de produtos já lançados no mercado; iii-) ideias oriundas de feiras especializadas ou dos proprietários; iv-) parcerias com outras empresas para o desenvolvimento de um novo produto; v-) adaptação às características regionais de modelos lançados com êxito internacional; vi-) desenvolvimento no campo diretamente com os produtores. Embora existam diferenças entre as rotinas de inovação, em todas as empresas existe, em menor ou maior grau, uma equipe dedicada ao projeto, incorporada ou não a um setor de P&D, e uma equipe de teste. Também foi verificado que, na maioria dos fabricantes, tanto em uma unidade de análise quanto em outra, a importância da tradução das necessidades do cliente no projeto é fundamental para a viabilização do produto no mercado.

Entre todos os fabricantes, é reconhecida a importância de um setor de Pesquisa e Desenvolvimento (P&D), mas nem todos eles conseguem manter um departamento de tal monta. Aquelas empresas mais capitalizadas mantêm um departamento que, ou desenvolve novas ideias e produtos, como predominou entre as empresas da UA1, ou traduz em um projeto as necessidades dos clientes, como predominou nas empresas da UA2. A viabilidade de um setor de P&D foi identificada mais fortemente entre os fabricantes da UA1, principalmente entre os fabricantes de máquinas agrícolas e melhoramento genético de sementes e defensivos agrícolas. Entre os fabricantes da UA2, predomina uma engenharia de projetos que faz adaptações a equipamentos existentes de acordo com a necessidade do cliente. No entanto, existem alguns entre estes últimos com uma engenharia de produto mais forte, especialmente nas empresas maiores.

A adaptação de equipamentos já existentes no mercado, vindos ou não originalmente de fora do país, é uma prática constatada nas duas unidades de análise. Entre os fabricantes UA2, a prática mais difundida é a de adaptação de um projeto de equipamento já comercialmente existente, algumas vezes com poucas características que o diferenciam do original. A troca de profissionais entre essas empresas é um dos fatores que acabam gerando certa homogeneização das soluções técnicas. As características construtivas desses equipamentos favorecem uma reprodução da maioria de seus aspectos, caso não estejam protegidos por patentes. Há casos de
uma empresa importar na totalidade o equipamento e representá-lo no Brasil, não fazendo nenhuma alteração, ou modificando o projeto com o intuito de otimizá-lo depois de vários anos da chegada do projeto original. Em alguns casos, principalmente equipamentos de instrumentação, os aparelhos são totalmente importados, apenas eventualmente adaptados para situações específicas.

A formação de parcerias é uma prática bastante difundida entre todos os fabricantes. Dois tipos de parcerias foram identificados. A primeira é uma parceria técnica, em que uma empresa alia-se a outra para oferecer uma solução técnica para determinada aplicação. A segunda é uma parceria de teste, em que um equipamento protótipo é testado em uma situação real em uma propriedade de um produtor. A formação de parcerias técnicas foi constatada entre diversos fabricantes, mas com predominância entre os fabricantes da UA1. Aparentemente pelo nível de complexidade de seus equipamentos, a formação de parcerias com agtechs fornecedoras de softwares e algoritmos, está bem difundida. O outro tipo de parcerias no desenvolvimento de equipamentos é com os próprios produtores. Embora seja uma prática difundida entre as duas unidades de análise, isso foi mais percebido entre os fabricantes da UA2, principalmente com secadores e máquinas de limpeza. Antes de oferecer comercialmente uma nova solução técnica, um cliente/produtor parceiro testa em sua propriedade o novo equipamento.

A importância de feiras e publicações técnicas para a troca de informações, e para o desenvolvimento ou aperfeiçoamento de equipamentos foi constatada. As feiras nacionais, como a EXPONTE ou a EXPODIRETO, apresentam tecnologias de ponta, principalmente dos fabricantes da UA1, bastando para isso ver o espaço dedicado a esse grupo em comparação com o dos fabricantes da UA2. Exposições internacionais são prestigiadas, principalmente por empresas de maior calibre financeiro. Proprietários ou funcionários de todas as empresas tem, nesse momento, a oportunidade de verificar o que o mercado oferece, estimulando modificações em seus próprios equipamentos.

Análise das respostas da questão 4

Quais as condições ou habilidades a empresa deve ter para o desenvolvimento de novas tecnologias/produtos?

A análise das respostas mostrou que há um alinhamento entre os fabricantes das duas unidades de análise quanto às capacidades e habilidades que a empresa deve ter para o desenvolvimento de novas tecnologias e produtos. A compreensão de que a empresa deve estar inserida em seu mercado e perceber suas necessidades e evolução é primordial. As condições
de investimento da empresa, a condição estrutural da empresa com a existência de um setor de P&D, a formação de parcerias tanto com outras empresas como com unidades de pesquisa, e não ter medo de inovar surgiram como respostas a essa questão.

Uma análise da questão relativa à inserção da empresa no mercado revelou dois aspectos. O primeiro relativo a entender a situação de seu cliente. O segundo relativo ao que o mercado oferece de tecnologia. Houve um amplo predomínio no aspecto de entender as necessidades do cliente para atendê-lo. Para isso, a proximidade com o cliente se mostra fundamental, o que é feito através de canais abertos de comunicação entre o produtor e a empresa. Enquanto os fabricantes de menor porte têm um contato mais pessoal, até mesmo através do dono da empresa, os fabricantes de maior porte têm equipes de vendas e de apoio técnico que fazem uma prospecção mais apurada e técnica do mercado. O fundamental é que a empresa consiga canalizar essas necessidades para sua área de desenvolvimento e projeto, e que consiga apresentar uma solução técnica para essa necessidade. Estar inserido no mercado também significa que os fabricantes devem estar atentos às novas tecnologias oferecidas, tanto nacional quanto internacionalmente. Saber o que seu concorrente oferece em termos de inovação é uma forma de estar atualizado e de incentivar seu próprio desenvolvimento tecnológico. Para isso, a participação em feiras é um dos caminhos.

No entanto, estar inserido no mercado de nada adianta se não houver uma capacidade técnica e financeira por parte do fabricante de desenvolver as soluções requeridas por seus clientes, ou de conseguir incorporar ao seu produto uma nova tecnologia já ofertada no mercado nacional ou internacional. Para isso, a capacidade de investimento e a existência de um setor de P&D ou de projetos com técnicos capacitados foram citadas por vários fabricantes. Caso o fabricante tenha uma lacuna técnica em um determinado aspecto, ou não queira dispender recursos no desenvolvimento desse ponto, ocorre a busca por parceiros que supram essa eventual lacuna, incorporando-o ao produto.

A ousadia para inovar foi identificada por algumas empresas como uma habilidade necessária para a empresa inovadora. Para ter inovação em seus produtos, a empresa deve saber ler o mercado e ver sua tendência. Isso, no entanto, foi percebido naquelas empresas que já têm uma característica de inovação e que possuem recursos para assumir riscos de algo novo. Empresas mais tradicionais e conservadoras adotam ações mais comedidas e limitadas quanto a novos produtos, o que caracteriza mais fortemente algumas empresas da UA2. Também nessa linha, a mentalidade dos donos ou da diretoria, sendo mais conservadora ou mais ousada, transmite à toda empresa esse estilo.
Parcerias foram identificadas como relevantes na capacidade de inovação e desenvolvimento tecnológico. Essas parcerias ocorrem de dois modos. A primeira é quando empresas diferentes colaboram para se obter uma solução a um dado problema. Nesse caso, cada empresa contribui com seu equipamento ou produto para uma solução incorporada em um mesmo equipamento. Foi verificado que esse é um momento em que pequenas empresas têm capacidade de contribuir com as grandes. Isso foi mais percebido entre os fabricantes da UA1, embora não exclusiva a eles. O outro modo é a parceria com universidades e centros de pesquisa. Nesse caso, o fabricante do equipamento tem uma corroboração do resultado de seu equipamento através de artigos e trabalhos acadêmicos, utilizando-os para um melhor convencimento frente ao potencial cliente. Esse segundo aspecto foi mais verificado entre os fabricantes da UA2, mais especificamente para os fabricantes de equipamentos acessórios a silos e armazéns.

Análise das respostas da questão 5

Há uma troca de informações entre cliente e empresa de modo que ocorra uma colaboração para o aperfeiçoamento do equipamento? De que forma isso ocorre?

O contato entre fabricantes e clientes é visto por todos como fundamental para os negócios. Todas as empresas, com exceção de uma, dizem que nesse contato ocorre colaboração dos clientes quanto a novas ideias, ou recomendações de aperfeiçoamentos dos equipamentos existentes. Essa única exceção fabrica um equipamento simples e funcional, que não tem o que ser percebido com melhoria por parte do cliente. Em todas as empresas há um canal estabelecido de comunicação com o usuário do produto. Esse canal é mais ou menos complexo, com mais ou menos setores envolvidos dependendo do tamanho da empresa. Os fabricantes veem esse contato como trazendo benefícios de: i-) entender o que o cliente precisa e quer no produto; ii) entender características regionais em que o cliente está inserido, o que resulta em características próprias do produto; iii-) colher informações de melhoria por parte de quem está usando o produto; iv-) testar protótipos com clientes selecionados.

Todas os fabricantes estão abertos às novas ideias ou recomendações vindas dos produtores. Cada empresa tem seu canal de comunicação com particularidades próprias. Nos fabricantes menores, que predominam nos equipamentos da UA2, esse contato ocorre através de equipes de venda, montagem e assistência técnica. Ideias oriundas desses setores chegam rapidamente à direção. Algumas vezes, o próprio proprietário é um engenheiro que projeta o equipamento e recebe essas informações. Como esses equipamentos (máquinas de limpeza, silos, secadores e transportadores) são feitos sob encomenda e direcionados a um cliente
específico, é mais fácil a inclusão de características requeridas pelo cliente no projeto original. Essas modificações, uma vez adotadas, podem ser incorporados nos projetos padrão.

Em empresas maiores, mais característica dos fabricantes da UA1, especialmente máquinas agrícolas, esse canal desde a origem da ideia até sua análise é mais longo. Algumas utilizam softwares próprios da avaliação do produto por parte dos produtores, onde eles ali também colocam suas recomendações. Em outras, as ideias são originadas através do contato com as concessionárias, representantes de vendas e suporte técnico. Nestes fabricantes, uma vez aprovada a ideia, é raro ocorrer a individualização do equipamento. A ideia, uma vez incorporada, é generalizada para a linha de produtos.

As empresas que desenvolvem sementes geneticamente modificadas veem o contato com o produtor como uma forma de entender o que este necessita ou mais valoriza. O produtor não vai auxiliá-los a desenvolver o produto, já que isso é fruto de biotecnologia, mas vai sinalizar com o que é importante para ele. A partir daí, a empresa tem todo um portfólio de opções de produtos.

Uma prática identificada nas empresas das duas unidades de análise é a instalação de protótipos entre produtores de confiança e com capacidade crítica. Para aperfeiçoar ou ratificar um projeto novo, há a fabricação de um protótipo que é instalado e utilizado em uma propriedade. O acompanhamento é feito tanto pelos técnicos da empresa quanto pelo produtor usuário. Desse uso podem sair observações de melhoria.

De qualquer forma, sendo este caminho mais longo ou mais curto, dependendo da estrutura organizacional da empresa, a sua análise e efetuação ou não passa por todo um processo de estudo de viabilidade econômica. Nas entrevistas, foi verificado que muitas dessas ideias foram efetivamente aprovadas e incorporadas nos equipamentos, mostrando que este é uma origem reconhecida de aprimoramento tecnológico.

Análise das respostas da questão 6

O que predominou nas inovações tecnológicas adotadas: pequenas modificações mais de aprimoramento do equipamento, ou grandes alterações que modificam algum aspecto importante de seu funcionamento?

Quanto aos tipos de inovações que prevaleceram, incrementais ou disruptivas, há uma distinção bem clara entre as percepções das empresas das duas unidades de análise. É predominante a impressão entre os fabricantes da UA2 de que nos seus equipamentos predominaram as inovações incrementais. Segundo eles, os projetos de silos, secadores e outros equipamentos não tiveram grandes alterações desde sua concepção inicial. Os fabricantes da
UA1 tiveram, por sua vez, uma impressão mesclada de inovações disruptivas e inovações incrementais. Exemplos vistos nas feiras, exposições e no mercado mostram que os equipamentos e insumos envolvidos até o momento da colheita inovaram muito mais, o que se pode perceber comparando produtos novos com antigos.

Os fabricantes de equipamentos da UA2 assinalam que as inovações se restringiram basicamente a aspectos como: i-) o aumento de volume de processamento; ii-) materiais mais resistentes; iii-) processos que danifiquem menos o grão; iv-) maior nível de automação; v-) soluções para economizar energia; vi-) aumento de funcionalidade; vii-) aspectos relativos à segurança. O aumento do volume foi algo resultante do aumento de produtividade por hectare no campo e pela requisição de uma maior velocidade de escoamento dos grãos. Essa maior exigência sobre os equipamentos, levaram os fabricantes a um aumento de escala destes equipamentos e um aspecto construtivo mais robusto, principalmente referente a materiais mais resistentes a desgaste, especialmente crítico no arroz devido à sua abrasividade. Como nos processos pós colheita o produtor não quer perder o que já colheu, foram implementadas inovações relativas à preservação do grão. Inovações desse tipo estão relacionadas a: i-) um melhor controle de temperatura do secador; ii-) melhor trajetória do fluxo de ar e de grãos nos secadores; iii-) transportadores que danificam menos o grão; iv-) máquinas de limpeza mais eficientes na separação do desejável do indesejável; v-) silos que preservem mais a qualidade do grão.

A utilização de sensores e termopares possibilitou a adaptação de mais automação através de softwares e malhas de controle, substituindo em muitas situações a ação do operador para controle de temperatura do grão, aeração de silos, descarga de secadores e alimentação de combustível em fórmulas. A preocupação com o consumo de energia foi apontada como estímulo para a inovação com motores mais eficientes e substituição dos aeradores de silo que utilizavam eletricidade por outros que utilizam gás natural. O aumento de funcionalidade é outro fator que está relacionado a estas inovações incrementais. A facilidade para a troca de peças, como quadros de máquinas de limpeza para processar diferentes tipos de grãos, representaram uma redução do tempo de troca e, consequentemente, de menos tempo de máquina parada. A praticidade de troca também beneficiou a segurança da operação. Outras inovações foram adotadas devido a normas legais, que estabeleceram padrões de segurança mais rígidos quanto a incêndio, quedas e facilidade de acessos.

Embora a sequência de operações até o momento da colheita não tenha se alterado (semeadura, proteção, colheita), o modo como isso tem sido feito mostrou diferenças significativas. A importância dada pelo produtor de colher mais na mesma área para melhor
compensar seus custos de produção e oscilação do preço de seu produto no mercado, incentivou os fabricantes a inovar em todos os aspectos possíveis. Por isso, os produtores desse segmento percebem as inovações nos equipamentos e insumos responsáveis pelo grão até sua colheita como, em muitos aspectos, disruptivas. Exemplos disso podem ser encontrados nas sementes geneticamente modificadas e na própria agricultura de precisão, esta última compreendendo uma série de aspectos eles mesmos disruptivos. A utilização de GPS para a orientação da trajetória das máquinas, a autorregulação da velocidade dos equipamentos de colheita para atender o especificado pelo produtor, a aplicação individualizada de defensivos nos bicos pulverizadores e a utilização de drones para fazer uma aplicação localizada de defensivos são exemplos dessas inovações disruptivas. Conjuntamente a elas, também foram aprimorados os equipamentos já existentes. Difícilmente as inovações disruptivas não são acompanhadas por modificações incrementais, como os fabricantes notaram. Essas inovações incrementais são as que, muitas vezes, marcam a diferença de um modelo de equipamento de um ano para o outro, como sensores mais aperfeiçoados, como no caso dos drones.

Análise das respostas da questão 7

O que fez com que a empresa, entre diferentes alternativas tecnológicas, optasse por uma em particular?

Alternativas tecnológicas estão mais à disposição das empresas da UA1 do que para as empresas da UA2. Dessa forma, a variedade de fatores de escolha para novas tecnologias nos equipamentos é maior para a primeira unidade de análise. Para a segunda unidade de análise, a tecnologia no pós-colheita se mostra muito conservadora, com as razões da escolha girando em torno da viabilidade econômica e do custo final para o produtor. Um fator comum às duas unidades de análise são determinações legais que restringem a adoção de determinadas soluções técnicas.

A avaliação do custo-benefício para as empresas da UA1 segue uma regra normal de investimentos em projetos de equipamentos de qualquer tipo. Sendo vislumbrado retorno, o projeto pode ser aprovado. Ou seja, a viabilidade econômica faz parte da decisão da tecnologia escolhida. Uma tecnologia avançada que não tenha retorno, se torna inviável. As soluções que mostram ao produtor que ele vai colher mais ou que vai gastar menos insumos têm probabilidade de sucesso e, por isso, tendem a ser escolhidas. Algumas soluções tecnológicas compostas de vários elos ficam esperando o desenvolvimento de um elo seguinte, como um software específico. Uma das empresas entrevistadas disse que, por dominar toda a tecnologia incorporada em seu produto, consegue uma maior rapidez do que aquelas que dependem de
parceiros para desenvolver determinado elo para a solução total. Uma outra empresa forneceu
o exemplo do desenvolvimento de módulos de comunicação que não requerem que todos os
equipamentos ligados a ele sejam de uma mesma marca. Esses novos módulos, chamados de
ISO pelo fabricante, podem agregar equipamentos de diferentes marcas.

Um outro fator referido pelas empresas da UA1 é a carência de profissionais capazes de
operar equipamentos com mais tecnologia. A baixa formação técnica dos trabalhadores faz com
que os produtores que adquirem os equipamentos evitem aqueles cuja tecnologia na operação
não se alinhe com a capacidade técnica de quem vai operá-los. Dessa forma, os fabricantes
acabam simplificando seus projetos, evitando a utilização de alguns aspectos mais avançados,
esperando o momento certo ou o cliente certo para adquiri-los.

A conectividade surge como um fator importante para a decisão de novos lançamentos
entre os fabricantes de máquinas agrícolas. As máquinas agrícolas estão cada vez mais
conectadas via rede entre si. Se não há a possibilidade dessa conexão, a utilização de
equipamentos com alta tecnologia fica inviabilizada, e o produtor acaba recorrendo a modelos
mais tradicionais. Sabendo disso, os fabricantes são mais restritivos no que vão oferecer.

Adicionalmente, a legislação surge como um fator que interfere nas escolhas da
trajetória tecnológica. Um exemplo é a viabilidade técnica de máquinas totalmente autônomas,
mas que ainda não são permitidas pela legislação. Questões regulatórias referentes a emissões
determinam o uso de determinados equipamentos em detritos de outros. A utilização de
motores eletrônicos acima de 100 CV é um exemplo.

Para as empresas de desenvolvimento genético de sementes, a escolha ‘do que’ e ‘como’
desenvolver está ligado ao nicho de mercado que se quer atingir e o que esse mercado pede.
Isso deve ser analisado sob dois aspectos. O primeiro é em relação ao que o mercado quer. Isso
envolve o desenvolvimento genético para diferentes tipos de manejo e janelas de cultivo. O
segundo é o que o mercado permite, afetando diretamente boa parte da produção de soja do
Estado, que é exportada. O mercado chinês, por exemplo, o maior mercado da soja gaúcha, não
permite todas as variedades genéticas.

A escolha da trajetória tecnológica para os fabricantes da UA2 é mais simplificada. A
viabilidade financeira é o primeiro aspecto considerado. Porém, esta viabilidade esbarra em
questões muito mais limitantes do que o do grupo composto pela UA1. A tecnologia utilizada
está ligada mais diretamente à capacidade de pagamento do produtor. Por isso, há a tendência
de utilizar uma tecnologia já consagrada no mercado, ao invés de apostar em novidades que,
além do risco inerente, implicam em um aumento de investimento final por parte do produtor.
As soluções tecnológicas escolhidas são mais voltadas a necessidades específicas do produtor.
e selecionadas de acordo com o portfólio de opções tecnológicas já existentes. A simplicidade de operação e existência de assistência técnica também são fatores que influenciam na escolha. Assim como no grupo de fabricantes até a colheita, aspectos relativos à segurança de operação e legislação ambiental determinam algumas escolhas quanto ao caminho da inovação tecnológica.

6.1.1 Síntese das Respostas dos Fabricantes

A inovação tecnológica é vista pelos fabricantes como um meio para se manter competitivo através do atendimento das necessidades de seus clientes. No entanto, as entrevistas mostram que essa afirmação é muito mais assertiva entre os fabricantes de insumos e equipamentos da UA1 do que da UA2. Os fabricantes da UA1 têm muito mais próximo de si a necessidade da inovação como base da competição no mercado em que se encontram. Os fabricantes da UA2 procuram manter-se competitivos principalmente na base do preço e de um setor de projeto que atenda às necessidades dos clientes de forma mais customizada. As exceções na UA2 são as empresas que conseguem diferenciar seu produto por este trazer uma melhor resultado e termos de controle da operação e da manutenção da qualidade do grão. As empresas da UA1 apresentam outras razões para inovar além do mercado, como a necessidade de inovar seu equipamento para acompanhar a inovação de um outro equipamento que a ele esteja associado. Uma outra origem da necessidade de inovação para todas são as exigências legais.

Todos os projetos de inovação são avaliados em termos de sua viabilidade econômica e na capacidade do produtor em pagar por isso. O dinamismo do setor agrícola é visto pelos fabricantes como um determinante na motivação para a inovação e que viabiliza ou não alguns desses projetos. Nesse aspecto, o crescimento da cultura da soja nas últimas décadas induziu a um maior nível de inovação tecnológica. Para o arroz, especialmente para suas etapas de beneficiamento abrangidas pelas empresas da UA2, seus usuários não trazem a motivação necessária para o desenvolvimento de novas tecnologias, principalmente para aquelas consideradas disruptivas. Nesses equipamentos, as inovações incrementais são a regra, pois representam menos riscos tanto para quem os fabrica quanto para quem os adquire. As inovações disruptivas surgem entre as inovações trazidas pelas empresas da UA1. Essas empresas trazem propostas mais ousadas. Máquinas e equipamentos mais versáteis, para diferentes tipos de função e para lidar com diferentes grãos têm sido vistos como uma
alternativa para a realidade de produtores que fazem rotação de culturas e para aqueles que trocam definitivamente o tipo de grão que cultivam em determinada área.

A parceria com os clientes para o desenvolvimento de novas tecnologias é fundamental para entender as necessidades do mercado. Da troca de informações com os produtores surgem ideias de aprimoramento do que está sendo oferecido. Parcerias entre empresas foram percebidas como uma situação mais característica na UA1. Os condicionantes para a opção de que tecnologia oferecer estão mais presentes na UA1, pois incluem a carência de profissionais no campo para trabalhar com tecnologia digital e o sinal de internet, pois quando ausente inviabiliza uma série de inovações.

6.2 ANÁLISE DAS ENTREVISTA – PRODUTORES DE ARROZ E SOJA

As respostas dos produtores foram muito mais dispersas, resultante de histórias e experiências individuais, o que gera dificuldades para fazer generalizações analíticas na maior parte das questões. As características que mais determinaram essas diferenças foram o tamanho da área plantada, se o respondente é plantador de soja ou de arroz, e se possui um beneficiamento e produto com marca própria. Embora, em função desse contexto, fique mais difícil de chegar a conclusões definitivas, algumas linhas gerais e convergentes para as respostas foram possíveis de ser percebidas.

Análise das respostas da questão 1

Quais foram os fatores que o levaram a uma busca por mais tecnologia nos equipamentos de produção e processamento de grãos?

Os produtores de arroz e soja buscam na adoção de tecnologia, primordialmente, uma maior produção por hectare e menor custo na lavoura. Dessa forma ficam mais competitivos e conseguem cobrir seus custos com o que colhem. Isso é particularmente importante para o produtor de arroz que, por ter margens de lucro mais apertadas na maior parte das safras devido a uma grande oscilação no preço da saca, tem que ser muito mais cuidadoso com os detalhes para uma boa produtividade. A maior produtividade está ligada a uma menor perda na colheita. Os equipamentos mais modernos são capazes de fazer essa avaliação, modulando sua velocidade de operação para alcançar o que foi programado em termos de aproveitamento de grão. A busca por um melhor sistema de irrigação é uma constante para os produtores de soja. Pode-se perceber pelas entrevistas que esta é uma demanda por tecnologia ainda não satisfeita.
A qualidade do grão após a colheita é outro fator que leva o produtor a pensar em mais tecnologia, principalmente para aqueles produtores que produzem semente. A melhor qualidade garante um preço final melhor para o produto. No caso do arroz, o número de quebrados e descascados e percentual de verdes afeta diretamente o preço pago ao produtor.

Quanto aos equipamentos relativos ao beneficiamento, o que se quer é não perder o que já foi colhido. Se na colheita o que se quer é colher o máximo possível, no beneficiamento o objetivo é perder o mínimo possível. O custo associado ao beneficiamento é outro fator que leva os produtores a buscar novas tecnologias. O principal custo é relativo à energia usada para a movimentação dos equipamentos e para a conservação dos grãos, desde a secagem até a armazenagem. Manter o grão com umidade baixa e com aeração para diminuir focos de infestação exigem consumo de energia. Quanto menos consumir, mantendo a qualidade do grão, menor o custo por tonelada de grão.

Aspectos como seguranca e comodidade foram ressaltados. A comodidade foi mencionada em relação às plantadeiras e colheitadeiras, com cabines com ar condicionado e outros tipos de conforto. Quanto à segurança, algumas leis trabalhistas fizeram com que inovações fossem introduzidas de modo mandatório, principalmente quanto ao carregamento de sacarias. Em termos de segurança ambiental, com a ampla divulgação da deriva de herbicidas para outras culturas, os produtores viram-se induzidos a buscar alternativas nos fabricantes dos bicos de pulverização. Houve uma maior orientação junto aos fabricantes de herbicidas quanto à observação de algumas variáveis durante a aplicação, entre as quais a velocidade do vento.

Análise das respostas da questão 2

Considerando seu setor agrícola (arroz ou soja), de que forma a dinâmica desse setor está relacionada à adoção de inovações?

Entre os produtores entrevistados foi unanimidade que o cultivo do arroz apresenta mais riscos financeiros do que o da soja. Uma das razões levantadas para isso é a própria oscilação do preço da saca de arroz, chegando, em muitos momentos, a não cobrir as despesas efetuadas. Alguns dos entrevistados, originalmente produtores de arroz, passaram a produzir parcial ou totalmente soja em seu lugar. Boa parte dos entrevistados têm sua lavoura na Região Sul do Estado, tradicionalmente produtora de arroz. Estes produtores viram na soja uma oportunidade de reduzir seu risco, com uma lavoura praticamente sustentando a outra em épocas de preço baixo do arroz. A utilização dos custos fixos já existentes estimula o cultivo de outros produtos. Uma outra razão foi a vantagem de fazer a rotação de cultura entre arroz e soja, sendo isso benéfico para ambos os grãos.
O que se viu no Estado nas últimas décadas foi um gradual aumento da área plantada com soja, inclusive com o desenvolvimento de variedades mais adaptadas à região de várzea, regiões úmidas e tradicionalmente dedicadas exclusivamente ao arroz. A rentabilidade da soja, baseada em seu menor custo de produção por hectare (mesmo que a produtividade da soja seja menor do que a do arroz em termos de tonelada por hectare) e em sua maior segurança de comercialização estimulam não somente a migração de uma cultura para a outra por parte dos produtores, mas um maior incentivo à inovação sabendo que isso trará resultados financeiros. Dessa forma, a cadeia de soja se dinamiza porque as inovações propostas pelas indústrias de insumo e maquinário encontra um campo fértil na demanda dos produtores de soja mais capitalizados. Os produtores de arroz, por outro lado, são mais reticentes em termos de inovações que possam resultar em endividamento. Todo investimento por parte deles deve ser muito bem avaliado, o que resulta em um certo conservadorismo. Mesmo entre alguns fabricantes entrevistados, a imagem do produtor de arroz é aquele produtor mais conservador, mais avesso ao risco, já que um investimento mal feito pode prejudicar ainda mais sua situação, em muitos casos, instável financeiramente.

Análise das respostas da questão 3.

De que forma você ficou sabendo da disponibilidade da nova tecnologia?

A divulgação de inovações na agroindústria nunca esteve tão disseminada. Não há produtor que não inove por falta de informação do que está disponível, ao menos nas inovações mais difundidas. Ficou no passado a época em que as empresas divulgavam suas inovações via folhetos e catálogos. Embora muitas ainda o façam, tudo isso está disponível na internet. A comunicação entre os produtores está cada vez mais difundida. Os grupos de whatsapp são dinâmicos tanto para a divulgação de resultados, quanto para observações positivas e negativas em relação a alguma inovação.

Os canais presenciais são eficazes, sendo que três foram os mais mencionados. As feiras de agroindústria são uma fonte concentrada de inovação. A vantagem dessas feiras é que toda a cadeia produtiva está ali reunida, apresentando ao produtor doses maciças de proposições de inovação. Os canais de venda e revenda também são eficazes. As empresas de ponta mantêm contato com seus principais clientes através de um canal direto. Finalmente, os dias de campo são oportunidades para troca de informações entre os produtores. Muitas vezes, esses dias campo visam avaliar e observar determinada tecnologia que um dos produtores está testando.
Análise das respostas da questão 4

De que forma a inovação tecnológica dos equipamentos e insumos utilizados para a produção de grãos lhe beneficiou?

Embora manifestando sua opinião através de diferentes modos, os produtores ressaltam que o aumento do resultado na colheita foi o principal benefício que tiveram, tanto no caso da soja quanto no caso do arroz. Quando eles se referiram a uma maior qualidade da colheita, isso inclui não somente a própria qualidade do grão, colhido mais limpo, com menos quebra, mas no momento certo de maturação, o que é possibilitado por todas as inovações referentes à agricultura de precisão. No arroz, colher grão verde, descascar ou quebrar o grão no momento da colheita pode ser a diferença para reduzir ainda mais a pequena margem de lucro que os arrozeiros possuem. Para os produtores de semente, seja de soja ou arroz, a qualidade do que está sendo colhido é fundamental.

A maior produtividade por hectare foi bastante ressaltada. A evolução da quantidade colhida por hectare para ambos os grãos no Estado mostra o quanto a tecnologia conseguiu extrair mais de uma mesma área. Aliada a isso, as perdas durante a colheita foram reduzidas por uma maior tecnologia nas colheitadeiras, que monitoram as perdas e regulam sua velocidade para adequar-se ao que foi programado. A redução das perdas está associada à implementação de defensivos mais eficazes, com um espectro mais amplo de atuação. As sementes de soja e de arroz com alta produtividade, com diferentes ciclos, e com capacidade de resistir a estresses hídricos e a plantio em várzea proporcionou mais alternativas ao produtor para decidir como vai conduzir sua lavoura. As plantadeiras estão mais precisas quanto ao espaçamento entre as sementes e a quantidade de sementes dosadas, evitando um distanciamento excessivo ou reduzido.

Toda a instrumentalização digital do maquinário fornece ao produtor um diagnóstico preciso de sua lavoura. As imagens via satélite e a orientação por GPS possibilitam que o produtor tenha uma operacionalização mais efetiva e pontual sobre o que precisa fazer e onde fazer. A pulverização localizada de defensivos, evitando a sobreposição de dosagens ou de pulverizar onde não é necessário, resulta em uma redução do custo da lavoura, pois reduz a utilização dos defensivos necessários.

O conforto na operação foi ressaltado como um benefício. A programação das máquinas e seu direcionamento via GPS removeu do operador a responsabilidade pelo traçado manual do plantio, da pulverização e da colheita. Embora as máquinas ainda não sejam autônomas, incluindo as restrições da atual legislação, o peso da precisão na operação foi retirado do
operador, que passou a ser mais um controlador da autonomia da máquina do que propriamente o condutor. De outra parte, as condições físicas da cabine foram aprimoradas.

Análise das respostas da questão 5

De que forma a inovação tecnológica dos equipamentos utilizados para a limpeza, secagem e armazenagem de grãos lhe beneficiou?

Ao contrário do que ocorre com os equipamentos de produção de grãos, os produtores foram unânimes em dizer que não viram evolução tecnológica significativa nos equipamentos de beneficiamento. Isso traz duas consequências. A primeira é que, no momento em que não veem uma agregação de valor significativa nessa etapa, não se preocupam em eles próprios realizá-las. Em algumas situações, eles terceirizam esse serviço e se ocupam do principal para eles, que é garantir uma boa colheita com produtividade, qualidade e custo baixo por hectare. Uma segunda consequência é que aqueles que têm esses equipamentos, não têm incentivos para trocá-los. Como não percebem uma inovação tecnológica que justifique seu investimento, não o fazem. Além do que, os equipamentos de beneficiamento estão mais presentes na pós-coleitura do arroz do que da soja, justamente entre aqueles produtores menos capitalizados.

Vários dos produtores entrevistados não fazem operações de beneficiamento, principalmente os que plantam soja. Como essa cultura pode ser colhida mais seca, às vezes por volta de 14%, não é necessária a secagem imediata. Dependendo da regulagem da colheitadeira, o grão já sai com um grau de limpeza adequado. O armazenamento em silo é uma opção para os que não querem enviar diretamente para a comercialização, ou para os que não fazem parte de uma cooperativa. Dessa forma, a soja movimenta muito pouco os equipamentos que compõem a pós-colheita. Em alguns casos, os produtores preferem pagar um terceiro para fazer a secagem, não investindo eles próprios em secadores.

Como o arroz não é colhido a um nível de umidade tão baixo, geralmente entre 20-23%, é necessária uma secagem antes do armazenamento. Alguns produtores utilizam equipamentos já muito antigos, ou silos secadores com fornalha a lenha, um princípio já utilizado a algumas décadas. Outros produtores preferem pagar um terceirizado para secá-lo, não investindo, assim, em equipamentos próprios. Esses produtores perceberam pouca evolução tecnológica nos equipamentos. Estas modificações estão principalmente no material de construção, eficientes para reduzir o desgaste devido à movimentação do arroz; no combustível dos secadores; na capacidade volumétrica de processamento dos equipamentos; e nos controles de umidade e temperatura da massa de grãos e ar de secagem. Mesmo essas inovações tecnológicas não foram
tais que levassem os produtores a dizer que seu resultado financeiro tenha significativamente se beneficiado.

Os que têm esses equipamentos em suas instalações, tanto para arroz quanto para soja, os têm já a muito tempo, em geral mais de dez anos. Isso mostra que não é visto como um benefício decisivo a troca por equipamentos mais novos, até porque estes não apresentam muita novidade em relação ao que já possuem. A aquisição de equipamentos, quando ocorre, tende a estar associado a uma ampliação do volume plantado, como a aquisição de um novo silo, ou alguma modificação em equipamentos existentes que reduza o custo da energia.

Análise das respostas da questão 6

Quais foram as dificuldades encontradas com a nova tecnologia? Como foram contornadas?

A resposta que predominou entre os entrevistados foi a de que as maiores dificuldades que tiveram na adoção de tecnologia estão associadas aos profissionais disponíveis, à questão da manutenção e à maior dependência deles frente aos fabricantes. Embora não tenha sido uma opinião unânime, a mão de obra surge como um empecilho para novas tecnologias, ao menos em um primeiro momento. Evidentemente, um treinamento adequado pode suprir essa deficiência, como um dos entrevistados apontou. O nível de detalhamento e de sensibilidade de alguns equipamentos, basicamente relativos à produção de grãos, apresenta um desafio àqueles que até então estavam habituados a fazer tudo manualmente. De acordo com as entrevistas, o trabalhador no campo tende a ser conservador em seu modo de trabalho, sendo avesso a modificações no modo daquilo que estava fazendo até então. No entanto, uma nova geração está mais receptiva, o que leva alguns produtores a assumir uma postura de defesa de seus profissionais, dizendo que o que falta é uma orientação mais eficaz dos fabricantes quanto ao modo de utilização do equipamento.

Alguns apontaram que a manutenção e a possibilidade de manter um estoque de peças pequeno não prejudica. Com o ritmo de implementação de inovações mais intenso, com modelos de máquinas sendo lançados a cada ano, alguns fabricantes fazem com que o produtor tenha um estoque de peças maior, pois há diferenças entre os lançamentos que obrigam a isso. Outro fabricante de máquinas, ao contrário, mantém uma base comum ano a ano, e quando faz uma alteração na máquina, essa é uma alteração significativa, como uma máquina nova. Isso facilita para o produtor, porque permite manter um estoque menor de peças e só o aumentará se optar por esse novo modelo que incorpora muitas alterações.
A questão do custo de peças foi ressaltada. As peças para as máquinas novas custam mais caro e, sendo controladas pelos fabricantes, estes passam a ter os produtores mais dependentes a ele. As máquinas com mais tecnologia ficam mais sujeitas a desregulagens, o que obriga o produtor a procurar uma assistência técnica específica, e não mais realizar os consertos dentro da própria instalação do produtor.

Análise das respostas da questão 7

Como foi a relação entre você (produtor) e o fornecedor do equipamento/insumo quanto a alguma necessidade de aprimoramento tecnológico? Houve contribuição de sua parte para uma melhoria no equipamento?

Essa questão teve respostas que dependeram muito da experiência de cada produtor com seus fornecedores. Enquanto alguns disseram que contribuíram, outros não. Alguns são mais críticos, outros são mais passivos naquilo que recebem dos fornecedores. Não se pode fazer uma generalização, mas pode-se identificar alguns fatores que determinam isso. Um dos pontos é o nível cultural do produtor. Outro aspecto a considerar é o grau em que esse produtor é um beneficiador com produto de marca própria. Um outro fator que aproxima o fabricante mais dos produtores é no momento de lançamentos de equipamentos. Nessas ocasiões, alguns produtores são selecionados para testar em sua propriedade algum desenvolvimento feito pelos fabricantes. Nesse momento, os fabricantes estão atentos ao desempenho do equipamento e às observações desse produtor, fazendo as modificações necessárias no projeto original.

Embora existam casos relatados do desenvolvimento conjunto de equipamentos, de um modo geral, o produtor não contribui tanto para isso. Entre os produtores, é exceção a contribuição com o desenvolvimento de máquinas relativas à produção de grãos. De qualquer forma, é uma prática existente, com exemplos vistos quanto à John Deere, com a Stara e com um sistema de irrigação. Uma das razões apresentadas para a não contribuição com ideias de melhoria é de que a tecnologia embarcada no produto é sofisticada e de domínio do fabricante. Dessa forma, o produtor se torna simplesmente um sujeito passivo em relação àquilo que lhe é oferecido.

Uma diferença que ficou clara é que as sugestões de modificações vieram mais daqueles que também beneficiam o grão. Em dois casos entre os entrevistados houve o reconhecimento que o produtor, principalmente o produtor pequeno, acaba tendo poucas chances de contribuição. Isso tende a ocorrer, em parte, pela sua própria postura mais tímida, e em parte porque não está tão inserido no circuito mais dinâmico de inovações, principalmente o arrozeiro. Os produtores/beneficiadores sentem-se mais à vontade de questionar e de sugerir,
como reconhecendo-se em condições de estabelecer um diálogo mais de igual para igual com os fabricantes. Nesse caso, como utilizam mais amplamente equipamentos de beneficiamento, fazem sugestões não somente aos fabricantes de máquinas agrícolas, mas também aos de máquinas de beneficiamento.

Análise das respostas da questão 8

O que impediu a inovação em termos de equipamentos quando havia a percepção de que isso era necessário?

A resposta preponderante foi o custo do investimento. Embora o custo de investir em novas tecnologia seja alto tanto para a soja quanto para o arroz, o arrozeiro está mais endividado, ou se não estiver, tem uma margem de lucro muito pequena que o leva a não ser muito arrojado em termos de investimentos. O arrozeiro vive na incerteza do preço de seu produto. Assim como esse preço pode se elevar, com é o caso da safra 2019/2020, pode mal cobrir os custos de produção, como tem sido a regra. A perspectiva de um aumento das exportações de arroz abre uma janela de esperança para uma situação mais favorável, considerando o fato de que o arroz gaúcho tem uma qualidade muito boa e uma produtividade média excelente. Disso tudo resulta que o produtor de arroz age na que já tem, fazendo aquisições ou trocas devido ao desgaste, mais do que necessariamente de aprimoramento tecnológico, embora possa reconhecer a necessidade para tal.

O produtor de soja está em uma situação mais favorável e, por isso, mais otimista. O crescimento da área plantada no Estado é prova disso. O preço da soja tem se elevado gradualmente, e as perspectivas são otimistas com a entrada de mais demanda no mercado mundial. Disso resulta que a demanda por tecnologia existe. Sendo assim, os fabricantes de insumos e equipamentos se beneficiam. Pelo fato da soja ser uma cultura que exige mais cuidado, os produtores estão mais atentos ao que é oferecido no mercado no que tange à sua produtividade e redução de custo com perdas por ataques de pragas. A ampliação da área de plantio de soja tornou mais necessário adaptações a regiões que antes não eram tão favoráveis ao seu plantio. Isto resultou no desenvolvimento de novas variedades que respondessem a esse terreno, como a várzea. O oferecimento dessa tecnologia já tinha uma demanda reprimida. Da mesma forma existe a demanda reprimida por um sistema de irrigação mais eficiente para a soja.

Um outro aspecto identificado que evita a adoção de inovações é a conectividade por internet no Estado. A maioria das inovações referentes a máquinas agrícolas trabalha com sinal de satélite. As informações transmitidas ao produtor em tempo real são via internet. A falta de
conectividade em algumas regiões afasta os produtores dessa região dessas tecnologias. Eles acabam não investindo porque sabem que não vão utilizar o potencial do equipamento.

6.2.1 Síntese das Respostas dos Produtores

Os produtores de grãos buscam equipamentos com mais tecnologia no intuito de obter uma maior produtividade de grãos por hectare, com menores perdas e mantendo a qualidade requerida. A redução de custo e a facilidade do manejo na lavoura foram outros benefícios por eles ressaltados. Ainda, a tecnologia digital proporcionou uma maior quantidade de dados para o produtor de forma a melhor orientar suas decisões. No entanto, a maior tecnologia nos equipamentos traz alguns inconvenientes, principalmente referente à capacitação dos profissionais para operá-los, e da maior dependência que os produtores passam a ter dos fabricantes pela variedade de peças, pelo custo das mesmas e pela assistência técnica especializada.

Estes inconvenientes mencionados referem-se aos equipamentos relativos à produção de grãos, pois foram os identificados pelos produtores como os que tiveram maior avanço tecnológico. Em relação aos equipamentos de beneficiamento, eles não percebem uma inovação significativa. Isso faz com que não tenham incentivo em trocá-los por outros mais novos. Disso resulta que os silos, secadores, máquinas de limpeza e elevadores estejam, em muitos casos, já a décadas instalados.

Percebeu-se uma diferença de comportamento na propensão a investir em equipamentos com mais tecnologia entre os produtores de arroz e de soja. Se, por um lado, as máquinas e insumos de produção estão ligados tanto à produção de soja quanto de arroz, por outro lado os equipamentos de beneficiamento estão mais relacionados à produção de arroz. Os produtores de arroz mostram-se mais avessos a arriscar em novas aquisições, em parte pelo arroz apresentar uma incerteza maior quanto ao retorno do investimento. Como consequência, os equipamentos de beneficiamento sofrem duplamente pelo fato de serem mais ligados à cadeia do arroz, e por apresentarem poucas inovações tecnológicas que justifiquem sua aquisição, enquanto o equipamento instalado ainda desempenha sua função.

Quanto à colaboração para o desenvolvimento de novos produtos através de sugestões, foi verificado que isso tem relação direta com a formação técnica ou experiência do produtor e da sua atuação em etapas posteriores da cadeia produtiva do grão. Entre os impedimentos para a adoção de nova tecnologia, os produtores ressaltaram o custo relativo ao investimento necessário e à ausência de sinal de internet, o que impede a utilização de muitas tecnologias.
6.3 DISCUSSÃO DAS PROPOSIÇÕES

Ao longo da pesquisa documental, bibliográfica, entrevistas e visitas a feiras, foram percebidas diferenças significativas entre as duas unidades de análise. Através da comparação de alguns pontos, é possível perceber diversas diferenças entre elas de modo a ajudar a entender as dinâmicas de inovação de cada unidade de análise. O Quadro 4 lista constatações críticas que diferenciam as unidades de análise e que servirão como elementos relevantes embasar a análise das proposições.

Quadro 4 – Comparação das constatações entre as duas unidades de análise

<table>
<thead>
<tr>
<th>Item de comparação</th>
<th>Unidade de análise de produção (UA1)</th>
<th>Unidade de análise de beneficiamento (UA2)</th>
<th>Proposição</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Sentido da inovação</td>
<td>Predomínio de inovações empuradas.</td>
<td>Predomínio de inovações puxadas.</td>
<td>2</td>
</tr>
<tr>
<td>2 - Tipo de inovação</td>
<td>Presença representativa de inovações de caráter mais disruptivo.</td>
<td>Predomínio de inovações incrementais.</td>
<td>3</td>
</tr>
<tr>
<td>3 - Forma de competição dentro da análise</td>
<td>Competição baseada na tecnologia. Maior percepção do produtor de que tecnologia lhe trará maior ganho.</td>
<td>Competição baseada no preço. Menor percepção de que investimentos em equipamentos inovadores lhe trarão mais ganhos.</td>
<td>1,3</td>
</tr>
<tr>
<td>4 - Énfase da inovação</td>
<td>Predomínio de inovações técnicas de modo de funcionamento.</td>
<td>Predomínio de inovações relacionadas ao aumento de capacidade de processamento.</td>
<td>2,3</td>
</tr>
<tr>
<td>5 - Integração entre as empresas</td>
<td>Maior integração entre as empresas atuantes nesse segmento quanto ao desenvolvimento de inovações tecnológicas.</td>
<td>Menor integração entre os fabricantes e seus fornecedores quanto ao desenvolvimento conjunto de inovações tecnológicas.</td>
<td>4</td>
</tr>
<tr>
<td>6 - Conexão entre as inovações</td>
<td>Uma inovação 'puxa' a outra: há a necessidade de uma empresa inovar devido a uma inovação em um elo anterior da cadeia.</td>
<td>Inovações são mais independentes e isoladas, com poucas exceções no referente a softwares de controle.</td>
<td>2,4</td>
</tr>
<tr>
<td>7 - Dependência da capacidade de operação</td>
<td>Algumas vezes, a trajetória tecnológica é determinada pela capacitação da operação.</td>
<td>A capacitação da operação não é empecilho para a adoção da inovação tecnológica.</td>
<td>3</td>
</tr>
<tr>
<td>8 - Forma de diferenciação entre as empresas</td>
<td>As empresas deste segmento estão buscando se diferenciar por serviço.</td>
<td>Diferenciação pelo custo ainda prevalece.</td>
<td>1</td>
</tr>
<tr>
<td>9 - Fidelização à marca</td>
<td>A fidelização é importante na concorrência para a aceitação das inovações. O produtor percebe mais benefícios mantendo a marca.</td>
<td>A fidelização a uma marca tem uma menor importância no desempenho operacional para o produtor.</td>
<td>1</td>
</tr>
<tr>
<td>10 - Pacotes tecnológicos</td>
<td>As etapas de produção nesse setor são mais interconectadas, exigindo uma onda de inovações para um benefício geral (preparo, plantio, proteção e colheita).</td>
<td>As etapas são mais independentes. Há produtores que secam, mas não armazenam os grãos ou lampam e não precisam secar os grãos.</td>
<td>4</td>
</tr>
<tr>
<td>11 - participação de pequenas empresas</td>
<td>Este segmento possibilita que pequenas empresas (start ups) contribuam para a inovação.</td>
<td>Segmento ocupado por empresas de médio e grande porte.</td>
<td>4</td>
</tr>
<tr>
<td>12 - Função das máquinas e equipamentos</td>
<td>Maior possibilidade de um mesmo equipamento ser adaptado para diferentes funções.</td>
<td>Não existe essa possibilidade, pois os equipamentos têm finalidades bem definidas, com exceção dos sítios secadores, em algumas situações.</td>
<td>1,3</td>
</tr>
</tbody>
</table>
Continuação Quadro 4

<table>
<thead>
<tr>
<th>Item de comparação</th>
<th>Unidade de análise de produção (UA1)</th>
<th>Unidade de análise de beneficiamento (UA2)</th>
<th>Proposição</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 - Versatilidade das máquinas e equipamentos</td>
<td>Equipamentos versáteis, podem ser utilizados para diferentes tipos de grãos</td>
<td>IGUAL, buscam equipamentos versáteis para não ficar na dependência de um só grão. Rotatividade de cultura também preserva o solo.</td>
<td>2</td>
</tr>
<tr>
<td>14 - Objetivo na adoção da inovação pelo produtor</td>
<td>O foco das inovações é mais produtividade, produzir mais.</td>
<td>O foco das inovações é manter a qualidade do que se tem, não perder.</td>
<td>2,3</td>
</tr>
<tr>
<td>15 - Complexidade da decisão do produtor</td>
<td>Maior complexidade de variáveis para o produtor tomar uma decisão.</td>
<td>Menor complexidade de variáveis, pois as variáveis que devem ser levadas em conta atuam mais isoladamente.</td>
<td>2</td>
</tr>
<tr>
<td>16 - Forma de competitividade entre as inovações</td>
<td>Competitividade em produtividade.</td>
<td>Competitividade em custo.</td>
<td>1,3</td>
</tr>
<tr>
<td>17 - Efeito da tecnologia na cadeia produtiva</td>
<td>Projetos de linha. Soluções inovadoras são generalizadas, o que pode incentivar a cadeia produtiva. Isso reduz a agilidade da adoção da tecnologia, mas uma vez adotada, a sua propagação é mais ampla e gera efeitos multiplicadores.</td>
<td>Projetos customizados, de acordo com a necessidade do produtor. Pouco estímulo para a cadeia produtiva. Isso pode dar agilidade à incorporação da tecnologia por uma empresa, mas a sua transmissão aos outros atores da cadeia é mais lenta.</td>
<td>2</td>
</tr>
<tr>
<td>18 - Decisão de investimento</td>
<td>Menos operações pós-colheita para a soja. O produtor de soja, com um produto que está sendo financiamento, vai estar disposto a investir mais nos equipamentos até a colheita, mas nem tanto nos após a colheita.</td>
<td>No arroz há mais operações pós-colheita. Mas o produtor de arroz não está capitalizado, o que faz com que não tenha condições de pagar por tecnologia mais caras nessas operação de pós-colheita.</td>
<td>2</td>
</tr>
<tr>
<td>19 - Alcance das inovações</td>
<td>Soluções tecnológicas abrangentes, para pequenos médios e grandes produtores. Várias inovações ficaram ao alcance de pequenos produtores.</td>
<td>As inovações tecnológicas tem se dirigido mais para o aumento do volume de processamento de grãos, mais característico para as grandes propriedades.</td>
<td>1,2</td>
</tr>
<tr>
<td>20 - Âmbito da solução</td>
<td>Tudo tem que ser resolvido dentro da lavoura. A solução tem que estar nas mãos do produtor.</td>
<td>Há a escolha de terceirizar partes dessa etapa fora das instalações, transferindo o investimento em tecnologia de beneficiamento para outra parte.</td>
<td>2</td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.

A seguir, são discutidas as proposições elaboradas no Capítulo 2.

Proposição 1

As empresas das unidades de análise de produção (UA1) e de beneficiamento de grãos (UA2) foram conduzidas à inovação tecnológica pela possibilidade de diferenciação em seu mercado.

A inovação nos equipamentos e insumos, tanto na unidade de análise de produção (UA1) quanto na de beneficiamento (UA2), representa uma possibilidade de diferenciação frente aos concorrentes. Essa proposição buscou identificar de que forma isso acontece nas empresas das duas unidades de análise. Esta proposição baseou-se principalmente nos aportes teóricos de Schumpeter (2017) e Penrose (2006). Para Schumpeter (2017), a capacidade de gerar inovação, ou pelo menos de assimilar as mudanças tecnológicas de forma mais rápida, é fundamental para preservar a sobrevivência das empresas em um ambiente de concorrência. As empresas inovadoras obtêm vantagem por diferenciarem-se das concorrentes. Em seu trabalho, Penrose
(2006) objetiva compreender o processo de crescimento da firma e os limites internos e externos à sua expansão, salientando que uma das principais funções do empresário é buscar alternativas de negócios e combinar os recursos produtivos disponíveis para auferir resultados crescentes.

O ritmo de inovação dos equipamentos e insumos da unidade de análise de produção são maiores do que os da unidade de análise de beneficiamento. A cada ano, novos modelos de máquinas agrícolas são oferecidos aos produtores, com incorporações tecnológicas voltadas a uma maior produtividade, ou uma capacidade maior de processar dados e informações, como pode ser visto nas feiras de agroindústria que ocorrem no Estado. Nessas feiras, é sempre marcante a presença dos fabricantes de máquinas e implementos agrícolas, com amplos espaços ocupados pelos últimos modelos e uma significativa quantidade de técnicos disponíveis para receber os possíveis clientes. É de praxe que as últimas modernizações tecnológicas estejam ressaltadas em cartazes ao lado dos novos modelos. Alguns fabricantes colocam um histórico da evolução tecnológica do equipamento, com fotos ressaltando as diferenças. Isso é algo raramente percebido nas empresas que fazem parte da unidade de análise de beneficiamento.

Nas duas principais feiras do agronegócio gaúcho, a EXPONTEER e a EXPODIRETO COTRIJAL, a presença dos fabricantes de máquinas e insumos relacionados à produção de grãos é marcante. Na EXPONTEER pode ser vista uma presença maior de equipamentos de beneficiamento, embora bem inferior a todos aqueles relacionados à produção de grãos. Na EXPODIRETO essa diferença é mais marcante, com quase 90% do espaço destinado somente à produção. Além das máquinas agrícolas, a presença das empresas relacionadas a sementes e defensivos é grande, com elaboradas apresentações de filmes e animações, inclusive para atrair os estudantes. Percebe-se claramente a intenção de criar uma familiaridade com a marca e aplicações mesmo para aqueles que não estão diretamente ligados à produção de grãos.

Isso contrasta com o que foi visto em relação à presença e atuação dos fabricantes de equipamentos de beneficiamento. Nessas feiras, não somente a presença de empresas dessa unidade de análise é bem menor, como também o atendimento é bem diferente. Não somente há muito menos técnicos disponíveis para atender o cliente, como também se percebe um atendimento mais pontual, direto para entender a necessidade específica do cliente e propor a solução. Ou seja, o modelo de negócio dessas empresas é feito via projetos mais individualizados do que os produtos das empresas da unidade de análise de produção.

O exemplo dado nas feiras pelo comportamento das empresas das duas unidades de análise explicita o modo de atuação e concorrência das mesmas no mercado. A competição entre as empresas da UA1 ocorre muito mais em termos de tecnologia do que em termos de preço. A diferenciação tecnológica baseada em inovações, divulgada ostensivamente, e os
benefícios por ela trazidos são a base da competição entre essas empresas. A competição em tecnologia tende a gerar resultado porque o produtor percebe e paga pela tecnologia embarcada, ou seja, está disposto a investir em um equipamento ou insumo mais caro porque vê o retorno de forma a colher mais.

O ritmo mais lento de inovações tecnológicas nas empresas da UA2 faz com que a competição não se baseie tanto nesse aspecto, mas sim no atributo de preço. Embora as maiores empresas nesse ramo tenham assumido uma posição de equipamentos com qualidade de desempenho, e nisso baseiam sua vantagem competitiva, a competição no mercado ainda está em boa parte apoiada no custo de soluções propostas individualmente ao produtor. Isso se deve basicamente ao fato de que o produtor vê no investimento nesses equipamentos o resultado na forma de não perder mais, por exemplo, na qualidade do grão, ao invés de ganhar mais como, por exemplo, produção por hectare e o custo do manejo.

Outro aspecto levado em conta na concorrência é quanto à diferenciação por serviço. As empresas da UA1 competem não somente na tecnologia oferecida, mas também a partir dos serviços prestados do pós-venda. A fidelização do cliente é muito mais buscada nesse ramo do que no dos equipamentos de beneficiamento. Quando um produtor vai adquirir uma outra máquina agrícola, ele leva em consideração as vantagens de trabalhar com a mesma marca. Boa parte em virtude das peças de reposição e da assistência técnica. Quando, por outro lado, o produtor vai adquirir uma outra máquina de pré-limpeza ou um outro silo, ou transportador, a menor interdependência desses equipamentos faz com que seja aberto espaço para uma outra marca sem prejudicar sua eficiência operacional. Além disso, a maior simplicidade desses equipamentos faz com que as trocas sejam menos frequentes. Um secador terá muito mais anos de uso e muito menos diferenças tecnológicas entre um modelo novo e um antigo do que, por exemplo, uma colheitadeira. Esse maior ritmo de novos modelos, também bem exemplificado na questão de defensivos e sementes transgênicas, faz com que essa fidelização assuma um papel crucial na concorrência entre as empresas.

Baseado no que foi dito, conclui-se que a proposição foi comprovada, mas com ressalvas quanto ao tipo de diferenciação que existe dentro de cada unidade de análise no mercado. As inovações tecnológicas adotadas nas duas unidades de análise tiveram a finalidade de reforçar sua posição frente à concorrência, mas seguiram caminhos distintos. Para as empresas da UA1, a inovação tecnológica proporciona uma diferenciação baseada na tecnologia que traz maior resultado em termos de produtividade por hectare e qualidade do grão. Para as empresas da UA2, a inovação tecnológica adotada está baseada em uma redução do custo do equipamento, a uma maior durabilidade do mesmo e a uma maior capacidade de processamento mantendo a
qualidade do grão. Para possibilitar o tipo de diferenciação que sustenta o modo de competição em cada uma das unidades de análise, pode-se dizer que a inovação tecnológica assume um papel mais preponderante na UA1 do que na UA2.

Proposição 2

A inovação tecnológica da agroindústria assumiu características diferenciadas quando comparadas as unidades de análise de produção e beneficiamento de grãos. Essas unidades de análise apresentaram diferenças quanto à dinâmica de inovação nas cadeias produtivas do arroz e da soja.

Essa proposição foi analisada quanto ao modo em que as inovações tecnológicas ocorreram nas duas unidades de análise. Para isso, foi utilizada a discussão sobre inovação empurrada (technology push), ou puxada pela demanda (demand pull) (Schmoookler, 1962; Rosenberg, 2006), Freeman, 1979), e viabilidade e dependência entre as inovações (Landes, 2005; Marx, 2013; Albuquerque, 2017; Rosenberg, 2006).

As empresas e fabricantes da unidade de análise de produção (UA1) tiveram uma maior variedade de estímulos para a inovação do que as da unidade de análise do beneficiamento (UA2). Isso se deve a diversos fatores. As empresas que fazem parte da UA1 estão mais interligadas e dependentes da tecnologia que uma oferece à outra, no sentido de que uma deve inovar para possibilitar a utilização de algum dispositivo que outra inovou. A utilização de determinado defensivo, com características diferentes de escoamento, vai exigir uma modificação no desenho interno do bico de pulverização. Modificações feitas nos bicos de pulverização, exigirão adaptações nas máquinas agrícolas. O desenvolvimento de um herbicida mais forte e com mais amplo poder de atuação, vai exigir o desenvolvimento de variedades genéticas mais adaptadas. Estes são alguns exemplos descritos nas entrevistas que mostram que há um encadeamento e dependência de inovações nos produtos da UA. Isso também aproxima essas empresas de modo a fornecer soluções conjuntas para o produtor.

Os equipamentos utilizados no beneficiamento de grãos apresentaram poucas alterações em seus projetos ao longo dos anos. Ainda, estas inovações tendem a mal desencadear outras. Portanto, há menos interdependência na cadeia de inovações. A principal demanda por parte dos produtores de arroz e soja é a capacidade dos equipamentos. Com a maior produtividade proporcionada pelas máquinas e insumos na produção de grãos, os produtores veem-se pressionados a agilizar as operações de pós-colheita. Por essa razão, os equipamentos de beneficiamento têm atendido uma demanda de volume de produção com as alterações técnicas relacionadas ao volume de processamento. Isso faz com que esses equipamentos incorporem
mais tecnologia relacionada à sua dimensão, com silos maiores, seca- dores com maior vazão de ar quente para uma maior vazão de secagem, transportadores com mais capacidade, e máquinas de pré-limpeza com maior número de telas.

Uma outra diferença percebida entre as dinâmicas de inovação das duas unidades de análise é em relação a elas serem mais puxadas pela demanda (demand pull) ou empurradas pela tecnologia (technology push). Embora todas as empresas manifestassem-se no sentido de que atendiam às necessidades de seus clientes, através do exame das inovações apresentadas, percebeu-se que as inovações tecnológicas nos equipamentos da UA1 eram mais ‘empurradas’, enquanto que as inovações tecnológicas da UA2 eram mais ‘puxadas’, principalmente relacionadas à necessidade de um maior volume de processamento de grãos, como explicado anteriormente. Foi verificado que nas entrevistas os próprios fabricantes de equipamento de beneficiamento (UA2) diziam se colocar em uma posição mais reativa do que ativa na proposição de inovações. Essa reação era em decorrência do aumento de produtividade por hectare tanto no arroz como na soja, devido exatamente às inovações tecnológicas apresentadas na produção de grãos.

Há uma diferença de ênfase quanto aos aspectos mais valorizados nas máquinas e equipamentos relativos à produção e beneficiamento de soja e arroz. A produção de soja do Estado é, em boa parte, exportada. Outra parte é destinada à produção de biodiesel. Disso resulta que os equipamentos mais relacionados a este grão estejam na UA1 do que propriamente no beneficiamento. A secagem após a colheita raramente é feita na soja, pois esta é colhida com uma umidade mais baixa. Os produtores de soja valorizam e se interessam por inovações que lhes trazam uma maior produção e um custo menor para a proteção das plantas. Por isso, uma proteção da lavoura com novos herbicidas, aplicação localizada desses herbicidas, novos sistemas de irrigação, e uma colheita mais otimizada lhes traz diretamente um retorno maior sobre o que foi investido através do aumento da produção e da redução do custo. É através dessas demandas que os setores de Pesquisa e Desenvolvimento (P&D) incorporam inovações a seus produtos.

A produção de arroz, por sua vez, além da importância de uma boa produtividade no campo, depende de algumas importantes etapas de beneficiamento, como a secagem. Isso faz com que haja um maior peso relativo dos equipamentos referentes a esse grão na UA2. Disso resulta que a demanda por inovações em equipamentos de beneficiamento dependa em boa medida da produção de arroz. Enquanto o produtor de soja tem o interesse de produzir mais, a um custo menor, o produtor de arroz tem, além dessa preocupação, a de conservar a qualidade
do que produziu. Por isso, a preocupação de reduzir ao máximo quebras de grãos no transporte, secagem e armazenagem.

Com a expansão da soja para o Sul do Estado do RS, vários produtores estão dividindo suas terras entre as duas culturas. A rotação de culturas é recomendada, pois é a base para o controle de pragas, melhorando, adicionalmente, a fertilidade do solo. Cultivar constantemente a mesma cultura no mesmo local exaure os nutrientes do solo de que uma determinada cultura precisa. Portanto, a rotação de cultura pode reduzir a demanda do uso de fertilizantes químicos. Por esta razão, os fabricantes de máquinas e equipamentos das duas unidades de análise, produção e beneficiamento, buscam oferecer equipamentos mais versáteis, de modo a poderem ser usados com os dois grãos. Isso é particularmente buscado por produtores de arroz, que dependem mais fortemente dos equipamentos de beneficiamento.

Algo constatado tanto entre fabricantes quanto entre produtores é o diferente comportamento quanto à propensão de investir entre os produtores de arroz e de soja. Ficou claro a partir das entrevistas que o produtor de soja está mais capitalizado e otimista quanto ao seu grão. O Brasil, como grande exportador de soja, e ainda com a utilização da soja para biocombustível, traz uma perspectiva muito favorável aos que cultivam este grão. Isso faz com que o produtor de soja esteja mais capitalizado e propenso a investir em tecnologia. O produtor de arroz, por outro lado, depende muito do preço mínimo estabelecido pelo governo federal e sempre luta para deixar seus custos abaixo do preço. Dessa forma, muitas vezes acaba se endividando, dificultando assumir maiores investimentos. Dessa forma, percebe-se um ritmo maior nas inovações relativas à produção de soja pela percepção dos fabricantes de que sua inovação terá saída. Já para o arroz, o produtor é mais conservador, às vezes pela sua própria incapacidade financeira de investimento, o que faz com que os fabricantes de equipamento de beneficiamento tenham, menos estímulo para as inovações, respondendo apenas a solicitações mais individualizadas e normalmente referentes a volume de beneficiamento.

Após os levantamentos feitos, conclui-se que a proposição foi comprovada. As duas unidades de análise apresentaram diferentes características no modo como ocorreram as inovações. Enquanto as inovações relacionadas à UA1 voltam-se a produzir mais, as inovações da UA2 estão voltadas a não perder em termos de qualidade aquilo que se colheu. A UA1 apresentou uma maior dinâmica de inovações por uma série de razões, entre as quais uma maior interligação e dependência entre elas, além de uma postura mais ativa quanto a propostas aos produtores. Ainda, essas inovações responderam por uma maior busca de produtividade no campo, o que está muito ligado ao crescimento da produção de soja no Estado. As inovações da UA2 tiveram um menor dinamismo em suas inovações, com poucas modificações nas
últimas décadas. As inovações identificadas na UA2 demonstraram ser mais reativas, isoladas e com poucos efeitos de multiplicação. Em parte, isso pode ser explicado por estarem mais ligadas ao arroz, já que a soja tem uma menor dependência desta etapa. Dessa forma, o dinamismo das inovações mostrou estar relacionado à cadeia produtiva de cada grão.

Proposição 3

Em virtude do grande crescimento na produção de grãos no Estado nas últimas décadas, a dinâmica das inovações tecnológicas nas máquinas e equipamentos de produção e beneficiamento de grãos baseou-se mais em inovações disruptivas do que em inovações incrementais.

Essa proposição procurou analisar qual foi a preponderância de um ou outro tipo de inovação em cada uma das unidades de análise objeto do trabalho. Ela faz uma ligação entre o tipo de inovação e a trajetória tecnológica que, de um modo geral, resultou de sua implementação. A base teórica que sustentou a elaboração dessa proposição leva em conta os aspectos relacionados a inovações incrementais e disruptivas (ROSENBERG; MOWERY, 2012; FREEMAN, 1979; KLINE; ROSENBERG, 1986; FREEMAN; PEREZ, 1988), e trajetória tecnológica e revoluções tecnológicas (DOSI, 2006; PEREZ, 2010). As alterações nos equipamentos e insumos foram analisadas quanto aos seus efeitos disruptivos ou não. Percebe-se que a presença de inovações incrementais foi a regra na unidade de análise de beneficiamento de grãos (UA2). A unidade de análise de produção de grãos (UA1), por sua vez, apresentou algumas inovações que tiveram a capacidade de alterar significativamente o modo de operação e expandir seus efeitos e resultados.

Embora seja dito que a agricultura não mudou em seu modo de ser, ou seja, a semente tenha que ser plantada, protegida e o grão, colhido, houve alterações profundas no modo como essas operações foram feitas. Duas inovações tecnológicas revolucionaram e determinaram as trajetórias de inovações que vieram a seguir. Essas duas inovações tecnológicas que determinaram boa parte do posterior desenvolvimento de outras inovações foram relacionadas à biotecnologia (genética do grão) e a informatização (agricultura de precisão). Ambas fazem parte da UA1. Essas inovações de caráter mais disruptivo provocaram uma série de inovações incrementais em outros insumos e equipamentos, principalmente por uma conexão e interdependência muito próxima entre eles. Essas duas inovações geraram uma reação em cadeia que proporcionou uma maior produtividade e uma considerável redução de perdas na colheita. Por outro lado, não foi percebida a existência de inovações disruptivas nos
equipamentos da UA2, fazendo com que as modificações examinadas ao longo das últimas décadas fossem basicamente incrementais.

O desenvolvimento de sementes geneticamente modificadas (transgênicas) representou uma resposta às contínuas perdas na lavoura devido a ervas daninhas, fungos e insetos. Uma justificativa frequentemente proferida pelos defensores destes produtos é que o Brasil, com seu clima tropical, é altamente suscetível a diversos tipos de pragas que afetam a produção de grãos. Há, também, a justificativa de que a crescente população mundial só poderá ser alimentada por uma crescente produção de grãos, o que só será possível com a ajuda da biotecnologia. Na base das duas justificativas está o desenvolvimento de sementes com uma maior resistência a ambientes mais inóspitos, como o estresse hídrico, e mais resistente a defensivos agrícolas que tenham uma ação mais ampla no controle das pragas.

Desde o primeiro desenvolvimento genético da soja nos Estados Unidos, nos anos 1990, até sua chegada ao Rio Grande do Sul, em 2003, presenciou-se diferentes gerações de sementes transgênicas. Nesse momento, prepara-se a apresentação da soja Intacta 2 Xtend, da Bayer para a safra do ano que vem (2021). Essa semente é apta a suportar a aplicação do herbicida Dicamba, ainda não utilizado no Brasil, mas em vias de ser aprovado. Esse novo herbicida, como os outros antes dele, foram desenvolvidos para combater um espectro mais amplo de pragas e organismos que já haviam se adaptado aos herbicidas utilizados, como o Glifosato. Pelo que foi conversado com os produtores rurais, a soja transgênica foi bem recebida pela facilidade do manejo que trouxe. Isso se deve a maior segurança de se obter uma produtividade adequada e de maior proteção contra as pragas. Esse aspecto, aliado ao mercado favorável à soja, fez com que uma maior produção, com mercado seguro, desse ampla aceitação a esses insumos. A maior prova disso é a erradicação quase total de soja convencional no Rio Grande do Sul. Isso representou um salto tecnológico que se propagou para outros elos dessa cadeia de produção, como o desenho dos bicos de pulverização. A modificação da morfologia da planta afetou, por sua vez, alguns aspectos construtivos das máquinas agrícolas. Da mesma forma, o novo herbicida Dicamba afetará o desenho interno do bico de pulverização e a necessidade do equipamento de pulverização se autolavar, pois esse defensivo, por ser perigoso e nocivo, não deve deixar resíduos na posterior utilização da máquina na aplicação de um outro produto.

A maior informatização da lavoura possibilitou o que passou-se a chamar de agricultura de precisão, ou Agricultura 4.0. Grandes volumes de dados que antes ou não existiam, ou não eram considerados, passaram a ser objeto de atenção e base de decisões por parte do produtor. O resultado foi uma maior seletividade das áreas na aplicação de defensivos e um maior critério no momento da colheita, colhendo algumas áreas antes de outras dependendo de seu período
de maturação. A informatização e a transmissão de dados instantâneos ao produtor agilizaram o processo de decisão de colher, irrigar e proteger uma determinada área. O resultado foi, não só um aumento de produtividade, mas uma aplicação mais seletiva de defensivos, viabilizado pelo uso de drones. A utilização de softwares para a coleta e processamento de dados abriu caminho para uma série de Agtechs que, em colaboração com as grandes empresas, possibilitaram gerar soluções ao produtor.

Os aspectos mencionados anteriormente foram possibilitados por uma maior conectividade digital do campo. Isso possibilitou a inclusão de softwares que, utilizando georreferenciamento, funcionem de modo autônomo. Essas máquinas agrícolas passaram a depender menos do operador para o traçado da colheita e aplicação de defensivos, aproveitando melhor a área da lavoura, colhendo no momento certo e evitando a sobreposição na aplicação de defensivos. Máquinas totalmente autônomas já são uma realidade, mas ainda não são permitidas no Brasil. Constatando a dificuldade de diferentes marcas de máquinas e diferentes softwares para cada marca, já foram desenvolvidos softwares capazes de conectar essas diferentes máquinas. Dessa forma, a informatização abriu caminho para uma base mais segura na decisão do produtor e uma operacionalização mais racional de todo o sistema.

Uma limitação identificada pelos fabricantes de máquinas agrícolas e que, em parte, determina o ritmo do oferecimento das inovações, é a capacidade dos profissionais envolvidos. Segundo estes fabricantes, a utilização de máquinas agrícolas com maior nível de informatização tem encontrado dificuldades entre profissionais de operação ainda não devidamente treinados e habituados a máquinas mais simples, totalmente manuais. Algumas vezes, a preferência por parte do produtor por equipamentos mais simples baseia-se no reconhecimento das dificuldades que teria com o equipamento mais aperfeiçoado.

Na análise dos equipamentos de beneficiamento de grãos, as inovações relatadas nesse trabalho caracterizam-se como incrementais. Dessa forma, elas não modificam, de modo revolucionário, o funcionamento ou a concepção dos equipamentos. Os quatro equipamentos estudados no Capítulo 5, máquinas de pré-limpeza, secadores, transportadores e silos, tiveram poucas alterações nas últimas cinco décadas, e quando tiveram, foram em boa parte relacionadas à necessidade de aumentar o volume de processamento de grãos. Um segundo aspecto que incentivou as inovações foi o objetivo de preservar a qualidade do grão. Embora um equipamento que processe grãos possa ter inovações disruptivas, mesmo sendo somente uma questão de maior volume de processamento ou a preservação da qualidade, o que foi verificado é que o modo de operação do equipamento não se alterou. A requisição de um maior volume pode ser apontada como a principal diferença entre seus congêneres de 50 anos atrás.
Os materiais de construção desses equipamentos apresentaram modificações, para suportar um trabalho mais pesado e para evitar o desgaste excessivo, como é o caso em todos eles. Cada um desses quatro equipamentos apresentou algumas alterações incrementais características de sua operação. Nesse momento, algumas dessas alterações são salientadas a título de exemplo. As máquinas de limpeza tiveram sua estrutura alterada para a possibilidade de mais níveis de quadro, com a finalidade de dividir o fluxo de grãos. Nesses mesmos equipamentos, a facilidade de troca de telas e quadros aumentou pela utilização de soluções baseadas em engates rápidos. Para evitar o desgaste pela abrasividade do arroz, alguns materiais mais resistentes substituíram outros.

Os secadores tiveram inovação principalmente em relação ao fluxo de ar, com a finalidade de proporcionar um maior contato com os grãos. As fornalhas desses secadores evoluíram tanto no sentido de segurança quanto no sentido de poder trabalhar com diferentes combustíveis, como casca de arroz e gás natural, além da lenha. Um avanço que segue a linha da informatização é a maior utilização de sistemas de controle, feitos através de sensores que substituem uma ação que até então era dependente do operador. Embora ainda não prescinda da operação humana, os secadores passaram a ter uma operação mais controlada, o que beneficia a integridade do grão através de uma melhor modulação da temperatura do ar.

Os transportadores verticais e horizontais tiveram modificações referentes ao material de construção, como a utilização de canecas de polietileno de alta densidade nos elevadores de caneca, substituindo as de aço. Os elevadores aprimoraram seu sistema de vedação, impedindo a entrada de umidade e preservando a qualidade do grão. O acesso mais facilitado para manutenção, através de engates rápidos, foi uma inovação em todos os transportadores, assim como dispositivos autolimpantes nos elevadores e transportadores de correia e sensores de embuchamento.

Os silos aprimoraram seu material construtivo para que grãos com diferentes ângulos de repouso, como arroz e soja, possam ser utilizados no mesmo equipamento. A adaptação de aquecimento do ar circulado no silo, com diferentes tipos de fonte de energia (lenha, resistência elétrica, gás) foi um avanço no sentido de substituir parte da secagem. Ainda, com o objetivo da preservação do grão, uma melhor distribuição no carregamento e um sistema de termometria mais confiável, com acionamento automático dos aeradores, e transmissão digital dos dados foram inovações adotadas.

Baseado no que foi discutido, conclui-se que a proposição foi parcialmente comprovada. A dinâmica de inovação tecnológica nos equipamentos de beneficiamento de grãos baseou-se em inovações incrementais, enquanto que as inovações relativas à produção assumiram alguns
aspectos disruptivos, o que os levou a distintas trajetórias tecnológicas. Embora tenham sido várias as inovações dos equipamentos de beneficiamento, elas seguiram uma linha evolutiva de continuidade e não de ruptura. Não houve uma inovação que pudesse alterar a trajetória tecnológica que vinham seguindo. As inovações foram feitas baseadas em um acúmulo de conhecimento e experiência do que já vinha sendo feito. Quando a informatização foi utilizada, como no caso de secadores e silos, o seu avanço foi limitado pela própria concepção de operação do equipamento. Não há uma rede interligada com outros equipamentos. Eles operam por si e sua ação termina no momento em que o grão é despachado para a etapa seguinte. Isso difere dos equipamentos da unidade de análise de produção de grãos, em que há momentos mais disruptivos, como visto, com inovações que trazem novas oportunidades para outras inovações. A teia de interconexões entre estes equipamentos é mais complexa, com lacunas que podem ser ocupadas por Agtechs que, por sua vez criam outras oportunidades. A dinâmica dessa unidade de análise é maior, se não maior, também, as oportunidades de inovação.

Proposição 4

As empresas pertencentes às unidades de análise de produção e de beneficiamento de grãos apresentam comportamentos similares quanto à troca de tecnologia e conhecimento com outros atores.

Essa proposição foi elaborada com o intuito de levantar até que ponto os setores em que as empresas das duas unidades de análise estão inseridas possuem uma sinergia e um estímulo conjunto para a inovação tecnológica. Vários autores reforçam a ideia de que a inovação é mais dinâmica em ambientes de cooperação ou mesmo competição entre os diferentes atores. (CASTELLS, 2016; ROSENBERG, 2006; SCHUMPETER, 2017). Procurou-se avaliar até que ponto as inovações em cada unidade de análise foram o resultado de uma maior ou menor rede de cooperação entre agentes diversos, incluindo universidades e órgãos governamentais. (EDQUIST, 2005). Essa complementaridade sugere que pode ser produtivo pensar cada um desses principais conjuntos de inovações dentro de uma perspectiva sistêmica. (ROSENBERG, 2006; LUNDVALL, 1988; MALERBA, 2002).

Ao longo da pesquisa foi percebido um diferente nível de relação entre as empresas que fazem parte da unidade de análise de produção (UA1) e as que fazem parte da unidade de análise de beneficiamento (UA2). No primeiro caso, as empresas e outros atores da cadeia produtiva estimulam-se quanto à adoção de inovação. Já no segundo caso percebe-se um maior distanciamento entre elas e uma atuação mais individual quanto às inovações. O resultado disso é um dinamismo diferenciado e maior no primeiro grupo (UA1) comparado ao segundo (UA2).
As empresas da UA1 estimulam-se quanto à inovação em dois aspectos. O primeiro aspecto é quanto à dependência em termos de inovação que partes, equipamentos e insumos têm uns dos outros. A inovação que um fabricante adota acaba sendo dependente da ação de outro para que chegue ao cliente final. Foram percebidos e relatados casos em que uma inovação à montante na cadeia produtiva induziu modificação em determinado equipamento à jusante. A competição entre as empresas é outro aspecto que induz inovações. Como a concorrência nessa unidade de análise é mais forte em tecnologia do que em custo, as empresas têm um forte incentivo a inovar para não perder mercado. Dessa forma, as inovações acabam se estimulando ao longo de toda a cadeia.

A causa desse maior estímulo entre as empresas da UA1 parece estar associada à maior interdependência das etapas que compõem a produção dos grãos. A solução final para o produtor não será a ação de uma empresa, mas sim uma ação conjunta que possibilitará isso. Para que uma nova semente tenha uma ação mais efetiva, ela dependerá desde os insumos até a colheita final para dar o resultado esperado. De modo contrário, ações individuais não terão alcance esperado. Isso ocorre de outra forma nas empresas que compõem a UA2. Com raras exceções, como quanto à termometria, essas empresas trazem em si a solução. Elas bastam a si mesmas. Isso ocorre pela maior independência das etapas de beneficiamento. A única dependência entre elas é quanto ao volume. Caso seja instalado um secador com maior capacidade, provavelmente os transportadores da instalação de beneficiamento devam ser trocados para dar escoamento a essa nova vazão de grãos. Como já discutido anteriormente, acaba sendo uma inovação associada ao volume muito mais do que de nova tecnologia.

Uma outra diferença entre as duas unidades de análise é o quanto a complexidade da malha da cadeia produtiva colabora para a existência de mais atores que contribuem para as inovações. Considerando-se toda a cadeia de produção de arroz e soja pode-se perceber uma discrepância em termos de complexidade da malha de conexões entre as empresas das duas unidades de análise. As Agtechs na unidade de análise de produção agem como pequenos impulsionadores de inovações pontuais, provendo as grandes empresas com uma tecnologia que não possuem. Posteriormente, algumas Agtechs acabam sendo incorporadas pelas empresas.

A presença de estudos efetuados pelas Instituições de Ensino Superior e Centros de Pesquisa é relevante na UA1. A proximidade dessas instituições com as empresas pode ser percebida nas duas maiores feiras de agronegócio do Estado, EXPONTEER e EXPODIRETO. Como mencionado anteriormente, a EXPODIRETO, voltada à agricultura de precisão, é uma feira em que há uma ampla predominância de empresas voltadas para a produção de grãos.
Nessa feira, pode-se presenciar estandes de várias dessas instituições de ensino, como a Universidade de Passo Fundo (UPF), Universidade de Santa Maria (UFSM), Universidade de Cruz Alta (Unicruz), e o Instituto Federal do Rio Grande do Sul (IFRS), além dos Centros de Pesquisa da Emater e Embrapa. Algumas empresas utilizam o nome da Instituição de Ensino para mostrar estudos que comprovam a efetividade do produto. Um exemplo é o da empresa LifeAgro, de Santa Rosa, associada a uma empresa canadense, que utiliza estudos feitos pela UPF e Universidade do Vale do Taquari (Univates) para comprovar os resultados positivos de seus produtos no tratamento de sementes. Os resultados dessas pesquisas são publicados em uma revista própria da empresa. A presença de instituições de ensino não foi percebida na EXPONTE, que tem uma maior presença de empresas relativas ao beneficiamento de grãos.

Essas feiras são muito ilustrativas quanto à gama de empresas envolvidas na produção e no beneficiamento de grãos. Entende-se que essas duas feiras, embora ambas representantes do agronegócio gaúcho, tenham um foco um pouco diferente, mas não deixam de ser exemplos do quanto a malha de empresas na unidade de produção de grãos é mais complexa. Tomando novamente o exemplo da EXPODIRETO, percebe-se uma presença muito maior de estandes de pequenas empresas do que na EXPONTE, praticamente todas relativas à produção de grãos.

Conclui-se, com isso, que a proposição não foi comprovada. Ao longo do estudo feito, percebeu-se que a complexidade da malha de empresas na produção de grãos colabora para uma maior dinamicidade das inovações, pois, como as Agtechs nos mostram, o espaço e o alcance para inovações relativas a soluções pontuais é maior. A interconexão das inovações na UA1 faz com que a troca de conhecimento, estímulo e informações entre os atores seja uma condição para a colocação da inovação no mercado. Na UA2, por sua vez, as empresas agem de forma mais independente. Embora existam momentos de colaboração, as soluções para os produtores vêm de forma mais individualizada pela empresa que a propõe, não estimulando a sequência de inovações nem a troca de conhecimento do modo em que ocorre na UA1.

6.4 SÍNTESE E CONTRIBUIÇÃO TEÓRICA DA PESQUISA

Nos cinquenta anos de inovação tecnológica na produção e beneficiamento de soja e arroz abordados por essa pesquisa, ficou claro que as operações relativas à produção de grãos, desde seus insumos até sua colheita, tiveram um maior dinamismo tecnológico do que as operações de beneficiamento. A contribuição teórica desse trabalho foi a investigação e discussão dos fatores que determinaram essa disparidade quanto à dinâmica das inovações
tecnológicas nas duas unidades de análise consideradas. Embora seja de senso comum entre produtores e fabricantes de equipamentos de que as inovações relativas à produção de grãos foram muito mais dinâmicas do que nas de beneficiamento, faltava uma investigação mais profunda sobre quais aspectos determinaram isso. A ocorrência das inovações depende de uma série de fatores que devem ser identificados e compreendidos de modo a que sejam favorecidos e estimulados. Através de uma pesquisa bibliográfica, entrevistas e visitas a feiras, foi obtida uma resposta mais aprofundada do que a ouvida algumas vezes de que “enquanto na produção de grãos se quer colher o máximo possível, no beneficiamento não se quer perder o que foi colhido”.

Ao longo do trabalho, foram verificados diversos fatores que distinguiram a dinâmica de inovação nas duas unidades de análise. Essa pesquisa mostrou que há fatores que amplificaram a dinâmica de inovações no setor agrícola, como a base em que as empresas competem, de que forma as inovações são dependentes umas das outras, e da necessidade de uma ação conjunta de empresas para apresentar uma solução ao produtor.

Inovações tecnológicas que resultem em maior produtividade, menores perdas e menores custos são sempre bem vindas. Isso está de acordo com Schumpeter (2017), para o qual as inovações constituem uma base competitiva sólida que favorece as empresas que apresentam novas soluções ao mercado. Esse aspecto foi mais explorado pelas empresas da unidade de análise de produção do que de beneficiamento. A postura mais ativa das empresas relacionadas à produção de grãos retrata o que Penrose (2006) descreve como firmas não se atendo somente em seu entorno, mas aproveitando as oportunidades e extravasando seus supostos limites de crescimento.

Enquanto na unidade de análise de produção esses fatores estavam bastante presentes, na unidade de análise de beneficiamento eles estavam praticamente ausentes. Na unidade de análise de produção foram identificadas mais relações de dependência do que na de beneficiamento, ocasionando o que Rosenberg (2006) e Freeman (1979) descrevem como inovações tecnológicas sendo provocadas e possibilitadas por outras. A interdependência das inovações faz com que se crie uma sinergia entre as empresas de modo que aquelas que não inovam acabam sendo preteridas em relação às outras.

Essa relação, algumas vezes até mesmo de dependência entre as inovações, resulta em um maior contato entre as empresas que fazem parte desse setor ocasionando uma aproximação do que Malerba (2005) define como sistema setorial de inovação. Essa troca foi verificada como estando mais presente na produção de grãos, inclusive com a inserção de instituições de pesquisa e ensino. Essas práticas de sucesso acabam sendo incorporadas à rotina da empresa e
transformando-se em seu modo de inovar. (NELSON; WINTER, 2012). As empresas que não mudam suas rotinas e relacionamentos tendem a assumir uma posição estática e caracterizar-se por posturas reativas e limitadas quanto às suas inovações.

Os fundamentos da economia de inovação, foram desse modo, as linhas mestras do que serviu como uma régua para a análise e comparação da dinâmica de inovação das duas unidades de análise. As diferenças foram identificadas e ressaltadas. A inovação tecnológica no setor agrícola como um todo, ao longo da cadeia de valor, pode ser estimulada através de um melhor equilíbrio das diferenças entre os dois setores de produção e beneficiamento.
7 CONSIDERAÇÕES FINAIS

A inovação na agroindústria forneceu as bases para um crescimento da produtividade no campo nas últimas décadas. A implementação de novas práticas e o desenvolvimento de novas máquinas e equipamentos foram impulsionados por uma série de fatores, entre os quais é possível citar: as tecnologias digitais; os novos materiais de construção; e a manipulação genética de sementes. Esse trabalho procurou fazer uma descrição da evolução de inovações tecnológicas nos equipamentos de beneficiamento de arroz e soja. O beneficiamento de grãos corresponde a etapas que são feitas tanto nas instalações dos produtores quanto nas indústrias de beneficiamento. No entanto, ao longo da cadeia produtiva do arroz e da soja, há uma diferença entre as inovações das etapas de produção e de beneficiamento desses grãos. Visando contribuir para o entendimento dessa dinâmica de inovações, esse trabalho teve por objetivo principal analisar as inovações que ocorreram nos equipamentos relativos ao beneficiamento de arroz e de soja nos últimos 50 anos, comparando essa dinâmica de inovações com as que ocorreram na produção desses grãos. Para tanto, foi feito um estudo de múltiplos casos, consistindo em uma unidade de análise de produção de grãos e em uma unidade de análise de beneficiamento de grãos. Através dessa comparação, procurou-se entender a dinâmica da inovação tecnológica no beneficiamento de grãos tendo em mente tanto os elementos motivadores como os limitadores.

Tomando como ponto de partida proposições elaboradas a partir de um referencial teórico de economia da inovação, elas foram examinadas através de dois caminhos. Baseando-se em literatura e documentos, foi feito um levantamento histórico das tecnologias adotadas nos equipamentos de beneficiamento de arroz e soja. Em um segundo caminho, foram feitas entrevistas com produtores e fabricantes de equipamentos e insumos das duas unidades de análise de produção e beneficiamento de grãos com a finalidade de entender como era a sua percepção de inovação nessa área. Complementarmente, foram feitas uma série de visitas às duas feiras de maior expressão do agronegócio no Rio Grande do Sul, a saber: i-)EXPOINTER; ii-)EXPODIRETO. A visita a essas feiras foi proveitosa no sentido de ver in loco de que forma as empresas das duas unidades de análise expunham seus produtos e de que forma interagiam com seu público.

A partir dos levantamentos feitos, as proposições foram verificadas. A análise das proposições revelou as diferenças entre as dinâmicas de inovações das unidades de análise de produção e de beneficiamento de grãos. O Quadro 5 sintetiza esses resultados a partir dos objetivos específicos e as proposições.
Quadro 5 – Objetivos, proposições e resultados

<table>
<thead>
<tr>
<th>Objetivos específicos</th>
<th>Proposições</th>
<th>Resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - Descrever as inovações tecnológicas mais representativas nos equipamentos de beneficiamento de arroz e de soja (unidade de análise de beneficiamento de grãos);</td>
<td>1 - As empresas das unidades de análise de produção e de beneficiamento de grãos foram conduzidas à inovação tecnológica pela possibilidade de diferenciação em seu mercado.</td>
<td>Comprovada</td>
</tr>
<tr>
<td>B - Descrever as inovações tecnológicas mais representativas nos insumos e equipamentos para a produção de arroz e de soja (unidade de análise de produção de grãos);</td>
<td>2 - A inovação tecnológica da agroindústria assumiu características diferenciadas quando comparadas as unidades de análise de produção e beneficiamento de grãos. Essas unidades de análise apresentaram diferenças quanto à dinâmica de inovação nas cadeias produtivas do arroz e da soja.</td>
<td>Comprovada</td>
</tr>
<tr>
<td>C - Analisar e diferenciar entre as inovações tecnológicas aquelas que são incrementais das inovações disruptivas nas duas unidades de análise consideradas, de produção e de beneficiamento de arroz e de soja;</td>
<td>3 - Em virtude do grande crescimento na produção de grãos no Estado nas últimas décadas, a dinâmica das inovações tecnológicas nas máquinas e equipamentos de produção e beneficiamento de grãos baseou-se mais em inovações disruptivas do que em inovações incrementais.</td>
<td>Parcialmente comprovada</td>
</tr>
<tr>
<td>D - Identificar os principais fatores que motivaram os fabricantes de máquinas e insumos agrícolas, e os fabricantes de equipamentos de beneficiamento na busca pela inovação tecnológica;</td>
<td>4 - As empresas pertencentes às unidades de análise de produção e de beneficiamento de grãos apresentam comportamentos similares quanto à troca de tecnologia e conhecimento com outros atores.</td>
<td>Não comprovada</td>
</tr>
<tr>
<td>E - Compreender de que forma os produtores se relacionam com a inovação tecnológica dos equipamentos e insumos de produção e de beneficiamento, e de que forma contribuem para a inovação tecnológica dos mesmos.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.

O resultado da pesquisa responde à questão que guiou o trabalho: 'como ocorreu a dinâmica de inovações tecnológicas nos equipamentos de beneficiamento de arroz e soja, e de que forma ela se diferencia em relação à dinâmica de inovação na produção desses grãos?' Em uma perspectiva histórica, os equipamentos de beneficiamento apresentaram menos aprimoramentos tecnológicos do que os insumos e equipamento destinados à produção de grãos. Os resultados sugerem que uma série de fatores estiveram presentes de forma a fundamentar as razões para essas diferenças.

As características das empresas que compõem cada unidade de análise fundamentam as diferenças identificadas entre elas no decorrer da pesquisa sobre suas dinâmicas de inovação.
As empresas que compõem e movimentam a unidade de análise de produção são basicamente multinacionais, de porte expressivo, enquanto as que fazem parte da unidade de análise de beneficiamento são nacionais e de menor porte. Estas últimas apresentam uma postura dispersa e competitiva, cujas inovações são baseadas em melhorias incrementais propostas quase que de maneira individualizada em seus projetos. Elas localizam sua atuação em um nicho não percebido como agregador de valor pelo produtor. As empresas relacionadas à produção de grãos, por sua vez, apresentam um marketing mutuamente forte no sentido de que forma o agricultor pode colher mais e gastar menos. Embora a produtividade por hectare pôde ser evidenciada por dados demonstrados no decorrer do trabalho, a questão de gastar menos fica em suspensão nessa pesquisa, pois requer uma análise mais aprofundada sobre os diversos custos incorridos pelo produtor. Consequentemente, esses dois grupos de empresas e suas respectivas unidade de análise localizam-se em extremos opostos na questão de apropriação de valor na cadeia de produção, o que os leva a distintas motivações para inovar. Isso explica porque alguns aspectos relevantes na produção de grãos não são foco de inovações, como uma melhor tecnologia de irrigação, por exemplo.

Embora todas as empresas vejam a inovação como uma maneira de diferenciação das concorrentes, atuam de modo distinto. As empresas relacionadas à produção de grãos mostraram um maior dinamismo na proposta de soluções tecnológicas para os produtores. A concorrência entre elas baseia-se na tecnologia e na prestação de serviços. As empresas de equipamentos de beneficiamento veem a competição em sua área mais baseada em preço para o produtor. O investimento no equipamento é um fator relevante para a escolha do produtor. As empresas que cobram mais por seus equipamentos justificam o fato através de uma melhor qualidade final do grão.

As inovações tecnológicas dos equipamentos de beneficiamento foram basicamente voltadas ao aumento da capacidade de processamento dos grãos. Equipamentos com mais capacidade foram a principal diferença com equipamentos existentes a cinco décadas atrás. Essa necessidade de maior capacidade foi causada pela maior produtividade no campo, decorrente das inovações tecnológicas das máquinas e insumos relacionados à produção. O produtor quer secar e armazenar o mais rápido possível aquilo que colheu para não perder sua qualidade nem reduzir o fluxo da colheita.

As evidências coletadas mostraram que a conexão das inovações nos equipamentos de beneficiamento é significativamente menor do que as relacionadas à produção, em que inovações em uma máquina ou insumo necessitam de inovações sucessivas em produtos de outras empresas, ou seja, de empresas de indústrias distintas (insumos, fertilizantes e máquinas
agricolas). As culturas de arroz e soja diferenciam-se nesse aspecto. No caso da cultura do arroz existe uma maior necessidade de processamento após a colheita do que a soja. Dessa forma, os diferentes grãos necessitam de ações diferenciadas nas duas unidades de análise consideradas.

O foco dos fabricantes de máquinas agrícolas é a produção de soja. Em termos de escala, essa cultura remunerará melhor do que o arroz. O foco dos fabricantes de equipamentos de beneficiamento é o arroz, já que a soja passa por menos etapas após a colheita. Como consequência, existe a percepção pelos fabricantes de que as inovações relativas à produção de grãos, nesse caso mais identificadas com a soja através de uma maior produção por hectare, traz um maior retorno para aquilo que foi investido na inovação. As inovações nos equipamentos de beneficiamento ocorrem por uma pressão daquilo que está vindo à montante na cadeia de produção e não são vistos como agregadores de valor. Busca-se não perder o que já se colhe. Outro ponto observado é que as inovações relativas à produção de grãos voltam-se para grandes propriedades, mais características na produção de soja, do que em propriedades menores, mais associadas à produção de arroz. A demanda e a capacidade de compra por parte dos produtores determinam a trajetória tecnológica que as inovações seguem.

O crescimento da produção no Estado do RS, bem como a produtividade por hectare é um fato demonstrado em estatísticas oficiais da CONAB. Esse aumento de produtividade foi sustentado por inovações incrementais e disruptivas. Enquanto as primeiras (inovações incrementais) estiveram presentes majoritariamente nos equipamentos de beneficiamento, as segundas (inovações disruptivas) apareceram nos equipamentos e insumos de produção. As empresas da unidade de análise de produção beneficiaram-se da informatização, internet, novos softwares e sementes geneticamente modificadas, o que possibilitou alternativas inexistentes, até então, no manejo de grãos. Os equipamentos de beneficiamento apresentaram modificações relacionadas ao aumento de capacidade e manutenção de qualidade do grão, o que inclui, em geral, a adoção de materiais de maior resistência e melhores sistemas de controle. O risco, o investimento necessário e a ausência de novas tecnologias presentes em inovações disruptivas afastou desse caminho as empresas de equipamentos de beneficiamento.

O relacionamento das empresas pertencentes a cada unidade de análise mostrou ser diferente em relação aos outros atores da cadeia produtiva. As empresas da unidade de análise de beneficiamento mostraram menos conexões entre elas. As soluções apresentadas aos produtores são mais individualizadas e menos dependentes da atuação de outros atores. Por outro lado, as empresas da unidade de análise de produção apresentaram uma maior conexão, atuando em conjunto para propor uma solução mais completa e abrangente. Disso decorrem duas consequências. A primeira é a necessidade de que inovações em equipamentos de outras
empresas ocorram para possibilitar a inovação em uma. A segunda é a abertura para a participação de empresas menores de base tecnológica, como as Agtechs, que trazem soluções para lacunas/opportunidades relevantes na composição do pacote tecnológico das grandes empresas fornecedoras de equipamentos, sementes e fertilizantes.

A contribuição dessa pesquisa para o meio acadêmico ocorreu em dois aspectos. O primeiro foi o de apresentar de forma organizada e cronológica a evolução das tecnologias (trajetória tecnológica) dos equipamentos nas etapas iniciais de beneficiamento de grãos. Procurando ser a mais ilustrativa possível, a pesquisa descreve em que aspectos um dado modelo de equipamento inovou em relação ao anterior. A segunda contribuição é de salientar quais foram as características da dinâmica de inovação tecnológica na unidade de análise de produção de grãos que não estiveram presentes na unidade de análise de beneficiamento. Essa pesquisa fez uma prospecção um pouco mais profunda para entender o que está por trás da afirmação feita por vários produtores de que a inovação é estimulada pelo fato de ‘enquanto máquinas e insumos de produção resultam em mais produção, para os equipamentos de beneficiamento o que se quer é não perder o que se produziu’. Como visto, há todo um desdobramento do comportamento das empresas nas duas unidades de análise de forma a justificar a diferença do dinamismo tecnológico existente objetivamente entre elas.

A contribuição dessa pesquisa para o meio empresarial é mostrar que o dinamismo tecnológico em um setor decorre de um ajustamento às necessidades não somente dos seus clientes finais, os produtores de grãos, mas de outras empresas parceiras. A colaboração entre empresas, e mesmo a dependência de uma inovação em relação à de outra, forma uma cadeia de incentivos que não ocorre em uma empresa que baste a si mesma. A existência de lacunas na tecnologia que não eram abordadas pelas grandes empresas possibilitou a ação das Agtechs, que surgiram com sua caraterística de ação rápida e soluções pontuais. Os aspectos apontados por esse trabalho podem contribuir para que as empresas da unidade de análise de beneficiamento procurem dinamizar tecnologicamente seu setor.

7.1 LIMITAÇÕES DA PESQUISA

Entre as limitações desse trabalho está o número de empresas e de produtores envolvidos. Embora os principais fabricantes de equipamentos de beneficiamento de grãos no Estado tenham sido visitados e entrevistados, o número de empresas da unidade de análise de produção poderia ser maior. Isso decorreu, essencialmente, do fato de que a diversificação de atividades das empresas nessa unidade de análise é muito maior do que a de beneficiamento,
pois compreende fabricantes de máquinas agrícolas, de sementes e defensivos, de equipamentos de irrigação, de adubos, de sistemas de monitoramento e de Agtechs nas mais diferentes atuações. O número de produtores também poderia ser maior, para compensar a diversidade de experiências individuais e opiniões que foram recolhidas.

Outra limitação é o recorte adotado em relação aos grãos considerados. Optou-se por restringir o estudo ao arroz e à soja, deixando o milho e o trigo fora da análise realizada. As características de beneficiamento desses grãos poderiam aumentar muito a abrangência do trabalho.

Finalmente, mas não menos importante, esta pesquisa não avaliou o retorno econômico-financeiro das tecnologias utilizadas, limitando-se a citar os benefícios em termos de produtividade e de qualidade do grão colhido e beneficiado. Da ótica da tomada de decisão dos produtores agrícolas de arroz e soja, trabalhos relevantes podem ser desenvolvidos considerando, a partir de um dado investimento disponível, quais são as melhores alternativas do investimento em termos do retorno econômico-financeiro considerando, por exemplo, as alternativas de irrigação, máquinas agrícolas e secagem.

7.2 SUGESTÕES PARA TRABALHOS FUTUROS

Esse trabalho abre campo para estudos mais aprofundados sobre inovação tecnológica no agronegócio. Uma pesquisa sugerida é avaliar as consequências para a cadeia produtiva da soja e do arroz caso o Rio Grande do Sul agregasse mais valor ao produto exportado. Isso poderia estimular a inovação tecnológica desses equipamentos da etapa de beneficiamento e tornar mais equilibrada a dinâmica entre as duas unidades de análise estudadas.

De outra parte, estudos futuros poderiam tratar mais profundamente o retorno econômico-financeiro dessas inovações, segregando-as e analisando-as segundo sua aplicação, ou seja, no plantio, na irrigação, na proteção, na colheita e nas etapas de beneficiamento.

Uma outra sugestão para futuros estudos está associada à adoção do referencial teórico dos chamados sistemas setoriais de inovação, buscando entender de que forma as duas unidades de análise consideradas posicionam-se (ou não) em um mesmo sistema setorial.

Por fim, estudos sobre inovação tecnológica podem ser feitos em relação aos equipamentos de beneficiamento posteriores aos considerados nessa pesquisa. Tanto o arroz como a soja passam por processos específicos para o consumo final. O arroz passa por descasque, polimento, seleção eletrônica e separação de quebrados. A soja passa pela seleção eletrônica, laminação, extração de óleo e posterior processamento em farelo e proteína
texturizada ou isolada. Essas etapas podem ser analisadas quanto à inovação tecnológica que tiveram nas últimas décadas nos mesmos moldes em que esse trabalho fez com etapas anteriores. A comparação das dinâmicas tecnológicas das etapas da cadeia produtiva desses grãos pode mostrar onde estão as oportunidades para seu desenvolvimento futuro.
REFERÊNCIAS

NELSON, R; WINTER, S. In search of useful theory of innovation. Research Policy. [S.l], v. 6, n.1, p.36-76, 1977.

SANDRONI, P. Dicionário de economia do século XXI. 2. ed. Rio de Janeiro: Record,2005

ZAMBERLAN, Carlos Otávio; COLETO, Camila; WAQUIL, Paulo Dabdab; HENKIN, Hélio. Inovação e diferenciação como estratégia competitiva na indústria gaúcha de beneficiamento de arroz: um estudo de caso empresarial. Gestão e Regionalidade. [S.I.], v. 26, n. 78, p.36-51, set/dez/2010.

APÊNDICE A – ROTEIROS DE ENTREVISTA
Roteiro de entrevista para produtores de arroz e de soja.

<table>
<thead>
<tr>
<th>Questão</th>
<th>O que se busca saber</th>
<th>Base teórica</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Quais foram os fatores que o levaram a uma busca por mais tecnologia nos equipamentos de produção e processamento de grãos?</td>
<td>Motivação para a inovação.</td>
<td>Schmookler (1962), Freeman, Soete (2000), Schumpeter (2017), Penrose (2006)</td>
</tr>
<tr>
<td>4 - De que forma a inovação tecnológica dos equipamentos e insumos utilizados para a produção dos grãos lhe beneficiou?</td>
<td>Benefícios da adoção da tecnologia</td>
<td>Schumpeter (2017), Rosenberg (2006), Marx (2013)</td>
</tr>
<tr>
<td>5 - De que forma a inovação tecnológica dos equipamentos utilizados para a limpeza, secagem e armazenagem de grãos lhe beneficiou?</td>
<td>Benefícios da adoção, justificando a motivação</td>
<td>Schumpeter (2017), Rosenberg (2006), Marx (2013)</td>
</tr>
<tr>
<td>6 - Quais foram as dificuldades encontradas com a nova tecnologia? Como foram contornadas?</td>
<td>Aprendizado e melhorias incremental</td>
<td>Rosenberg (2006)</td>
</tr>
<tr>
<td>7 - Como foi a relação entre você (produtor) e o fornecedor do equipamento/insumo quanto a alguma necessidade de aprimoramento tecnológico? Houve contribuição de sua parte para uma melhoria no equipamento?</td>
<td>Colaboração do produtor para o desenvolvimento de novos equipamentos</td>
<td>Malerba (2002), Rosenberg (2006)</td>
</tr>
<tr>
<td>8 - O que impediu a inovação em termos de equipamentos quando havia a percepção de que isso era necessário?</td>
<td>Limitantes da inovação</td>
<td>Rosenberg (2006)</td>
</tr>
</tbody>
</table>
Roteiro de entrevista para fabricantes de equipamentos para produção e beneficiamento de arroz e soja.

<table>
<thead>
<tr>
<th>Equipamentos produzidos</th>
<th>Questão</th>
<th>O que se busca saber</th>
<th>Base teórica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 - O que motivou o desenvolvimento de insumos/equipamentos com mais tecnologia ou inovadores?</td>
<td>Motivação para a inovação.</td>
<td>Schmookler (1962)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freeman, Soete (2008)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Schumpeter (2017)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Penrose (2006)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Marx (2013)</td>
</tr>
<tr>
<td></td>
<td>2 - De que forma a dinâmica do setor agrícola estimula ou não a inovação dos equipamentos produzidos (casos do arroz e da soja)?</td>
<td>Influência setorial.</td>
<td>Malerba (2002)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Edquist (2005)</td>
</tr>
<tr>
<td></td>
<td>3 - Como ocorreu o aprendizado tecnológico para o desenvolvimento de um novo equipamento ou o aperfeiçoamento de um já existente?</td>
<td>Aprendizado que sustentou a inovação.</td>
<td>Lundval (1988)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Arrow (1962)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rosenberg (2006)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Katz (1976)</td>
</tr>
<tr>
<td></td>
<td>4 - Quais as condições ou habilidades a empresa deve ter para o desenvolvimento de novas tecnologias/produtos?</td>
<td>Rotinas de aprendizado e condução das inovações</td>
<td>Nelson & Winter (2012)</td>
</tr>
<tr>
<td></td>
<td>5 - Há uma troca de informações entre cliente e empresa de modo que ocorra uma colaboração para o aperfeiçoamento do equipamento? De que forma isso ocorre?</td>
<td>Percepção da oportunidade e colaboração para a inovação.</td>
<td>Malerba (2002)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rosenberg (2006)</td>
</tr>
<tr>
<td></td>
<td>6 - O que predominou nas inovações tecnológicas adotadas: pequenas modificações mais de aprimoramento do equipamento, ou grandes alterações que modificavam algum aspecto importante de seu funcionamento?</td>
<td>Tipo de inovação desenvolvida</td>
<td>Rosenberg, Mowery (2012)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dosi (2006), Kline, Rosenberg (1986)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Freeman (1979)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lundvall (1988)</td>
</tr>
<tr>
<td></td>
<td>7 - O que fez com que a empresa, entre diferentes alternativas tecnológicas, optasse por uma em particular?</td>
<td>Trajetória tecnológica</td>
<td>Malerba (2002)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rosenberg (2006)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dosi (1982, 2006)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lundvall (1988)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Castells (2016)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dosi (1982, 2006)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lundvall (1988)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Castells (2016)</td>
</tr>
</tbody>
</table>
APÊNDICE B – RESPOTAS DOS FABRICANTES E PRODUTORES AO ROTEIRO DE PESQUISA
RESPOSTAS DOS FABRICANTES DE INSUMOS E EQUIPAMENTOS

Questão 1-) O que motivou o desenvolvimento de equipamentos com mais tecnologia?

EMPRESAS ATÉ A COLHEITA

A1 - Máq. Agrícolas - Para estar permanecendo no mercado, ela tinha que produzir tecnologia. Então o fator que motivou foi, claro, a necessidade de manter a empresa forte no mercado, crescer, expandir. E com isso a empresa cresceu aí inúmeras vezes o tamanho que ela era lá em 2006, né? Então foi, não é um crescimento exponencial, né, mas é um crescimento muito grande. Então necessidade de permanecer no mercado, se adequar ao que o agricultor precisava e, claro, a competitividade com outras multinacionais aí que tem no mercado fez com que crescesse tão rapidamente.

B1 - Máq. Agrícolas - Necessidade de levar ao campo uma maior produção e menor demanda de pessoas trabalhando. O pessoal estava precisando mostrar mais serviço com menos gente. De vez em quando as empresas atualizam os produtos, há um programa de melhoria para se adequar ao mercado mesmo, conforme tipo estilo de semente existem melhorias que eles fazem para isso, softwares novos, para fazer ela trabalhar mais rápido no solo, copiar melhor o chão, para trabalhar na altura certa, conforme a necessidade do produtor.

C1 - Máq. Agrícolas - O primeiro deles é o custo de produção. Então a tecnologia vem pra fazer com que o produtor produza mais gastando menos. Então também se traz tecnologias pra aumentar a produtividade dos cultivos, fazendo com que ele produza mais na mesma área de espaço que ele tem. Ele produz uma commodity, e essa commodity tem o preço regulamentado em todo o globo. Então se tem uma oscilação em qualquer lugar ele vai sentir. Então ele tá muito buscando sempre aumento de produtividade e baixar os custos operacionais, pra ele ter uma segurança na margem dele.

D1 - Máq. Agrícolas - Bom, primeiramente a gente tem que levar em conta a evolução da tecnologia, né? Tanto na questão de genética, e até a parte química, né? A gente vem de produções há 10, 15 anos atrás, de, sei lá, 30% do que a gente colhe hoje. Tu precisas cada vez estar entregando um equipamento mais eficiente. De duas formas: dentro da eficiência que eu digo na entrega da semente no solo e do fertilizante, e de eficiência, porque, cada vez com as janelas mais curtas de plantio, você precisa ter um equipamento que não te dê problema no
campo, que não te cause paradas desnecessárias, né, e que ele tenha uma capacidade efetiva de carga que atenda a janela que tu precisa. Então é uma cadeia, né, desde o melhoramento genético até a entrega no solo desta tecnologia.
Tu vai tirar do que a genética tá te oferecendo o máximo.
...diminuir esse meu risco de estar plantando essa planta numa data diferente da que ela tá programada pra, que a cultivar se adequa”, Então é uma cadeia, né, desde o melhoramento genético até a entrega no solo desta tecnologia. Tu tem que estar constantemente entregando o que a ponta precisa. Por quê? Porque cada vez a tecnologia está maior, cada vez os manejos estão diferentes.

E1 - Máq. Agrícolas - O mercado. Você tem que acompanhar o mercado, produzir mais com menos. É o produzir mais, trazer tecnologia, fazer com que os produtores colham mais.
Hoje nós temos uma equipe que faz esse trabalho, né? Mas sempre em cima da informação do cliente. Quem é o nosso verdadeiro, verdadeira pessoa que traz informação pra nós é o cliente, nós fizemos aqui o que o cliente tá precisando, né? Nós temos os meios, nós, dentro da empresa, que tão em contato com o cliente e tal, que traz essa informação pra dentro do nosso centro de pesquisa. O que predomina é o cliente puxando.

F1 – Irrigação – Benefício para o agricultor para que ele compre de nós. A gente enxerga uma necessidade do agricultor e essa necessidade a gente trabalha. Melhora o que já existe. O agricultor diz que se tiver uma performance tal vai trazer um benefício, e aí tu vai atrás dessa tecnologia. Não adianta tu querer desenvolver alguma coisa que não é o que o mercado quer.

G1 – Sementes - Na verdade, é uma necessidade do mercado. Hoje você tem material que no momento em que você lança pode ter uma vida útil breve ou longa. A cada ano, no máximo a cada duas safras você tem que ter lançamentos. Porque é até uma necessidade, para ter incremento de produtividade. Não temos só nós no mercado. O mercado, com a tecnologia que tem, busca agregar.

H1 – Sementes - Basicamente é trazer mais benefícios e enriquecer a vida dos agricultores. Esse é o propósito da Corteva, que é uma empresa muito focada em desenvolvimento de tecnologia, e Enlist nada mais é do que mais uma alternativa, é uma ferramenta muito importante que o agricultor vai passar a ter, principalmente no manejo, para combater plantas daninhas dentro da cultura da soja.
I1 - Agrometeorologia - Otimização e para a tomada de decisão. Trabalha mais com milho, no desligamento linha a linha e com os defensivos no desligamento bico a bico para pulverização.

K1 - Bicos pulverizadores - Demanda campo é um dos fatores, né, necessidade do agricultor melhorar a efetividade da aplicação, que a gente sabe que é um custo alto para ele no desenvolvimento da matéria prima, que é a soja. Então, o bico é um fator que traz economia para ele, de certa forma. Ele tem um custo no adquirir, e a economia que o bico traz por trás é muito superior do que o custo dele inicial. Evita perda por deriva, evaporação. Efetividade, eficiência do produto, cada produto tem uma forma de ser aplicado, e o produtor de certa forma é leigo nessa forma e acaba aplicando muitas vezes de forma errada.

EMPRESAS APÓS A COLHEITA

A2 - Equip. beneficiamento - Hoje as demandas, elas, o mercado acaba nos trazendo. O que aconteceu: em poucos anos as características das unidades de armazenagem também mudaram. Os volumes recebidos são bem maiores, os equipamentos têm que ser com maior capacidade e mais robustos, até, eu diria. Isso também, por outro lado, nos trouxe algumas demandas, ou várias demandas, de, nem diria assim inovação, mas é adequação do equipamento à necessidade atual. Mas o que aconteceu: com isso, como os volumes aumentaram muito, a gente começou a ter problema de desgaste de equipamento, interligações, capacidade de equipamento, questões que automaticamente essas demandas elas acabam trazendo necessidade de adequação do equipamento. E aí a gente teve que evoluir em materiais, em tipo de material com mais resistência. Exatamente, e isso tem em todas, em transportadores, em secadores também, porque tem mais volume processado. Até em silo a gente teve algumas questões também, porque o que acontece? O silo tá muito mais sendo utilizado com muito mais frequência. Porque cargas e descargas muito mais frequentes, com capacidades maiores. Mas o que tá muito presente hoje é a questão da eficiência energética, também, né, se tem que melhorar a eficiência energética dos equipamentos. Tem que ouvir o cliente, e ver qual é a necessidade que ele tem, a lacuna, e daí desenvolver um produto.
Normativas de Segurança (NR 12): Isso também vê muito aqui na nossa fábrica mesmo. Tem, muito tempo já, e se continua fazendo muita adequação da máquina, máquinas mais antigas, à normativas de, agora existentes, que talvez se não tivesse normativas não seriam feitas. Mas a gente faz isso lá em nível de segurança do operador, segurança ou conforto, menos esforço.

B2 - Equip. beneficiamento - Na verdade a preocupação é sempre desenvolver o equipamento que vá atender as expectativas do cliente, né, do produtor, no caso, porque o cliente tem a preocupação de ter um produto com qualidade de receber, com qualidade de limpar, com qualidade de armazenar, com a qualidade de posteriormente manter ele com qualidade, né?

Então essas questões de tecnologia elas vêm ligadas, atreladas a essa situação, de se ter uma qualidade posterior, né, na, eventualmente de você comercializar os grãos, que isso possa dar algum retorno com algum diferencial de produto que o cliente tem armazenado, né?

É, aprimoramentos, assim, até por uma questão de ordem, de ordem legal, né, a gente sofreu, assim, nos últimos anos aí a necessidade, a gente sofreu muito uma necessidade de fazer ajustes, mudanças em virtude da legislação trabalhista, assim.

C2 - Equip. beneficiamento - A demanda, a demanda e sobretudo, assim, a exigência das normativas e, assim, da qualidade, do grão em si, né, porque a gente trabalha com beneficiamento de grão, né? Então cada vez mais as inspeções nos grãos tá mais rigorosa. Então a gente desenvolve pra evitar quebra de grão, pra evitar trincado, da soja encardir, manter a propriedade do grão pra ele continuar tendo o preço que é o que o produtor precisa, né?

D2 - Equip. beneficiamento - Motivos de desenvolvimento de equipamentos com mais tecnologia. O nosso aqui é, basicamente, nós termos um mercado diferenciado que a gente possa trabalhar. Primeiro é tu ter um diferencial no mercado. Então o que que nós temos atuado? Primeiro, é alta capacidade. Dois, melhoria de rendimento do equipamento que nós temos. Qual o teu critério de rendimento? É, custo, energia, custo operacional, capacidade em relação ao que eu tenho de concorrente do mercado. Se tu comparar o rendimento energético da máquina, consumo de energia da máquina que nós temos, tu consegue ir pra otimização. O negócio nosso é trabalhar focado em engenharia. Então eu não tenho o produto, mas eu tenho uma engenharia forte atrás do produto. O grande diferencial da TMSA é a proposta de soluções. Nada que seja impossível de nós competir ou fazer, só que nós não vamos ter o custo competitivo pra fazer. Normas brasileiras de segurança, (elevador com janela de explosão certificada, sistema de supressão. No industrial, isso, praticamente todos os clientes tão indo pra esse mercado por
causa da seguradora, e prêmio de seguro, além da garantia operacional. No mercado do agronegócio vai continuar explodindo elevador pelo interior.

E2 - Equip. beneficiamento - Primeiro o mercado sempre tá atento às evoluções do que tá acontecendo no mundo, né, e buscam, puxam essas mudanças, né? Isso, infelizmente, é a situação das empresas nacionais, vamos dizer, né? Enquanto as multinacionais, elas têm um centro de pesquisa que primeiro dimensionam o equipamento, depois prototipam, ou já têm um produto que ela tá mostrando, já sabem quanto custa, se funciona ou se não funciona, se testa, coisa assim, as empresas nacionais, elas só reagem, né? Então as empresas agrícolas não tão longe disso, né? Elas simplesmente reagem ao que o mercado precisa, né? E elas mais ou menos andam todas juntas ai, mas a verdadeira demanda quem traz é o cliente. Então primeiro eles (multinacionais) desenvolvem o produto e vendem aquele produto, inclusive eles conseguem demandar, criar a necessidade de produtos que não existem, enquanto nós estamos só atendendo o que o mercado procura. São realidades diferentes.
Mas enfim, é sempre uma negociação com o cliente, ver onde é que o cliente quer chegar, se a gente não tem a gente vai atrás, né? Na grande maioria das vezes. Acontece às vezes de a gente trazer um produto que existe num mercado mais avançado, a gente ir lá: “Não, isso aqui dá pra fazer, temos alguma pessoa que consegue desenvolver isso”. Isso existe, mas é bem, é uma porcentagem muito menor do que o normal.

F2 - Equip. beneficiamento - Mais tecnologia, eu acho que um é a questão do mercado, né, tu tem que evoluir, e a outra é facilidade de operação. Além, claro, da qualidade, sempre, mas é facilidade de operação e redução de custos, né? Uma coisa também que predomina, assim, de modificação muito, nos últimos anos, é a questão da NR-12, né, de que, máquinas e equipamentos e segurança, né? Isso aí tu tem que estar sempre aprimorando, isso aí não para nunca, dessa parte de segurança aí tá sempre modificando o equipamento.

G2 - Equip. beneficiamento - Seriam novos mercados, né? Produção com menor custo, e oferecer pro cliente uma, alguma tecnologia diferenciada. Por exemplo, você ter economia de energia, ou menor dano ao grão. Alguma coisa que agregue valor a produção da lavoura.

H2 - Equip. beneficiamento - É aquilo que o cliente busca, né, basicamente um equipamento que proporcione resultado e com baixo custo. O mercado não brinca, e se a gente não tiver o que é buscado a gente não vende. O que que a gente faz. Olha a situação do cliente, olha o que
ele quer e propõe o equipamento, negocia com ele. A gente foca naquilo que consegue fazer
por aqui, que são silos, tulhas, fornalhas e secadores, elevadores e transportadores.

I2 – Termometria - A função de um sistema de termometria no armazenamento de grãos. A
termometria tem função de captar e transmitir informações atualizadas e precisas com relação
a temperatura de grão granéis, ou seja, qualquer movimentação com relação à temperatura,
etão eu vou ter acesso a essas informações. O sistema, ele é um sistema que possui todas as
características desses tipos de grãos, ou seja, as tabelas microscópicas, e como esses grãos se
comportam mediante o clima, pra fazer a tomada de decisão de quando aerar.
Existem normas que regem o sistema de termometria. E a gente faz, esse projeto, ele é
apresentado ao cliente mediante essas normas, né? E o nosso cliente, claro, ele vai analisar o
projeto e sempre vai colaborar de acordo com a sua necessidade, né, que ele tem, em termos de
medicação, né? Mas tudo parte, o projeto, hoje, ele parte rigorosamente a partir de normas
técnicas. E essas normas, elas vão, se você analisar, elas vão tendo sempre algumas melhorias,
algumas alterações, em função da evolução dos próprios equipamentos, né?

J2 - Aeração e iluminação natural de silos e armazéns - O maior fator é a ausência de
conhecimento de quem opera com armazenagem. E solucionar os problemas que acontecem
depois que o produto chega na armazenagem. Hoje a lavoura está bastante evoluída nas
sementes, na tecnologia, mas na armazenagem tá pecando muito, tu perde muito. Este é o nosso
fator motivador. Resolver os problemas.

K2 - Sistemas de refrigeração de silos e armazéns - A gente procura nichos de mercado para
solucionar problemas que estão sem solução. O bem estar, a saúde. Porque tu vais para de
utilizar tanto inseticida para a conservação do produto. A própria conservação do grão. Hoje
vem as novas exigências das legislações que permitem tantos PPMs de micotoxinas no trigo,
no milho. Nem tanto essa saúde humana, mas sim animal. As leis para a parte de suíno e de
frango são muito mais exigentes do que para consumo humano. Então isso é o que nos motiva.
Questão 2-) De que forma a dinâmica do setor agrícola estimula ou não a inovação dos equipamentos produzidos?

EMPRESAS ATÉ A COLHEITA

Porque não só o mercado brasileiro, como o uruguaio e o argentino que têm, sul do Paraguai também tem essa questão do arroz muito forte. Então a partir do ano passado se começou uma ação um pouco mais forte nessa questão de resgatar também a questão de qualidade de semeadura no arroz.

Hoje a gente exporta pra 35 países. Então essa questão a gente olha com bons olhos, porque o arroz, ela é uma cultura que vem estável e tal. Claro, anos com um pouco menos de rendimento pro agricultor e assim por diante, mas o nível de tecnologia que a gente entrega é o mesmo de outras culturas.

B1 - Máq. Agrícolas - A maior demanda do nosso estado é soja, A tecnologia cresceu mais para estas máquinas. O pessoal do arroz ainda é um pouco resistente, vou dizer assim. O pessoal não utiliza muito o recurso. Eles compram as máquinas até sem a parte tecnológica, com o que pode vir a incomodar, trabalha mais com água, então eles separam um pouco para trabalhar com tecnologia. A mesma tecnologia das máquinas que produzem soja poderiam ser utilizadas com arroz, mas a aceitação é bem maior na parte da soja do que na de arroz.

C1 - Máq. Agrícolas - A tecnologia voltada para o equipamento, geralmente quem nos estimula, ou nos faz fazer, nos exige alguma mudança na tecnologia, são geralmente esses caras que produzem a semente. Tu precisa fazer mudanças na tua colheitadeira pra poder suprir essa diferença de cultura. Então as tecnologias geralmente vêm puxadas por esses caras que detêm o primário, que eu sempre chamo: ou é semente, ou é defensivo, ou é adubo. Mas esses caras que desenvolvem esses produtos são os que fazem o pessoal de tecnologia, no maquinário, também seguir alguns caminhos. E a mesma coisa acontece com as sementes. Diferentes variedades de sementes fazem com que a colheitadeira tenha que ter ajustes, set ups e configurações diferentes.

D1 - Máq. Agrícolas - O que manda é o mercado, né? O mercado de que forma? A gente tem que ter em mente que, hoje, todo mundo quer ter, dentro da sua propriedade, culturas que lhe deem subsídios, né, que te sustentem, né, que sejam financeiramente viáveis e... Então esse
estímulo à inovação, ou à determinação, tá de duas formas linkado. Uma é nessa questão da cultura, quantidade da área que tu, a área de soja tá aumentando, o que que eu tenho que apostar? Vou ter que apostar em tecnologias que devolvam essa necessidade pro meu produtor de soja. Eu não posso estar: “Ah, eu vou investir no arroz, vou investir no arroz”, mas os meus produtores de arroz não querem. Quem tá querendo é meu produtor de milho, ou é meu produtor de trigo, ou o produtor de soja, né?

E1 – Máq. Agrícolas - A soja hoje é o carro-chefe, né? Então o que vai na soja vai no arroz também, né? Só com algumas adaptações, talvez, aí, rodado, etc., mas tecnologia é a mesma de uma c de outra, né? E a soja é o carro-chefe, né, hoje tudo o que tu faz é pensando na soja. O produtor é pressionado a produzir mais, porque se ele não produzir ele não fecha a conta. Hoje o nosso custo de produção é altíssimo. Então se ele não produzir, se ele não usar essa tecnologia também, tá fora do mercado.

F1 – Irrigação - Sim, tem que estar aquecido. Agora como é que eu vou desenvolver algo para o arroz, se o arrozeiro está quebrado e não vai comprar? Hoje eu desenvolvo pivô para quem? Soja e milho. O equipamento é o mesmo, mas com algumas pequenas modificações. Hoje a gente enxerga alguma coisa no arroz. Aquilo que estava engavetado para o arroz agora a gente pode começar a desengavetar. Tem que estar aquecido o setor, senão não vai. O mercado de arroz está voltando a ser promissor, e gente está voltado a olhar para rodados de equipamentos para a várzea. A estrutura como um todo é a mesma. O aspersor para a soja e milho é um, para outro grão, é outro.

H1 – Sementes - Sim, o negócio de soja no Brasil, hoje a gente tem um negócio muito próspero, é um negócio que a Monsanto iniciou muitos anos atrás trazendo tecnologia de soja, a soja RR, aquela primeira geração de soja transgênica. Ela foi remunerada por isso e essa remuneração fez com que ela conseguisse investimentos para lançar uma segunda geração de eventos biotecnológicos, a Corteva pela primeira vez ela está embarcando nesse mercado de tecnologia de soja, e o investimento foi altíssimo. Vários milhões de dólares que a empresa usou para o desenvolvimento dessa tecnologia, e é lento o retorno, o custo é alto. Se trabalha muito em laboratório para desenvolver essas ferramentas que vão entrar no DNA da soja e nos trazer essas comodidades, esses benefícios. Então é um processo que ele é lento, porque a pesquisa é muito extensa e o custo dela é muito alto. Então, quanto tu traz uma tecnologia dessas para pro mercado, se cobra pelo uso dela, o agricultor reconhece o benefício e remunera novamente isso ai, ele, faz com que esse ciclo gire, e garanta as próximas tecnologias cada vez mais benéficas, atendendo os novos problemas que a gente venha a ter futuramente.

I 1- Agrometeorologia - Vende mais para soja. Com ambiente seco.

J 1- Drones - Sim, hoje, 60% - 65% das áreas que a Dronagro voou este ano foram áreas de soja. O resto divide um pouco entre milho e arroz. Isso estimula que a gente esteja aperfeiçoando equipamentos, buscando parcerias com instituições de ensino, com outras empresas também, por que não, com multinacionais que, eles têm alguns dados, nós temos outros dados. Eu sempre digo que tudo que está chegando de agricultura digital, agricultura de precisão, tudo isso tem que ser compilado para se tomar uma decisão. Não adianta você ter uma variável só para se tomar uma decisão.

K 1- Bicos pulverizadores - Muitas vezes acontece de ser um equipamento igual para os dois. As conexões, filtros, isso aí em ambas as máquinas, são favorecidas pelo mesmo equipamento. Agora a parte de pontas e bicos, a soja, é claro tem um volume maior na economia e aí traz um investimento um pouco maior nosso também. Os bicos são diferentes na aplicação para a soja e para o arroz. Muitas vezes são iguais, mas tem uns que são diferentes. Alguns são específicos para a soja, outros específicos para o arroz. A cultura é diferente. A área folhear da soja é diferente da do arroz, o comportamento da planta é diferente. A planta de arroz é uma planta mais justa, a entrelinha dela é menor, a soja tem mais espaço. Por mais que a soja seja mais alta, o arroz, as principais doenças no arroz é na espiga, então ela está visível. Na soja as folheares são doenças mais agressivas, então aí difere o dano, o local do dano, e aí vai diferir o bocal,
ponta, para atingir o alvo. Tu acabas levando mais para um lado por ser mais expressivo a nível Brasil, né. O investimento acaba também sendo de acordo.

EMPRESAS APÓS A COLHEITA

A2 - Equip. beneficiamento - Estimula muito. O aumento do volume de colheita estimula o desenvolvimento de equipamentos maiores.

B2 - Equip. beneficiamento - Sim. Isso é fato. Existem algumas empresas no mercado que produzem o silo específico pra arroz. No caso do arroz tem um peso específico menor do que soja. A estrutura do silo, nessa situação do arroz, ele pode ser um silo mais leve produzido em estrutura metálica do que o silo soja. A nossa empresa, ela não trabalhava nesse formato. A nossa empresa produz o mesmo equipamento pra soja e pro arroz. Em virtude dessa preocupação, porque como soja tá adentrando as áreas de arroz, o produtor, ele vai ter condições de utilizar o mesmo equipamento pra armazenar os dois tipos de grãos. A gente tem trabalhado nesse sentido.

C2 – Equip. beneficiamento - Sim, porque, assim, apesar do conceito básico do equipamento ser o mesmo pra determinados tipos, né, tem essa variação, a gente consegue detectar essa variação por causa da propriedade do grão mesmo. Então, em função disso aí que a gente consegue absorver, e ver qual o grão que tá, que a demanda tá maior. Aí a gente trabalha mais em cima daquele ali, a inovação e tudo mais. o desenvolvimento tecnológico é puxado por um grão, e depois essa inovação pode migrar para outro.

D2 - Equip. beneficiamento - Nós somos competidores de nicho. Eu acho que, na realidade, o que estimula nós é: nós precisamos ter um diferencial no mercado, senão nós perdemos o mercado. Então, se tu pegar o que tem aqui hoje no mercado em termos de engenharia, nós temos um diferencial em engenharia. Claro que a maior parte de nossos equipamentos está instalado em terminais portuários, como carregadores e transportadores, por isso, as exportações nos ajudam.

E2 - Equip. beneficiamento - A gente, ultimamente a gente tem feito plantas com maior produção, né? Há cinco anos atrás produzia, sei lá, 100, 120 toneladas/hora. Hoje a gente já tá trabalhando com 200. O mercado vem pedindo maior, é que é o seguinte, né? Tu compras uma colheitadeira maior, tu tinha um caminhão, hoje tu tem uma carreta, né? As áreas tão
aumentando, principalmente na região ali, centro-oeste, a região do Mato Grosso, ali, que é onde tem a maior demanda. Então, assim, a produtividade, a entrega de produto na cooperativa ou no engenho aumentou muito. Então hoje o mercado procura equipamentos com mais capacidade. Então ele tá forçando a produtividade pra cima.

F2 - Equip. beneficiamento - Tem, na nossa região demais, na nossa região demais. A nossa região é arroz, né? Percebe uma entrada muito forte da soja na região em que atua (Mostardas, sul). É, eu percebo. No nosso caso, o que é que acontece? No nosso caso o equipamento do arroz, ele não é o mesmo equipamento da soja. Ele vai funcionar, tu vai, só que o silo, por exemplo, do arroz, ele é menos, ele tem menos resistência lateral. Consequentemente a chapa é mais fina, a coluna é menor, é mais fina, então é…A entrada da soja na região prejudicou a venda do secador tipo pampeiro, exclusivo para o arroz. Importância de equipamento versátil: O secador de soja, o secador contínuo, ele vai secar o arroz também, ele não seca tão bem quanto esse, mas ele seca também. E esse aqui já tem um problema maior com a soja, então tu prefere ter um secador, daqui a pouco, pra ti poder usar pra arroz, pra milho, pra soja, pra arroz.

G2 - Equip. beneficiamento - Isso depende exatamente desse ponto que você falou, da capitalização do setor. Por exemplo, se for um arrozeiro, tá descapitalizado, com problemas climáticos, o principal problema é o preço final do produto, que há muito tempo tá abaixo do custo de produção, é uma queixa todo ano dos produtores da parte de arroz. Já o mercado de soja é o mercado que tá capitalizado. Então as inovações em equipamento e também com mais cuidados com o produto, ou seja, eles tão começando, têm um trabalho com semente, o próprio produtor quer fazer a sua própria semente, né? Então tem alguma tecnologia embarcada agora na produção do, lá na parte da soja, isso tá com algum desenvolvimento e alguma coisa também pra reduzir o custo inicial da instalação.

H2 - Equip. beneficiamento - A soja está em alta. Isso nos leva a olhar pra os produtores de soja com mais atenção. Mas os nossos equipamentos trabalham com vários grãos. Hoje em dia tem isso ai, né, assim como está bem agora pode não estar bem amanhã. Aqui na nossa região predomina soja, então a gente foca na soja, mas pode usar com milho também, com arroz. muda um pouco a capacidade de secagem, né, o milho entra um pouco mais úmido, e seca com mais dificuldade. O melhor para o produtor é equipamento que trabalhe com mais tipos de grãos
I2 - **Termometria** - A medição de temperatura, ela é a mesma. E você vai mudar e variar a quantidade de pontos de medição de acordo com a capacidade, diâmetro, altura e volume que tá sendo armazenado. Mas a medição é a mesma. Agora a forma de você, depois, tomar a decisão de quando aerar, ela muda porque você tá trabalhando com um tipo de grão diferente. E esses tipos, e esses grãos, eles se comportam de maneira diferente depende do clima, até porque a característica dele muda bastante entre o arroz e a soja.

J2 - Aeração e iluminação natural de silos e armazéns - Nosso equipamento tem um princípio. Nosso projeto é a diminuição de custos operacionais, redução das perdas baseados nos critérios agronômicos de armazenagem, e aumentar a lucratividade do produtor trabalhando com uma precisão maior na armazenagem. Trabalhas com armazenagem de precisão. Vendemos para qualquer tipo de grão e para qualquer tipo de ambiente. Não tem diferença para diferentes tipos de grão, pois o critério de armazenar é o mesmo. Qualquer silo, qualquer telhado pode usar o nosso sistema. Devemos eliminar o calor e consequentemente a condensação. Então tu tirando esses dois tu vais evitar um monte de problemas lá dentro. Ultimamente tem saído mais para a região de soja. A cultura do arrozheiro e do produtor de soja é diferente. O arrozheiro é "peço duro" e o cara da soja é mais evoluído, mais aberto.

K2 - Sistemas de refrigeração de silos e armazéns - O mercado é muito volátil. Ele puxa para um lado e para outro, mas principalmente voltado à saúde.

Questão 3-) Como ocorreu o aprendizado tecnológico e as rotinas para o desenvolvimento de um novo equipamento ou o aperfeiçoamento de um já existente?

EMPRESAS ATÉ A COLHEITA

A1 - Máq. Agrícolas - Então a gente sempre busca tá comprovando a eficácia de um jeito agronômico, né? E como é que a gente comprova? Com parceria com a Universidade Federal de Santa Maria, com parceria com a PUC, já teve parceria. Hoje tem também CESURG, UPF, e ainda o IFRS lá de Ibirubá. Então sempre parcerias buscando gerar dados idôneos. a gente vai fazer uma adaptação pra parte comercial e tal, mas sempre são dados idôneos e realizados em parceria com instituições. Questão de modelo de aperfeiçoamento, também é feita alguma que outra parceria com, por exemplo, um exemplo claro é a FAPA e a Agrária de Guarapuava. Eles são especialistas em testar máquina campo e gerar dados e dizer: "Não, essa
máquina aqui é a melhor do mercado pra essa função". E eles sugerem também aperfeiçoamentos pra essa máquina.

B1 - Máq. Agrícolas - Geralmente as inovações, existe uma equipe de engenharia e uma de testes. A tecnologia da John Deere normalmente é apresentada em outros países, aí aprova essa tecnologia e vem para o Brasil e a gente adequa para a nossa cultura aqui. Mas existe a equipe de engenharia, a equipe de produção e a equipe de teste.

O software interno das máquinas é a da própria John Deere, são as unidades da John Deere mesmo, agora softwares de aplicação, existe uma empresa nova que a John Deere adquiriu, introduz software para aplicação localizada, identifica a praga invasora ou outra planta e aplica somente no local. É uma empresa terceirizada que foi adquirida.

C1 - Máq. Agrícolas – A gente tem um departamento de pesquisa e desenvolvimento dentro da empresa, que também faz a busca de novas soluções. A gente tem muitas vezes, também, produtores rurais que nos procuram e nos mostram um problema, e através desse problema a gente acaba trazendo uma nova tecnologia pra aquela situação. A gente tem parceiros, também, às vezes, que têm uma determinada tecnologia, mas que sozinha não faz nada, mas que agregada ao nosso produto se transforma numa solução completa. Então tem vários meios pelos quais a gente consegue trazer tecnologia para a questão dos maquinários agrícolas. Mas a grande parte é por produtor, eles têm o conhecimento da atividade muito mais do que nós, eles têm, eles sentem o problema na pele, eles que têm o maior risco na operação, então eles geralmente conhecem mais.

D1 - Máq. Agrícolas - É o que, o DNA da Semeato é desenvolvimento. Nós desenvolvemos. Nós temos uma equipe que pesquisa, engenharia, pesquisa e desenvolvimento, dentro da empresa. Nós somos uma das empresas do agro com o maior número de patentes depositadas, tá? Então o DNA é de estar no campo, conversar com o cliente, ver qual que é a necessidade, e desenvolver, dentro da empresa, um mecanismo, uma ferramenta, ou o componente que possa agregar dentro das máquinas pra estar oferecendo pro produtor.

E1 - Máq. Agrícolas – A partir das necessidades do cliente e de desenvolvimento de nossos projetos para responder a isso. A gente desenvolve um protótipo e trabalha com um cliente específico para que ele nos dê o retorno do funcionamento. Vamos melhorando o projeto a partir disso.
F1 – Irrigação - A gente tem um setor de pesquisa e desenvolvimento. Todos os equipamentos que a gente produz a gente desenvolve dentro da empresa. A gente tem um setor para isso. E é em virtude do fundador da empresa, é uma inovação constante.

G1 – Sementes - Se tem uma estrutura de pesquisa, uma estrutura de P&D para avaliar o que a pesquisa já filtra bem. Nós na área comercial já damos uma sequência de posicionamento. Então é uma sequência de ações internas. Existem departamentos, está bem alinhado.

H1 – Sementes - O aprendizado tecnológico está baseado em pesquisa e desenvolvimento e demanda do agricultor. O agricultor nos últimos anos, em função de um uso demasiado de uma molécula, o glifosato, por exemplo, ele acabou não rotacionando tanto os mecanismos de ação dos herbicidas, isso fez com que tivéssemos uma pressão de seleção de plantas daninhas alta, ou seja, alguns genótipos de plantas daninhas acabavam sendo selecionados, né, os mais resistentes, e gente começou a ter dificuldades com o controle simples que nós tínhamos anos atrás. Dessa forma, a Corteva viu isso como uma oportunidade de ajudar o agricultor, trazer mais uma ferramenta e uma solução para o agricultor. Então isso ai foi o que fomentou, atender o mercado que estava precisando de mais uma ferramenta para manejo, que no caso é o 2,4 D, o glufosinato, o glifosato sobre a cultura da soja.

Tem essa evolução, né. tanto quanto com as daninhas estão para herbicidas, insetos estão para proteínas BT, que é o que está dentro dessa soja ou de outras sojas. Isso aconteceu com o milho. Com o passar dos anos, algumas proteínas que controlavam fácil as lagartas, com o passar dos anos elas vão perdendo a eficiência. Muito em função da não adoção das práticas sustentáveis, por exemplo constituir um refúgio na área de milho, no qual tens que ter pelo menos 10% da área com milho convencional , ou não BT. Isso faz com que a gente aumente essa pressão na seleção e a gente vai perdendo a força dessa biotecnologias. Então o mercado precisa que venham novas biotecnologias para trazer ótimas opções, atendendo os nichos de mercado, mas também porque algumas plantas vão perdendo essa resistência ao longo dos anos.

O software da Davis, que é de meteorologia vem de fora. O software da Dickey-john vem de fora. Mas a gente desenvolve uma taxa variável, que varia a velocidade e não a dosa, ela só oscila. Esse software foi feito por nós, em Ribeirão Preto.
J1 - Drones - Hoje nosso desenvolvimento tecnológico é embaixo do sol. É no campo, na lavoura. Tudo que a gente faz a gente busca validar na lavoura mesmo. Fazer um acompanhamento um pouco mais técnico junto ao produtor. Eu e o meu sócio somos engenheiros agrônomos, então nós temos um know how técnico da cultura, daquilo que está instalado. A gente tem uma rede de parceiros que nos fornece, além da assistência técnica do equipamento eles nos fornecem informações sobre alguns algoritmos específicos para uma certa demanda, como por exemplo contagem de planta, avaliação de falha de plantio. Eles lidaram com isso no campo e levaram certo tempo para isso, para desenvolver um algoritmo demora de 5 a 6 safras mais ou menos. Então tudo que eles vem, validando a gente vem abastecendo esse banco de dados, para cada vez mais estar calibrando isso e aumentar a precisão dos algoritmos. Tem algoritmo de contagem de planta de milho que já tem 98% de assertividade, e a soja está chegando nos 80%.

K1 - Bicos pulverizadores - Inicialmente as ideias vinham do dono. Posteriormente foi colocado um setor de pesquisa, técnico, para fazer o desenvolvimento das pontas e dos componentes. A ideia, na verdade, vem do mercado, da necessidade do mercado, e a Magno é pioneira de ideias. A gente hoje é a maior fabricante de pontas do mundo em cerâmica e isso nos torna pioneiros em pontas, pela variedade de modelos, de opções para o produtor. Hoje eu diria que a Magno é pioneira de ideias.

EMPRESAS APÓS A COLHEITA

A2 – Equip. Beneficiamento - Quanto a desenvolvimento, tem duas partes que a gente chama.

Uma coisa é desenvolvimento de produto novo, outra coisa é melhoria contínua, que não deixa de ser desenvolvimento, também, só que, de repente, em níveis diferentes.

Temos um P&D que antes era mais forte, mas que ainda existe. Nós, como engenharia e como estrutura de desenvolvimento, também nos adequamos, temos uma estrutura mais enxuta hoje. Mas temos, sim, P&D, mas muito isso na empresa, que nem eu disse, os inputs das diversas áreas que vêm das demandas de, lá do nosso cliente final, traz, né, a gente traz isso pra dentro. E o nosso contato de engenharia com o cliente também que traz.

A gente tá fazendo muita parceria com outras empresas. Também, no sentido assim, tem um produto, que nem a gente estava falando em queimar cavaco. Nós não temos tecnologia e não sabemos fazer o queimador a cavaco, mas nós estamos buscando uma parceria com a empresa que faz queimador a cavaco, e aí nós trabalhamos juntos no desenvolvimento pra fornecer o produto pro mercado. Mesma coisa na questão de IoT, que a gente falou antes, em questão de
termometria digital, automação. Dentro da Kepler Weber nós não temos uma área de elétrica, vamos chamar assim, mas nós temos uma parceria com uma empresa, que é nossa parceira, exclusiva, que a gente busca, junto com eles, evoluir o nosso equipamento e oferecer pro mercado. Na realidade agora fortemente a gente tá trabalhando com isso. Que nem, eu poderia ter dado três exemplos já: queimadores a cavaco, partes de instalação elétrica, automação e tudo mais, e a IoT, e sensoriamento de umidade, três parcerias que a gente tá trabalhando agora.

B2 – Equip. Beneficiamento - É, em grande parte é em virtude da necessidade dos clientes, né? Os clientes expressam suas preocupações e a empresa, ela busca se aperfeiçoar nisso. Temos um setor de projeto dentro da empresa, que a gente busca a necessidade do cliente em campo, né. Temos uma equipe de vendas. Essas pessoas, elas buscam a necessidade do cliente, trazem pra nossa área de projetos, e a partir desse momento se desenvolvem os projetos de pesquisa pra aquele cliente. A questão, mas também, assim, claro, a gente acompanha as tendências do mercado, as inovações do mercado, o que está acontecendo, e a gente procura acompanhar nesse sentido também.

C2 – Equip. Beneficiamento - Não, isso aí é assim, a gente tem um setor bem de desenvolvimento, né, fica estudando pra tentar pegar algo diferente. Porque, assim, no nosso segmento a gente não tem muito como reinventar a roda. A gente tem que adaptar um secador de grãos, e ele existe há muitos anos. Então, assim, essa evolução, a gente tem um departamento, a gente tem um setor de desenvolvimento, mas é basicamente desenvolvimento do que já existe, aperfeiçoamento, na verdade, do que já existe.

Parcerias com outros fornecedores, mesmo de projetos, também foi um aprendizado. E aí então nós trazemos as soluções pro cliente, nós damos a solução pro cliente. O cara tem um problema e a empresa é bastante inovadora nesse sentido, se não temos nós vamos buscar acordo lá fora. Casos bem específicos como secador Mega e a máquina de limpeza ainda na década de 1980 foram projetos trazidos de fora. Depois fomos adaptando o da máquina de limpeza.
E2 – Equip. Beneficiamento - É, a gente não tem um centro de desenvolvimento. A gente não consegue. Isso é meio que uma realidade brasileira, né? Quanto a ter produtos novos, a gente visita, a direção e os donos da empresa, que mais ou menos se confundem, eles visitam feiras, até tão na Alemanha agora, né, visitando a feira agrícola lá. Então eles trazem demandas de lá. E a gente tem clientes que também têm contato com empresas assim, e essas empresas tão vindo pro Brasil ofertar produtos diferentes também. Então existe uma, existe uma tentativa de se desenvolver esses produtos, né? Então existe um pouco de cada coisa. Só esse centro de pesquisa que ainda é viável pra empresa.

A gente contratou um europeu radicado no Brasil que dominasse a tecnologia, né, que foi uma das pessoas que ensinou, a empresa quer crescer na parte de desenvolvimento de produto, né, e ele desenvolveu esse equipamento pra gente. A gente tá colocando no mercado agora.

Mas existe sempre troca de ideias entre empresas, entre consumidores e sempre existe todo um networking sobre isso, até se chegar num produto aí.

F2 – Equip. Beneficiamento - Utiliza uma concepção bem antiga de secador (Pampeiro), trazida por um dos fundadores da empresa que trabalhou com este tipo de secador antes em outra empresa. O que que acontece, a soja, vamos se resumir tudo à soja. A soja entrou muito forte na região, a gente, o silo, é simples de tu fabricar um silo pra soja hoje, ele é, as ferramentas são as mesmas das que a gente tem na empresa, aquela questão de ser um pouco mais forte, né?

E o fato do nosso secador, a gente ouvir de clientes, ouvir de outros, que o nosso secador não é o melhor tipo pra soja, fez com que a gente buscasse novas tecnologias, novas, e foi. A gente trouxe engenheiros que já tinham trabalhado, ideias de engenheiros que trabalharam pra outras empresas. Foi mais ou menos assim, foi procurando, sabe, conhecer mais o equipamento do concorrente pra poder fabricar o nosso, né?

G2 – Equip. Beneficiamento - É, às vezes, essas três vertentes (setor de P&D, proprietários, reprodução de ideias existentes). É as vertentes do cliente, que às vezes chega um cliente e te pede uma solução, né? Às vezes tem uma, em alguma obra específica você precisa criar um equipamento novo, tipo, nós temos algumas rosas que entram em Y, que eu só vejo a Horbach fazer, então ela, a Horbach faz às vezes um trabalho específico pra um cliente.

Às vezes a gente vai e visita feiras, vai, revista técnica, alguma coisa que também, às vezes tem outros que tão pesquisando, apresentam alguma novidade, e a gente tem que tá atualizado e produzindo aquilo que o mercado quer, né?
H2 – Equip. Beneficiamento - É pela experiência. Fazendo a gente vai aprendendo. Às vezes os projetos são um pouco diferentes, mas não muito também. A gente segue uma ordem, Vai lá na propriedade, olha o que o cliente quer, analisa, volta para o projeto, dimensiona e propõe. Os equipamentos hoje não se diferenciam muito. É tudo meio parecido. Tem detalhes de cada, mas não muda muito. A empresa existe desde 1992, e a gente está em uma região que tem outras fábricas, ai até há uma troca de técnicos que também levam ideias de um lado para outro. Ideias boas se imitam, né?

I2 – Termometria - A Fockink trabalha com sistemas de termometria desde 1976, né? A Fockink, ela trabalha hoje com uma equipe de engenheiros de desenvolvimento de produtos, sempre inovando a questão da termometria, porque hoje a eletrônica, ela evolui muito, e isso possibilita que você consiga estar sempre evoluindo, né, em relação à tecnologia desses equipamentos, né?

J2 - Aeração e iluminação natural de silos e armazéns - Os equipamentos que existem no mercado foram desenvolvidos em cima do mau princípio de funcionamento de outros para a mesma finalidade de aeração. Os suspiros de telhados e silos não funcionam, pois dependem da corrente externa de ar. Os elétricos apresentam problemas de fagulhas e desbalanceamento. O sistema gravitacional só funciona com determinado vento predominante. O giratório, que funciona com o vento tem rolamentos que acabam trancando. Aí vimos a oportunidade de inovar.
Eu tive o privilégio de importar esse projeto. Isso pode ser usado em qualquer ambiente. A gente implementou duas coisas nele: o sistema de luminosidade, além de ser um exaustor ele é um iluminador. Ele transfere luz para dentro do silo, o que reduz a incidência de riscos com pragas e roedores.
Nós estudamos e pesquisamos direto. Eu domino a parte de secagem e armazenamento de grãos, eu sei calcular taxa de aeração, o que facilita a conversa com o produtor. Facilita a passagem. Dá credibilidade. Tem um monte de gente querendo empurrar um monte de coisa. Tem muita imitação.

K2 - Sistemas de refrigeração de silos e armazéns - Essa tecnologia existe no mundo a mais de setenta anos. Mas a natureza nos ensinou muito, porque quando tem frio não tem inseto. Em cima disso, uma empresa chamada Agro Santa Rosa, no Paraguai, desafiou o dono dessa empresa que no passado fazia refrigeração em ambientes tipo shopping center a resfriar a
sente dele para conseguir fazer a produção no Paraguai por causa da altitude baixa. Então em cima disso eles trouxeram uma tecnologia. Não é só pegar um ar condicionado e ligar ao silo. Nós tivemos que fazer várias adaptações. Foi uma tecnologia adaptada de uma refrigeração de ambiente para uma refrigeração de grãos em silo e armazém.

Questão 4-) Quais as condições ou habilidades que a empresa deve ter para o desenvolvimento de novas tecnologias / produtos?

EMPRESAS ATÉ A COLHEITA

A1 - Máq. Agrícolas - Falando um pouco no investimento, hoje: a Stara, ela destina entre 5 ou 8 até 10%, dependendo do ano, em pesquisa e em engenharia experimental também. Então a empresa, ela oferece essa condição, né? Tanto que o nosso faturamento, nos últimos três anos, ele sempre fica acima de 40% em produtos inovadores. Então é interessante, claro, tem anos que até dá mais, a gente tenta avaliar nos 40%, mas é porque a gente sempre tá trabalhando essa ideia de inovação, conversa com agricultor, instituições, justamente pensando em ter um produto com uma solução para o produtor. Então a empresa dá condições pra isso.

Mas o software é todo desenvolvido dentro da empresa. Isso é muito importante, gera muita velocidade, resposta do mercado, isso é importante. Mas como a gente produz mesmo a tecnologia, a gente consegue fazer isso de uma maneira muito mais viável e mais rápida. Então isso é um fator importante. Hoje a gente fala que, no Brasil, a Stara e a John Deere produzem a própria tecnologia. A gente gosta de gerar a necessidade pro agricultor, mostrar que esse é o caminho pra mais produtividade.

Hoje a gente também tem o Centro de Inteligência, justamente pensando em serviços. Tá lá, hoje as máquinas têm muito sensores, né, e esses sensores geram dados, mas de nada adianta a gente ter dados se eles não forem analisados. E o agricultor, ele não tem tempo pra tá analisando.

As empresas estão sempre de olho no mercado. Se alguém faz uma inovação, alguém vai atrás dessa inovação para fazer melhor ou superar.
C1 - Máq. Agrícolas- A gente tem um departamento de pesquisa e desenvolvimento dentro da empresa, que também faz a busca de novas soluções. A gente tem um percentual de recurso do faturamento que é direcionado pra esse setor que também faz, traz novas tecnologias. Contato com os produtores e entender a situação deles e do que precisam. Ou então, o produtor, ele não sabe que precisa, mas nós, como indústria, sabemos que é extremamente importante pra ele. Outra habilidade que tem que ter é saber da operação. A gente precisa conhecer o que que o cliente faz, pra poder oferecer uma solução melhor ou conseguir solucionar um problema que ele tem. Então a primeira coisa é saber da operação. A segunda coisa é ter pessoal qualificado que entenda o que a gente tá fazendo. E depois recursos. Então a gente tem que saber que recurso é uma questão extremamente pesada, principalmente quando se quer inovar. A área de tecnologia, eu digo que ela tem que sempre ser abraçada, porque se um ir pra um lado e ninguém tentar ajudar, vai ficar sozinho e não vai ter voz.

D1 - Máq. Agrícolas - Contato com os clientes. Tem que conversar, tu tem que saber qual que é a necessidade dele, tu tem que ouvir o que ele acha que não tá certo na tua máquina. Equipe robusta de desenvolvimento. Porque, tudo bem, tu capta a ideia deles, as necessidades deles, mas tu tem que ter capacidade para desenvolver isso.

F1 – Irrigação - Setores e profissionais especializados, Nós temos pessoas da engenharia mecânica, de engenharia elétrica. Nós temos multidisciplinares lá para pensar novas tecnologias, olhando o que está acontecendo no mercado.

G1 – Sementes - Primeiro tu tens que ver o que o mercado está querendo. Tem que quase ir na forma indireta ou de ré. Se quer um material mais rápido ou não, um material que tenha uma tolerância à diversidade, um nematoide, uma habilidade em tolerar solos encharcados. Então tu tens que ler o mercado. Lógico que o mercado quer teto produtivo, teto com segurança, estabilidade, e toda essa tecnologia tu tens que estar muito atualizado, em novos eventos. Tem que estar atualizado porque o mercado vai querer. Como entro o RR , já entro o IPRO, está vindo o Pro@, o Enlist, outras tecnologias . Então você tem que ver por necessidade. Essas
tecnologias, ou é por pragas, ou por invasoras. Então tu tens que criar junto à tua genética um material que possa ter essa segurança para gerar ao produtor. Além de um maior teto, uma maneira de você colher o máximo do cultivar.

A estrutura da Nidera está em todo o Brasil. Se faz diversos ensaios. Tu vais pesquisar para buscar um produto adaptado. E tentando buscar o máximo de regiões que ele consiga chegar. Este é o grande objetivo e a grande estratégia do negócio.

I1 – Sementes - Pessoas capacitadas, setor de pesquisa forte, e recursos financeiros. Sem recursos e investimentos não é possível inovar na nossa área, pois a pesquisa é muito longa, demorada. Tem também que saber ler o mercado, o que ele quer, qual a tendência.

I1- Agrometeorologia - Motivação do cliente, no campo. Economia e benefício que o produtor vai ter.

J1 – Drones - A gente tem uma boa rede de parceiros, temos uma boa rede de contatos também, temos algumas parcerias desenhadas com algumas multinacionais, boa parte delas no ramo de químicos, defensivos agrícolas. Exemplo, com a cooperativa da nossa região que eles têm uma bandeira de defensivo. Nos projetos piloto foram usados só os defensivos dessa empresa parceira da cooperativa. Também na área de sistematização, da linha de plantio, que é o plantio de nível, que a gente chama, que é para diminuir perdas por erosão, por excesso de chuva, que é uma parceria que a gente tem com a CNHi, do grupo Case e New Holland também.

K1 - Bicos pulverizadores - O proprietário é produtor rural, tem necessidade a campo dele, observa a necessidade da comunidade próxima. E a gente participa de várias feiras a nível nacional e a nível mundial também, então essa necessidade é vista a campo, né. Por isso esse desenvolvimento mais forte de bicos. Muitas vezes outros fabricantes, o proprietário, o setor de pesquisa não se envolvem com a agricultura e aí acaba não conseguindo observar direito as necessidades também.

EMPRESAS APÓS A COLHEITA

A2 – Equip. Beneficiamento - É parceria, e aquilo que eu te falei, que eu acho que é uma habilidade, né, talvez não seja uma habilidade, mas é um, que tem que buscar, que nem entrou lá no início, que é tu ouvir o cliente e identificar que necessidade ele tem. E ouvir não é necessariamente a engenharia ouvir, é a empresa ouvir. As diversas áreas que têm contato, ou
seja, o primeiro contato nosso é comercial. Depois nós vamos ter contato com planejamento, ali com engenharia, com fábrica, nós temos a montagem, que tá lá presente, temos a assistência técnica. Então a gente conseguir captar desses inputs dessas diversas áreas e identificar as demandas de mercado. Acho que esse é uma inteligência, ou uma habilidade, que a gente tem que desenvolver dentro da empresa pra que cada vez mais se consiga desenvolver produtos que sejam aderentes ao que o mercado precisa.

Nós, outra coisa, além de ouvir o cliente você vai ver o que o concorrente tá fazendo, né? O que que a gente viu? Não tem nada diferente. Todo mundo tá fazendo mais ou menos a mesma coisa. E nós vamos fazer algo que não vai ser também totalmente diferente.

B2 – Equip. Beneficiamento - Eu acho que basicamente ter a sensibilidade de entender a necessidade do cliente, né? Como eu disse antes, cada cliente, cada projeto tem suas particularidades, né? Determinado cliente planta uma área de determinado tamanho, outro cliente planta uma área de tamanho menor, outro de tamanho maior, em regiões diferentes do país.

C2 – Equip. Beneficiamento - Ah, eu acho que a gente tem que ter uma visão macro de tudo que tá acontecendo com o grão pra conseguir ter uma, enxergar mais a frente o que pode, o que que a gente pode colocar de inovação no mercado, o mercado já tem outras necessidades que a gente já tá trabalhando.

D2 – Equip. Beneficiamento - Primeira coisa que tu tem que ter é a cabeça aberta, e não ter medo de olhar pra onde tá indo o mercado, o que que o mercado tem. Agora, se tu ficar olhando o que o mercado só daqui tá fazendo, ou tá vendo, tu já tem um bloqueio. Por isso tem algumas coisas que precisam. Uma das coisas que eu enxergo é ter que ter cabeça pra ver o que tá acontecendo.

E outra coisa também que, diferente, que tu vai encontrar do mercado, nós não temos problema algum em trabalhar com parceiros. Então quando eu tenho um equipamento desses, eu coto, e aí eu entro com acordo com [...] ou com o Carlos Becker, ou com outras empresas, pra comprar o produto do cara, e insiro no meu equipamento. Eu agrego. Só tem algumas características, que nós vamos dar uma olhada no projeto, vamos fazer alguma melhoria, vamos pedir alguma coisa diferente do que ele vende no mercado, pra ter um desempenho adequado com a estimativa que a gente tem de vida útil. Mas não entro, não saio a produzir aqui porque eu não tenho competitividade. Muitas das novas tecnologias que a gente vem desenvolvendo na
TMSA, muitas vezes a gente tá sentado na mesa: “Tá, bacana, legal, mas quem vai pagar por isso? Será que a gente quer isso?”

E2 – Equip. Beneficiamento - Primeiro estar atento ao mercado. Segundo, estar atento ao que o mundo tá ofertando, porque hoje em dia a tecnologia tá chegando cada vez mais rápido, né? Então tu precisas olhar outros mercados mais desenvolvidos, soluções lá, que às vezes a solução é só uma evolução, mas às vezes ela muda radicalmente as coisas. Tem, por exemplos, produtos aí que já tão transportando pneumaticamente, né? Tem alguns equipamentos novos que tão aparecendo no mercado. Tem que estar atento a isso aí, né? Não é nada de outro mundo, mas se tu largar atrás tu vais demorar a chegar lá, né?
Eu também trabalhei em uma multinacional antes. Tem um setor que custa mais caro que a engenharia só pra fazer protótipo. Enquanto tu tem um engenheiro, um projetista, na área de engenharia pra produção, pra desenvolver produtos pra produzir, tu tem um setor de igual tamanho com gente mais qualificada só pra fazer elementos finitos, ou pra fazer estudo de demanda, né, ou fazer um protótipo antes de colocar isso realmente pra produzir. Então, assim, a capacidade de desenvolvimento de uma multinacional tipo uma AGCO, uma John Deere, não se compara com empresas do nosso ramo, que são todas, quase todas nacionais, né?

F2 – Equip. Beneficiamento - Eu acho que tem que ter é conhecimento, pessoas capacitadas pra… Porque, como é que eu vou te dizer, hoje em dia tu não precisa mais tanto conhecimento do equipamento, tu não precisa sair de casa pra fazer isso aí, né? Tu tem a condição de, hoje com a informação tá muito grande, então eu acho que mais a pesquisa…Tem o setor de engenharia, hoje nós temos três engenheiros. Tem o dono, o proprietário, é engenheiro, o filho, que é um de nossos diretores, que é o que tá aqui, daqui a pouco ele tá chegando aqui, engenheiro também, e tem mais um outro engenheiro. São três.

G2 - Equip. Beneficiamento - Eu acho que aí tu tens que ter uma mentalidade dentro da direção que busca isso aí. Nós temos um, que até não tá hoje aqui, temos um diretor, ele é bastante ativo.

H2 - Equip. Beneficiamento - Tem que estar junto ao cliente. Entender o que ele quer. Se é custo, vai custo, se é volume, vai volume. Se não entender e deixar tudo alinhado direitinho dá problema. A gente trabalha sob pedido, e aí tem que sair tudo direitinho desde o início. Tem que fazer o que a gente sabe fazer. Tem que ter nome em que confiam.
Nossa equipe é pequena e nós somos pequenos comparando com outros, como a Kepler. A gente concorre bastante no preço e aí a empresa tem que botas as cartas na questão do preço.

I2 – Termometria - Nós temos um departamento de engenharia que está atento à questão de evolução desses equipamentos, para que eles venham a atender a necessidade do cliente, certo? A Focking está também muito perto das instituições de ensino, como o Instituto Federal de Panambi. Então o Instituto tem essa disciplina de pós-colheita, a Fockink, por exemplo, em determinadas, em determinadas, quando chega aquele momento daquela disciplina, ela participa às vezes de palestras, né, de termometria, de automação.

J2 - Aeração e iluminação natural de silos e armazéns - O conhecimento é fundamental. Eu não trato o silo, eu trato do que está lá dentro. Eu tenho que saber isso para argumentar. E o argumento tem que ser real. Isso fez a gente ter parceiros bons, com órgãos de pesquisa e universidades.

K2 - Sistemas de refrigeração de silos e armazéns - No início não tinha nenhuma. Foi desenvolvida através de um desafio. O de conseguir resfriar um produto dentro de um silo ou armazém em grandes quantidades. Porque em pequenas quantidades a gente consegue fazer fácil, agora grandes quantidades é difícil. Por que todo mundo sabe que um produto bem armazenado conserva por muito mais tempo. Agora a gente tem um setor de P&D, mas antes não. Agora nós temos um setor de pesquisa não interna. A gente apostou muito em professores de universidades, UFPEL, Universidade de Viçosa, uma universidade em Kansas. Nós tivemos embasamento científico para provar resultados. Porque senão o mercado não compra. Se eu simplesmente chegar para ti e disser vamos investir meio milhão que eu faço isso, os caras olhavam para nós e davam risada. "Isso não existe. Como é que eu vou botar uma máquina ali que vai me conservar". Então nós tivemos que partir para a universidade, pegar pessoas recém formadas e que estavam fazendo mestrado e tivemos que bancar para ter esses resultados. E as empresas parceiras nossas, eles também toparam fazer isso. Então muitos moinhos no Paraná, que foi onde começou, começaram a ver resultados tão positivos que eles começaram a divulgar esses resultados e nos deixaram fazer boletins técnicos. "Deixamos de fazer tantos manejos que a gente fazia no passado porque o frio resolveu nossos problemas".
Questão 5-) Há uma troca de informações entre cliente e empresa de modo que ocorra uma colaboração para o aperfeiçoamento do equipamento? De que forma isso ocorre?

EMPRESAS ATÉ A COLHEITA

A1 - Máq. Agrícolas - Se tem a Imperador 3.0, que é uma máquina 3 em 1, que hoje vem se destacando muito no mercado, por pulverizar, conseguir fazer semeadura de cultura de cobertura na barra, e ainda distribuir fertilizante. Essa ideia surgiu de um cliente. Então a gente sempre tá atento a troca de ideia com o cliente. Porque o cliente realmente sabe o que que ele precisa, né? Então isso também é fundamental.
Hoje, claro, tem conversas informais, também, mas a gente tem a pesquisa de qualidade, tem toda essa questão tanto pós-venda, marketing e comercial. Então é realizada a pesquisa junto ao cliente. Fez a entrega técnica, trabalhou uma safra, a gente faz essa pesquisa de avaliação sobre o produto. Então tem, a gente usa o Net Promoter Score, né, que é uma sistemática tanto pra avaliar como é que o cliente tá vendo, e ainda assim a gente pede sugestões nessa avaliação, mesmo estando boa, o cara avaliando a máquina lá como muito boa, ótima, a gente pede uma colaboração se ele tem algum comentário, tanto sobre o equipamento em si, como a percepção sobre a marca. Então isso é feito, trabalhado muito fortemente. Isso aqui hoje você sabe, também, a qualidade é o que vai fazer a empresa crescer, é o que vai fazer o produto ficar aí em mais evidência, né? Essa era uma ideia já da família e tal, sempre escutar o que o cliente necessita. Sempre tem essa troca de ideia, aperfeiçoamento de máquina, então é a essência da marca isso também.

B1 - Máq. Agrícolas- Bastante vezes. Algumas com fotos, filmagens que indica que funciona, aí a concessionária mesmo manda para a fábrica um relatório e aí eles vão ver se funcionam ou não e ser for útil pode até ser utilizado. Verificam a viabilidade econômica da modificação. Sempre através das concessionárias. Então o consumidor chega e compra a máquina e vai vendo que precisa de uma mudança, de uma adequação. ele passa para a concessionária e a concessionária para para a fábrica por meio de uma comunicação interna.

C1 - Máq. Agrícolas - Uma delas, que a gente faz, é as feiras. Na verdade, isso tem, isso é uma via de dois caminhos, tá? Tanto o cliente, ele tem abertura pra entrar em contato com a gente, a gente tem uma área, tem o 0800, tem o pessoal do suporte técnico, tem o pessoal até mesmo do marketing do produtor que escuta os clientes. Então geralmente os clientes gostam de contribuir, gostam de apresentar soluções e mostrar possibilidades de melhoria do produto.
Na verdade, existem dois caminhos pra isso acontecer efetivamente num produto da empresa, vindo do cliente. Uma delas é pela questão do suporte técnico ou por pessoal de serviço, a outra é pessoal de marketing. Isso estando na mão dessas pessoas, a gente simplesmente contata a engenharia, mostra a viabilidade ou mostra o potencial daquela solução que o cliente trouxe, e a gente analisa se isso se torna viável na implementação do produto ou não. Então quando o cliente nos traz a gente faz uma análise, verifica, e geralmente quando o cliente traz é uma questão pertinente. É um caminho aberto. O outro caminho, que é o que mais o marketing trabalha, é tentar instigar o cliente a mostrar as necessidades dele. Às vezes ele sabe que tem um problema, às vezes ele sabe que tem uma necessidade, mas às vezes ele não sabe explicar, às vezes ele não se deu conta ainda.

D1 – Máq. Agrícolas - A gente cansa de sentar com os clientes, aí chegam: “Ó, a tua máquina nova tá ótima, mas aquele sulcador lá, se tu fizer assim, assim, na hora que ele vai descer uma ladeira, ele não… Quem sabe tu faz assim, porque ele não vai jogar a linha pro lado”. Aí vai pro setor de engenharia: “Bom, o que que a gente pode fazer aqui em termos de estruturação desse componente pra que não haja quebra, pra que não haja um desgaste?”. Mas isso aí tem que estar, tem que caminhar junto. A opinião do produtor, a opinião do consumidor final pro desenvolvimento do produto, eu acho…

Porque, o que que acontece? As máquinas são prototipadas, né? Quando você leva o protótipo pro campo, pra fazer os primeiros testes, geralmente tu leva pra algum, no nosso caso levamos pra algum cliente especial, especial que a gente diz é um cliente mais crítico, que tem uma situação específica, determinada na lavoura dele, que a nossa máquina vai suprir essa necessidade que ele tem. E dentro do funcionamento da máquina, inevitavelmente o produtor tá ali junto e vai te dar sugestão.

E1 – Máq. Agrícolas – O contato, nós temos os nossos protótipos, e nós temos aquelas pessoas-chave que a gente vai, faz o teste, depois tem o lote experimental, depois vem o lote piloto. Aí uma vez aprovado a qualidade, aí a gente entra nas feiras ou aqueles clientes chaves, etc. É assim que a gente divulga.

Os clientes ajudam com informações. São essas máquinas que tão, as primeiras no campo, com essas informações nós trazemos pra dentro da empresa, que faz aprimoramento na máquina. Ele nos dá uma dica, e a dica dele é transformada mecanicamente pra nossa engenharia colocar no equipamento.
F1 – Irrigação - Tem coisas que nós enxergamos e tem coisa que o cliente percebe e diz o que quer. É os dois. O nosso contato maior acaba sendo com o representante. Eu tenho o feedback do nosso representante. A gente acaba fortalecendo a nossa revenda. Nossa revenda hoje quanto mais serviços ela fornecer ao cliente melhor. Nosso contato está sendo cada vez mais com a revenda. Qual é a necessidade da região? ah, a necessidade da região do cliente A, B ou C precisa disso. O representante é o que entende a da região e traz dicas. O representante capta isso e quando ele vê que dois, três, alguns alguma fatia de seus representados têm a mesma necessidade, opa, ali tem algo que pode ser trabalhado. Passa para nós e assim a gente faz a mesma coisa lá dentro e desenvolve a solução.

G1 – Sementes - Tudo é feito por equipes. Tu pegas a equipe do comercial, que atende o cliente de uma forma direta. O grande foco nosso é o produtor, nosso negócio está nas mãos do produtor. Ai você envolve revenda, sementeiros, que são os licenciados. Você envolve consultores, órgãos de pesquisa, para todos tentar alinhar, que o grande foco nosso é o produtor rural, que é ele que planta, ele que define se quer ou não quer teu material. Por isso é importante ter a informação para tu te posicionar de maneira correta para errar o menos possível, ou é por ciclo, ou é pela época de plantio, ou é pela população. Por isso tem uma estrutura interna de pessoas para gerar toda essa segurança em informações. Mas fica claro o seguinte o principal cliente nosso é o produtor rural.
O produtor quer um produto mais rápido e com maior teto. Mais rápido de forma que a raiz tolere maior diversidade. Ele vai comprar pela necessidade dele e buscando o teto. Hoje os tetos estão chegando a seis toneladas por hectare. O produtor indica a necessidade dele e vemos a viabilidade da ideia.

H1 – Sementes - A gente escuta o cliente através de nossas equipes para saber o que é importante para ele, o que ele quer na sua lavoura. Mas o como fazer vem da pesquisa, do nosso setor de desenvolvimento, porque é uma parte muito técnica.

I1- Agrometeorologia - Sim, existe. A gente tem relatórios com a sugestão do cliente. A gente tem que fazer as coisas que funcionem à campo. Normalmente, o que vem de fora já não é, vamos dar um exemplo, os cabos que vem de lá, todos os cabos vêm preparados para o frio, não suportam o calor, então a gente precisa de um equipamento que suporte o calor aqui. A gente fez a fábrica e adaptou esse sistema.

K1 - Bicos pulverizadores - A gente tem alguns programas. Mais universidades, que é um programa que a gente faz muito com as universidades para instruir os alunos e os produtores que também queiram participar. O programa Rota da Qualidade, que a gente vai a campo a fazer uma inspeção geral da máquina, tanto de componentes quanto de pontas. Então essas são as duas formas principais hoje que a gente atribui à comunicação. Temos 34 pessoas a campo como representantes junto aos produtores.

Existe troca de informações e a Magnojet é bem receptiva quanto a isso. Muitas vezes acontece uma mudança pela opinião do produtor, né. A necessidade dele é de alguma forma e a gente acaba desenvolvendo um produto conforme a necessidade. Tem um exemplo atual que é um bico cônico que a gente tem os ângulos de 90°, 60° e 40°. Essa semana mesmo chegou uma equipe pedindo um ângulo de 20° e já tá em desenvolvimento. Foi pedido, né. Eu tenho uma demanda de tantos produtores com esse ângulo aqui e trouxe para dentro da empresa e já está em desenvolvimento.

EMPRESAS APÓS A COLHEITA

A2 – Equip. beneficiamento - Então nesse caso nós estamos, pegamos input do mercado, do nosso próprio cliente, já teve um contato sim com nosso cliente final, muito pela nossa área comercial, né, que nós temos uma área, uma equipe comercial que tá distribuída aí em todo território, que cobre mais de 80% do território nacional, e América Latina também. E esse tem contato direto com o cliente. Então eles trazem as demandas também. Temos área de assistência técnica, também traz demanda, temos montagem, temos a nossa engenharia que tá muito presente também em obra. Então a gente tem vários inputs de diversas áreas que começam a trazer, e você começa a fazer uma leitura dessas demandas, né?

Através da metodologia Lean Manufacturing. O Lean, ele tu pega um pouco diferente, a gente, traz, sim, ouviu os inputs de mercado, viu que tinha uma necessidade de um desenvolvimento de uma nova linha de secadores, em função de algumas questões do nosso produto e dessas que nós falamos, mas ele pega, vamos dizer: primeiro você vai ouvir o cliente de novo. Então a
gente fez diversas entrevistas com diversos clientes, foi a campo. Você tem uma parte de planejamento muito mais forte.

Grupo Grão: Kepler fomenta e traz diversos clientes representativos aqui da região, como um todo, cooperativas, cliente final, cerealistas, e faz uma reunião um dia ali, como se fosse um dia, não digo um dia de campo, mas um dia de reunião ou um período de reunião, onde nós mostramos o que a gente tem, o que a gente fez, e o cliente também dá esse retorno sobre o que que eles tão enxergando, o que que é as demandas que eles têm de campo, entendeu? É: “Bom, tem que melhorar nisso aqui, tem que melhorar naquilo lá”.

B2 - Equip. beneficiamento - Nós tivemos uma experiência há duas semanas. Nós estávamos num cliente e a máquina de limpeza, vamos falar bem, a máquina de limpeza, ele reclamou que o sistema pra apertar, pra fixar as paredes ali na caixa, nos caixilhos ali, né, era muito difícil, porque bastam parafuso. Aí ele sugeriu, ele foi, o guri, sabe, o guri é bem dinâmico, assim, guri novo, assim, ele é cheio de ideia. Ele sugeriu que nós fizessemos umas presilhas, sabe, com pressão. Aí botava, colocava as peneiras, que é difícil de colocar, colocava as peneiras lá, e colocasse as presilhas, porque a máquina oscila, né, e daí ela dá uma vibrada.

C2 – Equip. beneficiamento - Sim, sim, não, normalmente, no nosso segmento, normalmente é isso que acontece. Uma demanda de algum cliente específico.

Ah, a gente, com os nossos clientes a gente tem um canal bem aberto. mas, pelo menos, uma vez por mês, duas vezes, a gente tá indo, tá vendo, ah: "Como é que tá funcionando o equipamento, qual a necessidade, o que que tu viu?". Então a gente faz essa troca de informação constante com o nosso cliente, porque nem todas as unidades operam da mesma forma, então a gente tem que ter essa flexibilidade pra inovar e pra adequar, e muitas vezes, até, especificamente pra um produtor em si, né? E também a gente tem a equipe de supervisão de obra, também, que tá sempre passando, também, pra fazer regulagem do equipamento, verificar essas coisas.

Sim, sim, inclusive a gente tem, quando a gente desenvolve um produto, a gente precisa testar esse produto em algum lugar. Então nós temos parceiros nossos que pegam e: “Ah, não, vamos instalar, instala o equipamento aqui, vamos colocar em prova na safra”

D2 - Equip. beneficiamento - Foi uma solução desenvolvida junto com o cliente, né? O cliente é que tinha um problema. A gente tinha ofertado o equipamento padrão nosso. E aí ele, junto
com a gente, sentou com a nossa engenharia, e foi desenvolvendo, foi criando, concebendo a solução a quatro mãos.

Exemplo: Transportador e elevador pra açúcar. Vocês chegaram a fazer modificação? Sim, sim. Na época do projeto foi conversado com o cliente, a gente fez uma série de modificações a pedido dele.

Uso de protótipos com os clientes: O protótipo vai lá, é testado lá no campo, lá no cliente, em combinação com ele. Fizemos algumas melhorias: “Olha, melhorou, aqui essa melhoria ficou…”, então troca, arruma, então o nosso banco de testes é lá no campo.

Nos secadores também. É, não, alguns fabricantes no setor usam tudo, usam protótipos pra tudo, modelos novos, elevadores.

E2 - Equip. beneficiamento - Existe uma grande troca entre a empresa e o cliente. Existem muitas visitas de entrega técnica, visitas técnicas, né? Então é diferente a concepção que tu tens sem ver o equipamento funcionando da que quando tu vês o equipamento funcionando. São coisas que tu não consegues identificar vendo em 2D, numa coisa impressa. Tem que ver ele funcionando. Então existe essa troca de técnica com o cliente o tempo todo. E é extremamente necessário.

F2 - Equip. beneficiamento - Eu faço bastante isso. Não, a gente tem, e uma coisa que funciona muito bem nisso aí é tu ouvir não somente o proprietário da fazenda, porque às vezes ele não sabe, mas o operacional, o cara que opera, ouvir ali o cara que tá lá operando o equipamento mesmo, que seca, que faz o fogo aqui. O que que ele precisa? O que que tá errado? O que que ele acha que poderia ser melhor no nosso equipamento pra facilitar o trabalho dele, pra ser mais rápido? Daqui a pouco tu ter uma plataforma aqui pra lenha, alguma coisa, uma, às vezes umas janelinhas de inspeção, que a gente, às vezes não se bota, eu custumo pedir pra botar em todos os nossos equipamentos. São tudo coisas que facilitam a operação, o operacional do equipamento. Mas eu acho que é a maneira mais fácil, escutar o cliente, né, de entrar na propriedade e…

E outra é parte de desgaste, também, tentar ver onde é que o equipamento tá desgastando mais, e por que que ele tá desgastado mais, o que que tá… Pra tentar reforçar aquelas partes.

G2 - Equip. beneficiamento - É, tem, tem, tem às vezes ideias pertinentes, às vezes como tem ideias que tu escutas por, tu tem que respeitar, então, o cliente, claro. E eu, mas essa troca de informação existe. A gente busca também, quando visita um cliente, sempre vem isso.
H2 - Equip. beneficiamento - Tem sim, desde o início. Tem muita. Como a gente não pode perder oportunidade de vender, tem que estar perto do produtor, conversar com ele, entender o que ele quer. Depois tem que acompanhar ele. Dar assistência, e ai vem o retorno do que foi bom ou não foi. A gente busca se aperfeiçoar, fazer melhor, né, e ai esse retorno do cliente é bom, surgem umas ideias dele e a gente avalia.

I2 – Termometria - Há essa troca de informações. Existem normas que regem o sistema de termometria. E a gente faz, esse projeto, ele é apresentado ao cliente mediante essas normas, né? E o nosso cliente, claro, ele vai analisar o projeto e sempre vai colaborar de acordo com a sua necessidade, né, que ele tem, em termos de medição, né? Mas tudo parte, o projeto, hoje, ele parte rigorosamente a partir de normas técnicas.

Aqui existe uma, por isso que a empresa, empresa e clientes, eles têm que estar, hoje, muito próximos, né? Pra que haja essa troca de informações. Por exemplo, a gente vai ter uma oportunidade de desenvolvimento de tecnologia, e também nós temos, por outro lado, o cliente com a necessidade que a gente tem condições de melhorar com a tecnologia. Então há um somatório, né, das duas partes, pra você tornar o equipamento, então, que atenda as suas necessidades. A Fockink tá sempre muito atenta a esse ponto.

J2 - Aeração e iluminação natural de silos e armazéns - Eu projeto e tenho vários representantes. O representante está em campo. É essa a comunicação. Não tem ocorrido a contribuição do produtor, porque ele é simples e funcional. Não tem muito o que agregar. A dificuldade que temos é fazer ele entender que é muito caro ele não ter o equipamento. As vezes a questão cultural tem aquela resistência de tirar o que está lá e colocar algo melhor. O produtor esquece de calcular o quanto retorna.

K2 - Sistemas de refrigeração de silos e armazéns - Sim constante, bastante. Ele contribui com alterações. Como eles são os usuários, eles sempre têm uma melhoria para fazer, um ajuste no processo ou na própria máquina. Questão estética, operacional. Mas 100% em parceria. Porque uma coisa que a gente faz é o acompanhamento em campo. Porque o resultado que o nosso cliente tem é o nosso espelho para vender para o próximo. A Cotrijal é um espelho para nosso trabalho.
Questão 6) O que predominou nas inovações tecnológicas adotadas: pequenas modificações mais de aprimoramento do equipamento, ou grandes alterações que modificam algum aspecto importante de seu funcionamento?

EMPRESAS ATÉ A COLHEITA

B1 - Máq. Agrícolas - Na John Deere eu acho que são as grandes inovações. Hoje, por exemplo, o sistema Exactapply de aplicação com pulso, com troca inteligente de bico. Mas tem também aquelas adaptações que a gente vai fazendo ao longo dos anos e que não muda muito. Máquinas autônomas é outro exemplo de mudança radical.

C1 - Máq. Agrícolas - Isso é difícil de acontecer no meio agrícola, porque o básico da operação não vai mudar. Eu vou precisar plantar, eu vou precisar colher e eu vou precisar pulverizar. Pode, mas ele é um pouco mais lento. Em termos de pulverização, agora eu acho que a gente vai ter uma que vai mudar o paradigma, que é sair de um pulverizador pra ir pra um drone. Isso é uma mudança gigantesca. Mas até isso acontecer tem um longo caminho pra percorrer ainda. Então, mas, por exemplo, o pulverizador, a gente teve uma evolução gigantesca no pulverizador, mas ele continua fazendo a mesma operação. Só que mais eficiente, com menos perdas, com mais assertividade.

E agora tá vindo um outro bum, na sequência, nos próximos três ou quatro anos, de tirar a inferência do operador na máquina. Isso significa, hoje o operador, ele tem que ser bem experiente pra fazer uma operação. Ele tem que saber da operação, do produto e da atividade. Por exemplo, numa colheitadeira: ele tem que saber ajustar a colheitadeira pra determinadas condições de cultura. E isso tá vindo com que agora a máquina seja capaz de fazer. A gente tá chamando de uma máquina inteligente, com sensoriamento na máquina. A máquina tem que saber como o grão tá sendo colhido, qual a umidade do grão, quanto percentual de perda tá tendo, qual o percentual de quebra que tá tendo. Isso faz com que ela se autorregule.
D1 - Máq. Agrícolas - Pequenas modificações, ou aprimoramentos, são feitos constantemente, constantemente.
Eu acho, eu acho que os aprimoramentos sempre são mais... Incrementais, aos pouquinhos, né?

E1 – Máq. Agrícolas - Olha, tem os dois, né? As pequenas modificações, sim, são as modificações, são as pequenas, que nós podemos chamar como se fosse um modelo, né? Você tem uma máquina 2018. Aí você faz algumas pequenas aprimorações, pro próximo ano ela já sai modelo 2019. Que são pequenas modificações. E temos as grandes modificações, que é uma linha nova de produto.

F1 – Irrigação - As duas. Todos os sistema de irrigação que tem por aqui, a Focking é a única que desde 2014 trabalha com inversor de frequência. Agora os outros começaram a mezer. Para modificar a vazão e para fazer a movimentação do equipamento também. Mais de 500 equipamentos andando continuo e agora que os outros estão fazendo isso.

G1 – Sementes - Para tu teres uma ideia, eu estou com a Nidera desde que ela chegou em 2005. Dos materiais que eu recebi da época, é lógico que teve toda a parte de transgenia por parte dos insetos já veio material transgênico em herbicidas, que é os RR os roundup ready, e passamos lá em 2012 2013 na parte dos insetos que foi a parte de Ipro, de tecnologia. E no momento o produtor tá querendo mais que venha com alguma coisa diferente na parte de invasoras, não só folhas estreitas, que é o Round up, mas alguma coisa de folha larga que nos temos a buva que está atacando muito, a parte também de invasoras de outras invasoras que estão nos agredindo, tem o carurucho chegando. Ai tu tens que entrar com algum produto com molécula diferente, grupo químico diferente. Com a vinda dessas tecnologias ai, Xtend2, o Ipro2, as próprias Enlists, elas possibilitam você usar outros grupos de herbicidas sem que eles afetem a cultura. Na verdade traz uma solução para o problema do produtor. Já existem alguns trabalhos no mercado com a tolerância maior de stress hídrico. Imagino que de duas a quatro safras já está chegando também. Então eu vejo que isso são mudanças muito interessantes que agregam ao produtor. Ele deixa às vezes de usar um coquetel grande de herbicidas ou inseticidas, e isso vem tudo pela semente. Tu vais usar um herbicida mais específico com uma ação bem mais eficiente e com bem mais resultados com a planta tolerante ao herbicida com uma dose as vezes até maior.
H1 – Sementes - Eu acredito que claramente são mudanças disruptivas. Justamente porque a gente está trazendo um benefício que seria a utilização de um herbicida homonal, oxínico, no caso o 2,4D no qual o agricultor sempre utilizou para o controle dessa soja vindo voluntariamente em uma área de outra cultura ele fazia voluntariamente para o controle dessa soja. Ele é um produto ótimo, é uma molécula que está no mercado a muitos anos, o 2,4D e se consolidou por que o agricultor conhece bem, sabe como utilizar e sabe o benefício que ela traz. Então eu digo disruptiva por que a partir daí a Corteva ela traz a possibilidade dessa molécula ser utilizada. Ela vai controlar todas as ervas daninhas de folha larga, sensíveis a esse 2,4D e a soja, que anteriormente era sensível ao 2,4D, ela passa a tolerar esse 2,4D e a gente consegue ter um resultado muito efetivo. Então acredito que sim, é mais uma mudança de patamar, principalmente porque a gente acrescenta uma proteína dentro desse sistema, a proteína BT. Então a gente tem duas proteínas e a gente consegue ter uma proteção bem mais ampla.

I1 – Agrometeorologia - A gente modificou sensores de sementes, tipo para ocupar um espaço físico um pouco menor e a gente descartou o sensor de RPM e acabou colocando uma antena, para não ter necessidade de fazer uma calibração.

J1 – Drones - Mais a questão dos sensores. Os sensores, o que a câmera capta: comprimento de onda. Hoje a empresa que nos fornece a câmera, ela lançou um outro sensor que ela tem mais cinco opções de comprimento de onda que complementam todo o serviço que a gente faz. Tem aí outros sensores sendo desenvolvidos, principalmente em Israel, que é um grande berço de agricultura digital. Eles estão desenvolvendo novos tipos de sensores que vão tornar toda essa interpretação muito mais rápida e aí a gente vai chegar no ponto do sensor te dizer o que está acontecendo, se é ataque de percevejo, se é ataque de lagarta, se é deficiência nutricional. O sensor evolui, e isso é o que no equipamento muda mais vezes. Quando você descobre uma utilidade nova para um comprimento de onda específico, isso é uma revolução muito grande, pois daqui a pouco você tem que desenvolver de novo o seu produto pra se adequar à novidade que está chegando. Uma coisa que seria legal para aumentar a autonomia de nossos equipamentos seria descobrir uma outra fonte de energia que não seja o lítio. As baterias são de lítio. Daqui a apouco uma fonte de energia mais eficiente seria uma mudança disruptiva porque aumentaria nossa performance no campo.

K1 - Bicos pulverizadores - Os bicos não mudaram tanto no s15 anos que estou na empresa. Material de construção dos bicos, desde latão, com muito menos horas antes de ocorrer um
desgaste ou dano, passando para polímeros, aço inox, aço inox endurecido e agora cerâmica alumina. O bico para ser utilizado com o Dicamba para evitar a deriva muda bastante internamente.

EMPRESAS APÓS A COLHEITA

A2 – Equip. beneficiamento - Eu diria que pequenas modificações e evolução contínua, porque, que nem eu falei, não é disruptiva, tu não… O que surgiu de novo, novo no nosso segmento, nos últimos…? Não sei, não me ocorre. Por isso que eu digo, o nosso segmento também ele não é via de regra inovador, ele é muito conservador, conservador. Tu pega, nós tínhamos até um diretor, o Celso, que era uma pessoa bem antiga da empresa, agora se desligou agora final do ano, ele falava: “Não, mas o elevador é que nem se fazia há 30 anos atrás”.

“Só transporta o grão, só leva e…” Mas você tem que ir, digamos assim, fazendo melhorias contínuas pra ir deixando ele atualizado em materiais, em produtividade, em eficiência energética. Ou seja, é e não é, né? É aquela, o conceito é o mesmo, mas você tem que ter uma evolução contínua para que o teu equipamento fique sempre atualizado às demandas que vão surgindo. Mas em nosso segmento via de regra não é disruptivo, uma tecnologia: “Ah, vai vir um secador amanhã que vai ser totalmente diferente do que tá no campo? não”.

B2 - Equip. beneficiamento - Os equipamentos, assim, ó, a armazenagem, ela não evoluiu, aumentaram as capacidades, o fluxo, o diâmetro do equipamento, mas especificamente coisa [...] assim, tipo agricultura, como evoluiu a parte de trator, as plantadeiras, assim, com distribuição a sistema a vácuo, plantadeiras maiores. Uma linha da agrícola, soja, milho, essa evoluiu muito, com GPS, tudo, sistema, isso aí, mas, assim, armazenagem… Secador é o mesmo, assim, todas as empresas têm basicamente o mesmo secador que tinha 30 anos atrás. Hoje se você for verificar o, eu falo o componente de silo, né, ele é basicamente o mesmo do que já se fazia anos atrás. Eu acho que aconteceram as duas coisas.

C2 – Equip. beneficiamento - Não, normalmente são pequenas modificações, assim, que aprimoram o equipamento. Porque, que nem eu falei anteriormente, a gente não tem como inventar a roda.

O que a gente faz é aperfeiçoar e, principalmente na, assim, os equipamentos gradativamente, com o tempo, foram, assim, aumentar muito de tamanho, ter uma capacidade muito mais elevada. Antigamente a gente falava em transportadores de 30 toneladas, já era uma grande coisa. Hoje em dia a gente tem transportadores de 400, 600 toneladas.
E essa concepção do secador, de cavalete, assim, se a gente pega os últimos 20 ou 30 anos, não alterou radicalmente o estilo de...

Não, não alterou radicalmente. O que altera normalmente é o fluxo, fluxo de ar, que tem secadores que têm recirculação, pra melhor aproveitamento do ar. É basicamente isso, mas o conceito dele, em si, não sofreu alteração.

D2 - Equip. beneficiamento - É, o que predomina hoje, na empresa, pra nós, hoje, é a incremental. É melhorias em cima do produto e desempenho. Em alguns casos específicos é um equipamento completamente novo. Mas aí depois tu lançou equipamento, tu atualizou, ajustou o que tinha no equipamento, e aí tu passa melhorias em cima daquele equipamento. Mas o volume que tem é melhorias em cima de um produto. Mas nós aqui o que mais tem é modificações incrementais. É que normalmente o disruptivo, ele, é que o problema é que o disruptivo, ele envolve maior risco também e maior investimento.

E2 - Equip. beneficiamento - A gente trabalha com conceitos de produtos muito antigos, né? O elevador, ninguém sabe quando é que foi criado. Acho que desde a época da Pérsia, lá, já transportavam, já faziam bomba d’água, né? Então são conceitos muito antigos. Então o que tu tens? Tu tens evolução dele, né? Melhora a eficiência do transporte, usa chapas mais finas, mais leves, né, capacidades maiores. Então é mais evolutivo. O transportador em si, ele é o mesmo desde, a empresa tem 75 anos aí, e a maioria, a grande maioria dos produtos dela são, existem há 50 anos. E em termos assim, até onde tu sabe, o desenho do piso, ele não alterou?

Não, nada significativo, nada significativo. Na realidade ele é só um duto, né? Ele é só um duto que leva esse ar ali pra aquela região.

Os silos, se eu não me, só mudou o material, né? E a gente tá desenvolvendo um, todo um processo de desenvolvimento com um diâmetro novo, maior que, o nosso maior é de vinte e sete metros hoje, né?

F2 - Equip. beneficiamento - É, eu acho que, claro, na questão da soja aquilo a gente teve que modificar um equipamento total, não tem nada a ver um equipamento com outro na parte de secagem, assim, vamos dizer. Mas eu acho que predomina pequenas modificações, ajustes e... Hoje em dia tu tem, além da questão, toda a questão funcional, que ela sempre foi boa, a nossa, o nosso equipamento não tem muita reclamação, assim, **quanto a funcionalidade**. Tu pecas um pouquinho numa vedação, uma, mas é, isso é normal. Mas eu acho que na parte da, de mudar muita coisa, assim, não tem muito.

G2 - Equip. beneficiamento - Mas eu vou te dizer, eu estou há 30 anos trabalhando nessa área, e não tem grandes inovações.

Aprimoramentos. E hoje, às vezes o que move os caras a pedir alguma coisa é **não quer mais trabalhar com gente**. Como era, antes já tinha quatro caras botando na moega, hoje tem um tombador, né? Hoje tá, o que que tá movendo, o que tá dando de modernização, é automação. Hoje tu reduz o número de pessoas operando uma planta. Então tu tem cheio de sensores no secador, vai te indicando se tá na hora de descarregar ou não, o sistema de aeração, ele funciona sozinho, tu faz uma programação, que tipo de aeração vai fazer, ou os ventiladores dentro, se desligam conforme a programação. Tem sensores de embuchamento, de movimento, nos transportadores. Então o que tá acontecendo é mais uma automação. Mas à nível de pequeno produtor isso não vai, ele não paga por isso. Mas o grande paga e é uma, é uma área que eu vejo que nos últimos anos o que tá evoluindo é o lado eletrônico, lado de automação.

A **matriz energética** também é uma outra preocupação. E questão de poluição, tendo algum resíduo antes, tu tirava, agora não, hoje tem uma **preocupação com resíduo**. Então é isso que eu digo. Mas, assim, **outra coisa que desenvolveu foi o tamanho**. É, tem **normas**, tem normas que vêm pra ajudar, pra proteger, pra dar mais segurança, que são pertinentes.

H2 - Equip. beneficiamento - **Não muda muito, não.** Nesse nosso negócio a inovação é mais lenta. Antes era de um jeito, mas vai lá e olha ainda é muito parecido, não muda muito. Dá **uma melhorada aqui, uma vedação melhor ali, um material mais resistente**, é isso.. né. Vai funcionando, mas não vejo muita coisa que tenha se alterado. **Uma estrutura um pouco melhor, questão de segurança.** É o que o mercado oferece. Mas tem que estar atento para o que vem de novo por aí, sempre. Isso faz parte.
I2 – Termometria- A evolução ocorre nos sensores. Sensores mais precisos, melhor tipo de suporte. Mas não tem grande alteração. A maior é na automação do sistema de controle, para ligar aeradores, por exemplo.

J2 - Aeração e iluminação natural de silos e armazéns - Teve alterações que foram muito importantes, que a gente fez, que é a iluminação. O equipamento tinha uma tampa de alumínio normal, que tinha uma leve iluminação. Agora com a modificação da tampa que a gente fez, já tínhamos a tecnologia de translúcido para reflexão de luz, só que o material que era utilizado, a gente não poderia dar garantia que a gente dá hoje, porque daí tu tens as intempéries, vento. Isso pode gerar alterações no material, quebra, racha. A gente não adotava esse sistema até conhecer o sistema de alta resistência. É um sistema prismático, o material vem lá de Israel. A luz bate nele, ele bloqueia o calor mas deixa a luz passar.

K2 - Sistemas de refrigeração de silos e armazéns - Mais incrementais. Porque o processo em si não teve alteração. Foram mais incrementos para facilitar a vida no dia a dia. Não tem muito o que mexer no processo. Teoricamente é simples, mas tem o segredo por trás disso, pra tu poder manter essa umidade, para não mexer no equilíbrio higroscópico do grão, porque tu quer botar teu produto a 13 - 14% de umidade. Que 13 - 14% é o que o mercado aceita para comercialização. Tudo que tu tirar abaixo disso tu tá perdendo água, o peso de uma certa forma. Isso para o cliente é valor. É dinheiro. Então o que nós queremos é conservar.

Questão 7-) Entre diferentes alternativas tecnológicas, o que fez com que a empresa optasse por alguma em particular?

EMPRESAS ATÉ A COLHEITA

A1 – Máq. Agrícolas - O que que fica bem claro é a questão, assim, que pra nós, uma empresa de máquinas agrícolas, que a tecnologia vai, se ela bem usada, ela vai trazer mais produtividade. E essa produtividade, ela tem que ter um custo-benefício bom, ela tem que gerar rentabilidade também. Então a inovação, a ideia inovadora, né, ela surge sempre como um atalho pra gerar mais rentabilidade também. Então esse é um aspecto muito importante. Então, e claro, tentar aliar mais tecnologias num só produto. Então a gente tenta sempre aliar mais tecnologias num só produto, fazer com que ele tenha mais funções, e aí, claro, vai ter um valor agregado maior pra nós, mas vai gerar mais produtividade pro agricultor. E quando foi dada essa ideia, né, em princípio não foi possível. Aí tu falou assim: "E aí foi desenvolvido
não sei o que, não sei o que, e aí a gente conseguiu unir", né? Qual foi o fator ali que possibilitou aquela, essa união da 3 em 1?

O fator, na verdade, foi o avanço tecnológico, né? Até então não se tinha meios tecnológicos, não se tinha software, não se tinha hardware pra fazer isso. Como a Stara produz a tecnologia própria, com a evolução se conseguiu chegar a isso. Quem sabe se ela tivesse uma parceira, como acontece em, vamos dizer, 80, 90% das outras empresas, uma parceira que gera a tecnologia pra ela, isso ia ter demorado muito mais tempo. Mas como a gente produz mesmo a tecnologia, a gente consegue fazer isso de uma maneira muito mais viável e mais rápida.

B1 - Máq. Agrícolas - Existem vários projetos que ficam retidos até serem economicamente viáveis. Um exemplo, eu acho que posso falar da S400 que foi um projeto totalmente brasileiro, né, geralmente os projetos da John Deere são estrangeiros, a S400 ela foi um projeto brasileiro, até teve algumas interferências no início, mas agora está uma máquina totalmente perfeita. Demorou um pouquinho por causa das tecnologias que ela utiliza, ela foi inovadora, vamos dizer que foi a máquina mais tecnológica do momento, de dois anos atrás, e ela ficou guardada até que fosse viável a tecnologia estar disponível no campo. Ainda tem bastante lacunas, buracos, que a gente não consegue acessar.

C1 - Máq. Agrícolas - Na verdade, a gente tem muita questão voltada ao mercado que a gente tá inserido. Tem questões regulatórias muito fortes em determinados mercados que às vezes faz com que a gente use tecnologia A ou B. Por exemplo, questão de emissões. O Brasil entrou na questão de emissões no ano de 2016 ou 2017. Todos os produtores, os fabricantes de máquinas que usem motores acima de 100 cavalos necessitaram entrar nessa regulamentação. Isso fez com que a gente tenha que entrar com motores eletrônicos, alterar todos os projetos de máquinas. Então isso foi uma mudança que a legislação nos fez seguir.
Na Europa já tem sistemas de emissões muito mais evoluídos. Por que que a gente não usa aqui? Primeiro porque a gente não tem uma legislação tão forte. Segundo que ela é mais cara, porque ela é mais tecnológica, no sentido de não ter tantos poluentes. E a gente não usa aqui porque economicamente ela se tornaria mais cara pro produtor. Então por isso existe uma lei sempre por trás, porque o produtor não quer, nós de certa forma estamos neutros nessa situação, então a gente, se não precisasse oferecer não iria oferecer, porque a produção da tecnologia é mais cara, então a gente deixa de ter margem ou acaba tendo que repassar o custo pro produtor, e o produtor não quer porque é mais caro. Então por isso tem uma lei sempre por trás.

Falta de conectividade no campo: na verdade a gente já tem na prateleira várias soluções prontas que não se aplicam ao mercado brasileiro por causa disso. Por exemplo, a gente tem uma tecnologia chamada Machine to Machine. O que que é isso? É simplesmente colocar um setup de uma máquina na outra. Então uma máquina acaba passando as configurações pra outra. A gente não tem isso no Brasil por causa que não tem rede de celular.

D1 - Máq. Agrícolas - Na verdade, eu acho, que a mão de obra pra botar isso rodar no campo. Eu escuto N casos, todo dia, que o Eduardo teria condições, ele tem área pra isso, pra ter um sistema assim, mais eficiente, mais, né, mais rápido, mas o Eduardo diz pra mim que ele não vai colocar isso na lavoura dele, não porque ele não queira isso, mas porque ele não tem quem opere, quem entregue isso com a eficiência que o equipamento vai entregar… Porque, uma o custo, né, tu vai ter que incrementar um custo num valor alto no equipamento. E outra, também, que não vai ser todo o público que vai ter como absorver isso. Mão de obra qualificada é a coisa mais difícil. Em tudo, né, pra começar de história, mas acho que a gente deveria ter duas linhas caminhando uma do lado da outra, que é a qualificação e a tecnologia. Porque daqui a pouco a tecnologia tá aqui, como ela já tá, e a gente não tem mão de obra pra isso.

E1 – Máq. Agrícolas - Primeiro é o mercado. Tem a tendência do mercado, né? Por que qual é a tendência do mercado? Ah, hoje é ter um GPS que não é mais com sinal autônomo, é o sinal corrigido. Agora, beleza, tá decidido que é o sinal corrigido, aí nós temos que, aí qual o sinal que nós vamos ter? Tem várias empresas que fazem esse trabalho. Qual que nós vamos, qual que é melhor, que nos dá um pós-venda depois bom, qual que o cliente prefere, né? A gente usa muito isso daí, é o feeling do mercado, né? Não adianta eu querer trazer algo aqui: "Ô, nossa, agora com esse software aqui é dez", que ninguém consegue mexer, que nós temos uma condição limitada de operação por causa do operador em si, que o conhecimento é baixo, a
escolaridade é baixa. Então não adianta eu trazer algo muito tecnológico que eu não vou conseguir vender na minha máquina, né?

G1 – Sementes - Na verdade, como a soja é uma commodity, mais de 60% do consumo dela não fica no país, o que nos limita a colocar algumas biotecnologias, alguns incrementos dentro dela, porque esse produto vai ser exportado. Então a China, que é a maior compradora nossa, ela delega, se ela compraria um produto com tal tecnologia ou não. Tu tens que ter uma aprovação externa para tu plantares internamente. Tu estás na mão do mercado para que tu vais exportar. O produtor nosso estaria preparado para tudo. Ele aceita e ele quer. O que está limitando nós hoje não é ter tecnologia, nós temos, é nós podermos produzir a cultivar que internamente ela tenha essas transgenias tanto para herbicida quanto para insetos. *Depende de quem vai comprar o produto nosso.*

Relação com outras empresas: a relação mais direta que nós temos é a relação dos eventos tecnológicos. Falando em cultura de soja, nós teremos duas empresas que estariam trazendo a tecnologia, de eventos, então tu tens a dependência deles. Tens a dependência dessa parceria com eles. A genética nós temos, é nossa. As vezes para o evento A ou B nós dependemos de uma outra empresa para fazer essa parceria. Para soja nós estamos buscando tudo com empresas que estão no mercado também que nos repassam essa tecnologia. Então não tá na nossa mão. Nós buscamos junto a outras empresas para fazer essa sinergia.

H1 – Sementes – Não percebo uma escolha de alternativas tecnológicas. Indução no desenvolvimento das sementes: na verdade, no princípio do desenvolvimento dessa tecnologia já se menciona o que que a gente pode ter de mudança. Por exemplo, uma semente quando tu desenvolve vai ter uma tolerância ao 2,4-D então lá no início da semente tu já desenha isso ai, tu faz a inserção genética, o gene de tolerância, e a partir dai tu já sai com ela fazendo todo o
melhoramento genético dessa semente justamente pra futuramente tu conseguir atender os nichos de mercado dessa semente. Mas o DNA dela já tem isso. O que estimula o desenvolvimento de uma nova semente é basicamente atender o nicho de mercado e atender algum problema que a gente possa ter.

11- Agrometeorologia - *A tendência do mercado determina o caminho.* Antes a tendência não era o Isadors, agora é o Isadors. Por que inova, né, a comunicação fica mais rápida, fica mais fácil. A comunicação dos equipamentos. *Antes a comunicação dos equipamentos.* Antes eram os módulos dedicados, tipo uma marca funcionava só com aquele módulo, era dedicada essa comunicação. Hoje não. Hoje tem o módulo Iso e ai esse Iso é compatível com todas as outras marcas. Ai vai seguindo a tendência. Agora a tendência qual é? A tendência é o motor elétrico no distribuidor, com o desligamento bico a bico no pulverizador.

Comunicação Iso (formato de comunicação padrão, universal). O que tiver comunicação. Isso funciona com qualquer um, independente de marca. Nosso sistema é compatível com qualquer marca de plantadeira e com qualquer marca de trator.

J1 – Drones - Acho que primeiro é o *feedback que vem do campo*. Dizem que a necessidade é a mãe da inovação. Então algum problema no campo tem que acontecer para mudar um equipamento. Vamos tomar como exemplo a Arpac. O primeiro equipamento que veio era muito diferente desse aqui, e a partir das informações que vieram do campo, eles foram ajustando. A Horus que nos fornece nosso plat asa fix, eles também mudaram muito o equipamento deles. O equipamento inicial deles foi mudado muito mesmo. Veio muito do feedback do campo.

K1 - Bicos pulverizadores - Eu acredito que tenha várias trajetórias. O nosso mercado é um pouquinho diferente. Como a gente tem hoje muitas pontas, muitas vezes a gente consegue atender dando opções para o cliente rapidamente. Mas no desenvolvimento é mais linear, de forma mais objetiva.

Quanto às diferentes marcas das máquinas agrícolas, os bicos são iguais, eles são universais. Os acessórios daí, é de acordo com o que a máquina vai exigir. Mas elas são intercambiáveis também, caso necessário. Então, digamos, elas seriam iguais em todos os sentidos.

A nossa linha de acessórios normalmente nós desenvolvemos os produtos e levamos a tecnologia a eles e eles fazem a mudança no equipamento. A inovação no equipamento deles vem de nós. A ideia sai daqui, nasce aqui.
Cada tipo de produto usa um tipo de produto. Já aconteceu de uma empresa desenvolver um produto e a gente ter que modificar nossos bicos. Recentemente aconteceu com o Dicamba. É um herbicida sistêmico, de folha larga, que tem o problema de volatilização e deriva, e ai, exigiu que nós nos preparássemos para atender esse tipo de produto, produzindo um bico ponta grossa que a porcentagem de gotas deriváveis dele sejam mínimas para poder atender o mercado. Há cultivares de soja resistentes ao Dicamba e outros não. Se tu plantares uma variedade de soja resistente ao Dicamba o vizinho plantar um não resistente, se a deriva for, prejudica o vizinho.

EMPRESAS APÓS A COLHEITA

A2 – Equip. beneficiamento - Num projeto de desenvolvimento novo todos eles vão ter que ter um ROI. O que que é o ROI? Qual é o custo alvo desse equipamento aqui? “Bom, eu tenho que chegar num equipamento que seja, em função da análise de mercado, bom, que tenha a melhor eficiência, que seja fácil de operar, e com o custo alvo de X”. Então isso vai te delimitando algumas coisas já, né? “Bom, de repente pra chegar nisso aqui, com essa tecnologia aqui, tá fora”, Ele condensa no número, porque se o retorno for baixinho por uma tecnologia, você não segue ela. E depois se for muito alto o valor o cliente não vai querer comprar, não vai se pagar. Então isso é muito presente em si a questão do custo.

É, pode até trazer uma tecnologia que pode ser excelente e muito eficiente, mas ela é muito, muito cara.

A questão de segurança também traz necessidade de escolha, isso também é um exemplo que a gente pode dar nesse, em escolha, digamos assim.

B2 - Equip. beneficiamento - Aí existe, acho que um fator, assim, principal nesse sentido, que é a própria questão, vamos dizer, de aplicação dos recursos, né? Algumas empresas, como a nossa, é uma empresa familiar. Então a gente, assim, tem uma estrutura mais enxuta, né, de pessoas, e também, muitas vezes, financeira. Então a gente procura trabalhar dentro do sentido que a gente possa fazer essas mudanças mas não saindo de uma realidade que a gente vive, né?

Nós temos alguns equipamentos hoje que a gente utiliza, que eles são ainda de, eles estão ficando, não vou dizer defasados, mas em outros locais, quem sabe, já não são mais utilizados. Mas ainda nós não conseguimos dar esse passo pra fazer essa reformulação do parque fabril.

C2 – Equip. beneficiamento - É, o que influencia muito nisso aí é a aceitação do mercado. Porque tem vários, vários produtos, várias coisas que a gente até já tentou colocar, desde as coisas mais simples mesmo, assim, na parte de canalização e pra resistência, só que agrega
muito valor. Aí é, daí a gente, não adianta a gente agregar valor ao produto, agregando qualidade, e o mercado não absorver aquilo porque o concorrente ao lado, ele tem um produto bem inferior, né, então ele tem o preço inferior. Então isso dificulta um pouco.

D2 - Equip. beneficiamento - Primeiro tu tem a viabilidade técnica, que é o primeiro gate que a gente trabalha, e a viabilidade econômica. Se tu chegares na viabilidade técnica, passa, tem a viabilidade econômica. Se não tem viabilidade econômica, o projeto é encerrado.

O que, pra ti tá no mercado, pra mim é mais, que tenha o melhor custo. Eu digo melhor custo, não o menor custo. O melhor custo-benefício é novamente onde a gente procura. Se tu vai pro menor custo, eu não tenho capacidade de custo pra tá no mercado. Então eu tenho que ter o melhor custo. muitas vezes a gente tem tecnologias já em desenvolvimento, só que a gente esbarra na barreira cliente. O cliente tá disposto a pagar por isso?

Eu, fornecendo a solução, eu tenho a solução, mas eu vou me cercar de algum parceiro ou de alguma empresa. Vou comprar da Kepler, vou comprar do Carlos Becker, ou vou comprar de uma Pagé, e vou me cercar de alguém que me dê suporte pra fornecer a solução toda. Só que eu tenho dificuldade pra entrar nesse mercado. Então por isso, quanto mais eu tenho a abrir pra conseguir ter uma solução completa, melhor.

Outro ponto é a assistência técnica: vou colocar fornecedores que tu tenhas assistência técnica no local. Sempre que possível, para Brasil, o fornecedor é um fornecedor que tem manutenção e assistência técnica no Brasil. Tudo o que tu for, que o cara precisa assistência técnica ou tem que vir algum componente de fora, tu tem um problema de prazo, tu tem um problema de disponibilidade do equipamento, e normalmente é uma restrição que o cliente não aceita.

Curva de aprendizado: muitas vezes tu pagas a curva de aprendizado pra desenvolver, pra ter um produto diferente no mercado. Então o que eu enxergo, que poucos, no mercado que a gente atua, poucas empresas vão pra um produto diferente ou pra uma tecnologia diferente. As empresas são mais reativas e vão aguardar pra onde vai e ver uma oportunidade de ver como é que foi feito pra poder passar a curva de aprendizagem, e aí justamente é a parte de custo.

E2 - Equip. beneficiamento - Até existem alguns produtos novos que vêm pro mercado aí, mas ele, primeiro ele tem toda uma aprovação de um mercado mais desenvolvido pra depois vir pra cá. A gente não faz, assim, não desenvolve teorias novas, né? A gente usa teorias, as teorias existentes, aquelas que tão consagradas no mercado.

A gente tem um equipamento que é mais robusto, que é o que mais vende no mercado. E tem clientes que pagam por essa robustez, né? Não é o mais robusto do mercado, né? Mas também
não é o que tem o melhor custo, tá? Então se o cliente quer só preço, difícilmente a gente vai vender. Agora, se ele quer equipamento mais elaborado, né, que ele consiga, mais customizado pra situação dele, aí a gente já começa a ter mais, ter mais, ser mais negociável isso pro cliente. Então se ele quiser só preço dificilmente esse, difícilmente a gente vai conseguir concorrer com o preço com outras empresas aí que têm um produto mais leve. Mas a medida que ele quiser produto mais customizado, mais especial... Se for comprar o padrãozinho, o nosso não é mais barato, né? Então isso é uma escolha da empresa, um conceito da empresa, né, que a gente não vai vender o mais barato porque tem empresas mais, maiores aí no mercado vendendo mais barato, né? Então a gente opta por ter uma tecnologia mais customizada, mas que atenda o cliente na situação que ele quer.

F2 – Equip. beneficiamento - Bah, eu acho que se resume à exigência do cliente, mercado, redução de custos. Enfim, se resume a isso, não tem muito que, que... Facilidade de assistência técnica. E a gente procura se focar muito nisso também, né, na parte de manutenção, o que que incomoda mais, o que que dá mais trabalho, pra aprimorar o equipamento de acordo com o que é preciso para o cliente.

G2 – Equip. beneficiamento - Aplicação e custo. Aplicação, por exemplo, arroz, aplicação do arroz, como tu não quer furar o cano, porque ele é muito abrasivo, faz um elevador mais baixo, um toquinho de cano e um transportador horizontal em cima do silo. Se tu trabalhas só com soja e menos abrasivos, tu ligas do elevador, o elevador é mais alto, tu ligas direto o cano no silo. Um exemplo, né?

H2 - Equip. beneficiamento - É o que proporciona menor custo e dá retorno de qualidade para o cliente. Não adianta propor uma coisa que ele não quer, que acha caro, que não confia. O feijão com arroz funciona, então vai lá esse mesmo. Esse mercado é meio concorrido e o produto não sai assim em volumes tão grandes. A gente vende pouco, então vamos produzir o padrão, sem errar. A gente não faz o que não sabe. não dá para errar nesse campo.

I2 – Termometria - É a tecnologia disponível. Se não tem a tecnologia, não tem a solução. Também tem a viabilidade do projeto, né. Tudo o que se projeta tem que se pagar. Se calcula o retorno que se vai ter. Se não tiver ainda, mantém o projeto atual e espera a ocasião para o próximo.

K2 - Sistemas de refrigeração de silos e armazéns - É o mercado. Os clientes nos mostram o que precisam. Há entraves em termos de legislação.

Questão 8-) Quais foram as inovações mais representativas nos equipamentos mais importantes da empresa?

EMPRESAS ATÉ A COLHEITA

A1 – Máq. Agrícolas - Capinadeira dirigível, que ia um cara ali, um outro operador, em cima da capinadeira, e simplesmente ele ficava dirigindo a capinadeira. Isso na década de 60.

Vamos chegar pra agricultura de precisão, anos 2000. Primeiro grande passo foi a inovação de trabalhar com tecnologia própria, o GPS próprio, o controlador próprio. Isso foi o fator mais importante, com certeza, pra Stara ter chegado a hoje, que são máquinas precisas, máquinas que trabalham com a melhor tecnologia que tem no mercado. Mais recentemente, e falando de 2016 pra cá, foi a questão de colocar mais tecnologias em uma máquina que já existia no mercado. Então um exemplo é a Imperador 3.0, que é uma máquina com três funções, e o que que aconteceu quando essa máquina foi lançada? O agricultor até chegou a se assustar, porque não existia o conceito no mercado. Foi a criação de um conceito novo com mais funções, e hoje essa máquina tá em franca expansão no mercado, é uma máquina consolidada no mercado. A gente têm o Hércules, que é um distribuidor autopropelido de qualidade. Por que que vocês não unem essas duas máquinas pro agricultor menor conseguir...".Não, vocês têm
o Imperador com a barra central”, essa barra central é patente da Stara. Então a barra é situada no meio da máquina pra ter mais estabilidade. Isso era em 2011. Naquela época isso pareceu um pouco complicado, só que com a evolução da engenharia, do software, do controlador, parte hidráulica, tudo, se conseguiu unir essas duas máquinas, e aí surgiu uma máquina pro médio produtor, principalmente região sul do Brasil. Então isso é o que aconteceu naquela época. Então hoje essa máquina, ela foi muito assim questionada pela concorrência, mas é uma máquina que se afirmou no mercado, porque ela é uma solução pro médio e menor produtor.

Nova série de colheitadeiras S700, ela conta com um sistema chamado activision que têm câmeras monitorando em tempo integral o grão no elevador de grãos limpos e no elevador de retrilha. Quando a gente verifica que o grão está muito quebrado, você seta que quer qualidade de grãos ou usar toda a máquina, ou melhorar as perdas. A máquina vai se ajustar automaticamente. Ela tira uma foto a cada 3 segundos do produto e a cada três minutos ela confere a regulagem dela tá compatível com o que o operador está esperando, senão tiver ela se ajusta novamente sozinha. Se regula até 180 vezes por dia sozinha. Coisa que se um operador fizer 5 vezes é um ótimo operador.

JDialog, conectividade, telemetria, que a John Deere foi inovadora no país. Precisão de sinal aberto com correção de 15 centímetros gratuita, aberto também, acho que foi uma grande inovação. A gente vende muito piloto por causa disso.

Sistema pro-drive das colheitadeiras, para elas determinarem a velocidade conforme o índice que vai entrando sozinho (determinar a velocidade da rodagem). Ela se controla sozinha a velocidade do deslocamento. Você determina se você quer que ela obedeça à perda ou à capacidade de motor. Existem sensores que ficam medindo a quantidade de perdas, calibrados pelo próprio operador. Se ela aumentar a perda, ela vai diminuir um pouquinho para entrar menos produto e consequentemente diminuir as perdas. Avaliação é feita em percetual. Grãos por metro quadrado fica por conta do produtor para dizer se está aceitável ou não.

C1 – Máq. Agrícolas - Tem o Ideal Harvest, que você simplesmente aperta um botão e a colheitadeira vai se autoajustar dentro daquelas condições de colheita que ele tá insertando. Pulverizador a gente tá indo pra um caminho de economia de defensivos, voltado justamente
para a questão ambiental. Então a gente tá tentando fazer com que o pulverizador, ele identifique na sua frente, através de câmeras, onde ele precisa aplicar e onde ele não precisa aplicar.
Uma inovação mecânica foi a plantadeira Momentum, que a gente tem lançamento em 2016. Ela trouxe uma tecnologia que a gente consiga fazer o plantio com a questão de adubação ao mesmo tempo, mas numa taxa variável, na mesma profundidade, em todas as linhas da plantadeira. Então a gente faz um mapeamento daquela área através da colheita, produzindo mais ou menos, então a gente já sabe onde precisa mais ou menos adubo, cruza isso com a plantadeira, e na hora de plantar ela já sabe que naquele local, naquela posição, precisa colocar mais adubo do que na outra.

D1 – Máq. Agrícolas - Uma máquina múltipla, ou seja, faz plantio de inverno, plantio de verão. Toda pneumática, ela não tem nada parte de corrente, de… E, além disso, a parte de sopro dela, né, proporciona que ela seja utilizada em outras, várias outras funções, desde a correção do solo, com taxa variável, em caixas individuais, você pode estar usando um nutrientes específico numa caixa e outro na outra, com quantidades diferentes pra estar corrigindo, suprindo alguma necessidade específica de gleba, de mapeamento, enfim. Você pode estar fazendo o uso de sementes diferentes em cada uma das caixas, e também estar semeando quantidades diferentes.

F1 – Irrigação - O Supremo, que é o alinhamento contínuo, foram três anos de pesquisa. A questão do bombeamento ecopump. Todas as empresas trabalham com rotação constante do rotor, independente do relevo do terreno, e o nosso equipamento aumenta ou diminui a rotação de acordo com a necessidade do terreno. A questão da fotovoltaica é uma inovação muito grande. Você tem as placas solares e ai você faz um parque solar e você tem um relógio. Você pega e o que gerar de crédito você joga na rede e o que consumir você abate.

G1– Sementes - Como lançamentos, temos a NS 6162 Ipro, com alta produtividade e estabilidade em diferentes ambientes, a NS 6220 Ipro, com alto teto produtivo em ambientes de médio e alto investimento. Além disso, temos a NS 6601 Ipro, altamente produtiva nos mais diversos ambientes, com excelente tolerância ao complexo de doenças de soja.
H1 – Sementes - Enlist é uma biotecnologia, que faz parte da Corteva. É uma tecnologia embarcada dentro de cultivares de soja. Hoje a gente tem cultivares de soja com a tecnologia Enlist para acrescentar mais praticidade e mais resultados no dia a dia do agricultor. É uma transformação genética da soja. A plataforma Enlist permite que essa soja seja tolerante a três tipos de herbicida, defensivos. A soja tolera a presença dessas moléculas que teoricamente seriam prejudiciais para ela. O Enlist permite eliminar as ervas daninhas mantendo a soja nas melhores condições.

Estão trazendo o 2,4D sal colina. É ultra moderno, é um processo inovador, porque traz a ultra baixa volatilidade desse produto associado ao formulante dessa fórmula ai, na elaboração do produto Colex D. O Colex D é uma ferramenta que vai nos trazer uma baixa deriva. A gente vai ter uma redução muito drástica da deriva, facilitando mais ainda a utilização desse produto. Enlist Duo Colex-D que é uma outra formulação, com glifosato associado à mesma embalagem, já está disponível desde 2017. Glifosato e 2,4-D são ambos herbicidas.

I1 – Agrometeorologia - Desligamento bico a bico. Enviromonitor Davis, que obtem dados agrometeorológicos por meio de diversos sensores ao redor da lavoura, para decisões mais precisas de irrigação, plantio. A ISO 6, da Dickey-john, que é uma evolução do módulo Inteliag. É compatível com quase todas as telas existentes no mercado nacional. Funciona com todas as plantadeiras e para qualaquer sistema de aplicação de semente, adubo e líquido.

J1 – Drones - Os novos sensores que estamos adaptando, com muito mais capacidade de definição de imagem.

K1 – Bicos pulverizadores - Pressão de trabalho. O pessoal começou a usar as máquinas autopropelidas, teriam que ter pontas que atendessem essas máquinas com variação de velocidade maior. E ai exigia pressões menores iniciais e pressões maiores nas finais.
Padronização de produto. Dentro das vazões, o mercado tá exigindo essa padronização para facilitar o manejo do produto, para facilitar o compreendimento do produtor.
Material de cerâmica nos bicos.

EMPRESAS APÓS A COLHEITA

A2 – Equip. beneficiamento - O nosso equipamento, falo o nosso do segmento inteiro, ele é carente ainda de embarcar inteligência, ele tá indo nessa direção, ele tem até, inclusive, um
produto que a gente vai lançar agora na Agrishow em maio, que é o sistema de IoT, que a gente vai poder conectar todos os equipamentos da unidade numa plataforma amigável, que vai trazer a informação em tempo real pra trazer a decisão. Tem empresa que tá fazendo: “No silo”, “no secador”, nós vamos fazer em todos os equipamentos. Num primeiro momento ele não vai ser intrusivo, ele vai ser só monitoramento. Ele vai pegar a informação que já tá disponível no equipamento. Secador lê umidade de saída do grão e regula a descarga. A leitura de umidade em tempo real em um fluxo contínuo, um fluxo de produto, era algo que, difícil, não é que é difícil de fazer, mas o dado de entrada não tava sendo fidedigno. Agora nós conseguimos evoluir pra um sistema, que a gente desenvolveu junto com a parceria com outra empresa, um sensor de umidade que ele, a leitura que ele tá fazendo é correta. Termometria digital no secador.

Na questão da fornalha, primeiro era só queimar tora, ia lá o operador e queimava sempre, isso era a nível mais de soja e milho, né? E no arroz tínhamos casca, com os injetores, até, que eram automatizados. Aí a gente foi e fez uma esteira automatizada, pra tirar o operador de jogar lenha lá na boca da fornalha e botar em cima de uma esteira, e essa esteira, em função da temperatura, ela ia alimentando a fornalha. Então, assim, a gente tá partindo, já tem vários casos agora que tá colocando, tá fazendo uma parceria inclusive com outro fornecedor aí, pra nós implementar queima de cavaco de forma automatizada.

B2 – Equip. beneficiamento - A gente procurou fazer essas adequações. Então eu acho que essas mudanças aí, com relação a questão de segurança no trabalho, acho que são as mais significativas que a gente passou nos últimos anos agora.

Olha, nos secadores teve algumas evoluções. Nós, assim, temos dois modelos, até estamos desenvolvendo o terceiro agora. Nós ainda temos o secador de cavaletes, que é o de dutos. Temos secador de, o modular, que a gente chama. E a gente tá agora desenvolvendo o secador de colunas. E isso agilizou o processo de secagem, diminui o consumo de lenha, consequentemente diminuiu o número de energia, o consumo de energia elétrica, diminuiu o número de horas trabalhadas, né?

...a gente fez umas mudanças neles também. Que nem o secador de cavaletes, a gente, tanto o de cavalete quanto o modular, a gente procurou fazer umas mudanças, no cavalete em si,
falando dele, né, nós fizemos umas perfurações nele no formato de escama, então o ar quente, ele anteriormente ele saía só por baixo, e hoje no nosso secador o ar quente, ele já sai por essa escama, né, vazada, né, que ele sai e já entra em contato mais direto com a massa de grãos.

C2 – Equip. beneficiamento - Sim, os últimos anos. É mais a parte de secagem mesmo, de secadores, né, tem modificado ao longo do tempo, assim, essa parte da automação. Em questão de transportadoras não se tem muita coisa, né? O que aconteceu é do transportador de corrente, ele se, ele tem ganhado mais espaço. Antigamente se usava basicamente os transportadores helicoidais, e a fita transportadora, né?

E agora? Agora, bastante, bastante, tem tido mais, tem tido bastante aceitação do Redler, o transportador que tem corrente.

O material de construção, teve algum aperfeiçoamento dos silos ou dos secadores?

Sim, sim, as chapas, antigamente as chapas tinham que ser feitas na oficina, mandadas galvanizar e tudo. Mas hoje tem a galvalume, a chapa vem pronta, passa na perfuradora pra modular e ela tá pronta pra entrega.

D2 – Equip. beneficiamento - Secadores de coluna Mega (tecnologia importada),

Máquinas de limpeza com grande capacidade (500 t/h). IOT na máquina de limpeza (controle de corrente, horímetro, temperatura, sensor de vibração). Facilidade de desmontagem e troca de tela. Melhoria no filtro de manga por questões ambientais.

Carregador com menor emissão de pó (adaptação de um projeto de fora). Carregador de grande capacidade (2000 t/h). Transportadores enlaurosados.

E2 – Equip. beneficiamento - Os secadores, os nossos secadores todos eles são do tipo de cavalete, né? Que é onde o produto vai trocando o caminho durante a queda. E agora a gente tá desenvolvendo um secador de coluna, aí, que tem todos, recém tá entrando no mercado. As fábricas nacionais recém tão começando a colocar no mercado, né? Mas tem cliente aí que já tá pedindo.

Equipamentos que servem para dois tipos de grão, para o produtor não ficar com instalação dedicada somente a um. se tiver equipamento autolimpante ele pode usar a mesma fábrica para as duas coisas. No entanto, ele põe, geralmente ele separa uma área pra um produto e separa uma área pra outro, mas a parte de recebimento, ali, é a mesma, secagem é a mesma. Armazenagem é até um pouco diferente, mas depende até do conceito dele. Se ele vai receber a soja, ele recebeu a soja, por exemplo, agora já teve uma colheita da soja aí no final do verão,
agora começou a ser feita do milho. Se ele já despachou a soja ele pode usar a mesma planta pro milho. É uma evolução, é uma evolução do mercado. Era uma coisa ou era outra, naquela época, agora, isso é interessante. Isso, agora hoje, hoje tu tem que viabilizar tua planta, né? Não é barato, né? Então o que ele pode usar pros dois produtos ele pode, ele usa.

F2 – Equip. beneficiamento - Alteração do material do material a de aço normal para aço inox no funil do secador. Fechamento do secador para evitar espalhar poeira. Bandejas com motorredutor com acionamento independente. Registro de regulagem na máquina de limpeza. Chapas mais finas dos silos (zinco de alta resistência ZAR). Fornalha com queima de casca de arroz por leito fluidizado.

G2 – Equip. beneficiamento - Uma área que eu vejo que nos últimos anos o que tá evoluindo é o lado eletrônico, lado de automação. Hoje tá, o que que tá movendo, o que tá dando de modernização, é automação. Hoje tu reduz o número de pessoas operando uma planta. Então tu tem cheio de sensores no secador, vai te indicando se tá na hora de descarregar ou não, o sistema de aeração, ele funciona sozinho, tu faz uma programação, que tipo de aeração vai fazer, ou os ventiladores dentro, se desligam conforme a programação. Tem sensores de embuchamento, de movimento, nos transportadores.

A matriz energética também é uma outra preocupação. E questão de poluição, tendo algum resíduo antes, tu tirava, agora não, hoje tem uma preocupação com resíduo. Então é isso que eu digo. Mas, assim, outra coisa que desenvolveu foi o tamanho.

I2 – Termometria - Com relação à evolução da termometria, hoje os sistemas, como eu te falei, eles partem dos sistemas portáteis até os sistemas automatizados. O cliente também temessa necessidade de visualizar a temperatura quando ele estiver à distância. Porque muitas vezes ele não tá fulltime na propriedade. Ele tem hoje um gerente de armazenagem, mas ele gostaria de verificar como é que tá a temperatura daqueles silos que ele tem na sua unidade. Aí ele pode fazer visualização através de recursos web, do seu computador, do seu celular. Aí a questão da tecnologia evoluiu bastante.
Hoje você pode falar numa grande evolução também que é a questão, uma das principais contas hoje na unidade de armazenagem é a questão da energia elétrica, né? Então hoje você tem um sistema de termometria automatizado que tá dizendo o momento de quando arar, a melhor condição climática para arar de acordo com a característica de armazenamento daquele produto, que tá sendo informada pela termometria. E a Fockink também agora inovou em relação ao sistema Econ, que você tenha o quanto arar, vamos dizer assim, o quanto arar em relação a volume de ar.

J2 – Aeração e iluminação natural de silos e armazéns - Trabalha com energia eólica, o vento bate em qualquer direção que ele venha o vento entra no aparelho e fica circulando entre um cilindro e outro. Quando ele cruza do outro lado, a aleta está invertida, e do outro lado ele faz a saída, por que ele cria uma baixa pressão atrás das aletas. Não tem problema de entrar chuva no silo. Distribuidor automático de grãos: nós desenvolvemos um sistema que distribui homogeneamente os grãos dentro de um silo. Funciona da seguinte forma: Tenho várias saídas em posições diferentes e tamanhos diferentes. Isso vai fazer com que o sistema largue os grãos em dez locais diferentes. É possível programar o tempo parado e o tempo em movimento. Isso vai definir que eu consiga formar vários montinhos dentro do silo.

K2 – Sistema de refrigeração - Trocamos a parte de motores (fornecedor). O rotor. Nós tínhamos um sistema de ventilador centrífugo, nós mudamos o ventilador. Uma pá que tem um rendimento maior em uma rotação menor. Colocação de CLP, inversores de frequência, para ele se auto regular e para não precisar mais do operador tão constantemente presente. Ela faz tudo sozinho. Um temporizador. Um sistema que no horário de ponta, de pico, tu pode programar ele para desligar sozinho.
RESPOSTAS DOS PRODUTORES

Questão 1- Quais foram os fatores que o levaram a uma busca por mais tecnologia nos equipamentos de processamento de grão?

Produtor 1 - A gente busca sempre produtividade e maquinário e tecnologia. Hoje o que as máquinas oferecem possibilita uma maior produção. E há uma necessidade de buscar uma maior produtividade.

Produtor 2 - O produtor quer mais comodidade, quer uma máquina com piloto automático, sensor de produtividade, GPS.

Produtor 3 - Na indústria foi a qualidade de grão. Meus colegas produtores buscam mais produção. O produtor está muito mais voltado para a tecnologia que traz rentabilidade em termos de produção. Também no papel de produtor a qualidade é importante.

Produtor 4 - Produtividade com qualidade. Nós temos empresas de máquinas agrícolas que se caracterizam por estar sempre buscando inovações, dentre as quais, que foi opção minha como produtor, foi a John Deere. Hoje nós temos o GPS que funciona muito bem nos tratores deles. Temos a automação, piloto automático, monitor de linhas de plantio, monitor de perdas na colheitadeira, que é muito importante, pois o produtor é bastante desatento a isso. Ele sabe produzir, mas não sabe fazer a sintonia fina da produção. O detalhe da produção. Numa cultura como o arroz está se ganhando alguma coisa no detalhe. O produtor que trabalha como seu pai trabalhou, como seu avô trabalhou, hoje está em extinção. Porque nós não temos mais margem na lavoura de arroz para perdas. Não se pode perder nada. Pelo contrário, tem que se inovar em ganhos. Buscar sempre ganhos. Então o GPS, a automação, a pontualidade do plantio, espaçamento grãos por metro, enfim, detalhes do plantio que antes não existiam.

Tanto é que o arroz até um tempo atrás era semeado a lanço. Hoje, não. São em linha, no detalhe. Na questão da pulverização é outro fato muito importante, também um pulverizador tem corte de seção para não haver duplicidade de aplicação do produto. Por que essa duplicidade vai ter como conseqüência fitotoxidade para a planta. Eu já estou em busca da seleção do jato, o jato dirigido à invasora. Em um campo tu tens disseminada várias espécies de invasoras, não é uniforme. Tem espécies hoje como a bulva, o capim amargoso, a poaia branca, são invasoras hoje que está sendo difícil o combate. O jato dirigido faz a leitura da planta. Nós temos uma gama cada vez maior de invasoras resistentes. Então são inovações
muito importantes. O glifosato, quando foi lançado não tinha invasora resistente a ele, agora já temos várias invasoras resistente a ele.

Mas tem que ter cuidado com a deriva. O detalhe pode ser no bico usado no pulverizador. Por exemplo, eu tenho lavoura do arroz ao lado da soja. Eu não posso ter deriva de glifosato da soja para o arroz. A soja é uma cultura um pouco mais sofisticada do que o arroz. A soja é uma cultura que exige muito mais detalhamento, muito mais atenção, profundidade de plantio, espaçamento de plantio, o combate às invasoras é bem mais técnico.

A soja exige bem mais do agricultor. O mínimo detalhe faz a diferença. Tanto é que eu planto soja de maneira empresarial, digamos, faz uns oito anos, e cada ano é uma escola. Nós temos a RR, que é a *Round up Ready*, nós temos a Xtrnd, são tecnologias que estão chegando quase diariamente. Cada ano tem uma inovação.

Falando da indústria, quando é que no passado tu pensou em no arroz em empacotamento automático? e isso basicamente por leis trabalhistas. Tentaram fazer uma lei para diminuir os fardos de 30 kg para 20 kg, mas não baixou. As coisas que nós tivemos que fazer aqui na indústria, algumas com razão, outras absurdas, mas se tu não atender, tu es autuado.

Produtor 5 - Lucro, produtividade. A gente quer produzir mais por hectare, assim fica mais competitivo.

Produtor 6 - Além de ter que produzir mais por hectare, busca de uma melhor qualidade para a produção de sementes e uma melhor qualidade do grão final.

Produtor 7 - Até a colheita é a qualidade do processo. Está ligado em melhorar a qualidade da operação dentro de um custo razoável. Colheitadeira tem a ver com a capacidade de colheita, diminuir a perda de grãos, espalhador de adubo tem a ver com a qualidade de distribuidor de adubo, pulverização eu uso o avião, mas o custo é alto. Muito tem a ver com o custo benefício. Estamos colocando RPK no trator, para fazer a leitura topográfica do terreno. Estamos em um processo de implantação de tecnologia, mas em médio prazo. A minha capacidade de colheita hoje é menor do que eu gostaria que fosse, mas sei que o investimento para aumentar é alto. Então é feito quando muito necessário.

Para a limpeza, a gente tem equipamento antigo. A gente dá uma trocada mas é baixo. Para ir para um sistema mais tecnológico teria que fazer uma mudança maior, A gente não tem feito muitas alterações. Na aeração do arroz a gente tem que botar ar, a gente colocou uma
fornalha, colocamos uma máquina de frio, para dentro dos silos. A gente não tem uma automatização. isso começa a tocar mais na qualidade da mão de obra que temos.

Eu não faço irrigação da soja. Agora, a irrigação de soja, por causa dessa seca, se mostrou muito importante. Eu já fui visitar produtores que formam um grupo que tem muita tecnologia nessa área.

Acho que a pulverização com drones é o futuro. Acho que ela está ainda um pouco cara. A legislação brasileira já permite um drone operado por um operador. Mas já tem a tecnologia israelense, em que um operador opere cinco drones. Ele guia um e os outros vão atrás, o que aumenta a capacidade operacional do processo.

Produtor 8 - Nós buscamos, na verdade, a muitos anos atrás, armazenagem de arroz. Então todo o restante, grade de limpeza e pré-limpeza, todos os equipamentos foram visando uma comercialização posterior, e não necessariamente uma melhora da qualidade do serviço. Na verdade, o que a gente buscou foi uma oportunidade de comercializar a safra de arroz de uma forma posterior. No quesito soja, a gente não tem armazenagem própria, nem secagem. Então a gente busca colher ela no momento ideal para que não seja descontado lá na ponta, no quesito de umidade e também nas avarias, digamos assim. Então a nossa busca tecnológica no arroz seria uma armazenagem mais barata. Mas a última inovação, que não dá para dizer que foi uma inovação no processo, mas sim no custo, na despesa que tem de armazenagem, foi que a gente colocou placas voltaicas nas unidades de secagem para compensar a energia elétrica gasta nelas. Outro quesito foi que a gente colocou silos pulmões para conseguir dar vazão. As colheitadeiras aumentaram muito a capacidade delas de colheita e o secador, no início, embucha, não tem capacidade de secagem momentânea no início da colheita porque chega numa unidade mais alta. Só que depois inverte. Depois o secador tem a capacidade maior do que a colheita. Na soja a gente tenta colher abaixo de 14% de umidade. Quando não consegue a gente manda para uma das granjas que tem secagem. No arroz, quando não tem um percentual de verde, a gente tira da lavoura com 23%, aí a qualidade é o quanto de verde tem, o que não vai virar arroz.

Produtor 9 - Procuro a inovação para um rendimento operacional maior e para manter a qualidade do grão. Eu acho que houve pouca inovação. Como é que eu vou pensar no trator autônomo se nos meus John Deere ou Case se quebra uma coisa são dez mil reais. A tecnologia dá retorno, mas está muito cara e pouco acessível. A tecnologia fica mais cara na
manutenção, na operação, porque não é qualquer um que opera. Quando quebra, a culpa é sempre do operador, mas na minha opinião não é.

Produtor 10 - A gente começou a uns 10 anos a trabalhar com arroz. A gente não tem muita tecnologia, é muito caro, a gente vem como pode, mas sempre tentando colher mais por área. Depois de colher a gente passa na peneira, coloca no silo, seca e já descarrega e vende. A gente vai colhendo, vai passando na peneira e joga no silo. Quando tiver uns dois mil sacos a gente coloca o ar. Quando tiver cheio a gente coloca o ar quente. Fica secando uns dois meses no silo. A gente colhe na base de 19 até 21% de umidade.

Questão 2) Considerando seu setor agrícola (arroz ou soja), de que forma a dinâmica desse setor está relacionada à adoção de inovações?

Produtor 1 - A soja é puxada pelos bons preços e facilidade de comercialização. Ela possibilitou o investimento. Ela animou a se produzir e a buscar maior produtividade. É um momento bom para a lavoura de soja. É um momento de buscar produtividade com tecnologia.

Produtor 2 - Com certeza, quando produtor está vendendo bem tudo se paga. A soja está vendendo bem, mas a seca desse ano vai afetar muito.

Produtor 3 - Eu tendo ganho, eu inovo mais. Eu tendo confiança no mercado, eu inovo mais. Eu tenho um ditado: que culpa tem a soja que eu plantei arroz. A soja estava pagando o plantio do arroz. Eu plantei hoje mais soja do que o arroz. A soja subsidia o arroz. Isso não é de hoje. Está cada vez menos sendo plantado arroz. Por causa de custo, resultado. O resultado que está ficando ruim. Um deles é por causa da água, produto que vai usar, secagem, que tem que ter um custo de energia elétrica grande. A soja não. É colher e mandar para o porto. A soja é mais prática.

Produtor 4 - A soja puxa mais a inovação. O arroz é mais localizado. Aqui na América é o Brasil. A cultura da soja é mundial. Com uma demanda tomada, crescente. Temos um player importante que vai entrar no mercado que será a Índia, como compradora. Então a soja vem num crescente de preço. É uma cultura que está sempre se reinventando. Variedades novas. Todos os anos nós temos variedades novas com grandes tecnologias no genoma da planta.

Alguns equipamentos podem ser usados para os dois. Para soja e para arroz a colheitadeira é a mesma. Já tu tens que usar uma plataforma específica para a soja. A plataforma
que colhe arroz, colhe soja, mas colhe com perdas, com danos físicos à plataforma, pois é uma colheita que exige um corte rasteiro. A plataforma da soja é uma plataforma flex, ela ondula o terreno, ela acompanha o terreno. Ela tem sensores que mantêm um certo nível automático. Então ela tem uma sensibilidade que tu regulas, pois tem uma série de regulagens nessa plataforma. O grão de arroz é trilhado com dentes, é um cilindro de dentes. Na soja já não são dentes, são barras, o que dá menos danos físcicos ao grão. A pulverização praticamente não existe grandes diferenças. Se vais usar o glifosato na soja, então tu usa um bico específico que é antideriva, mas tu só muda o bico, a máquina é a mesma. No plantio são duas máquinas diferentes. O espaçamento do arroz é 13 - 15 centímetros, o da soja é 45- 50 centímetros. O arroz hoje em dia se planta em taipas, e aí entra também a rotação de cultura da lavoura de arroz e soja. Plantado na resteva de soja. Essa lavoura é só entaipada. Antigamente era a régua, manual. passou-se a alinhamento por laser. Hoje tu já tem o RTK, em que tu faz o levantamento com auxílio de satélites e no entaipamento tu tem um monitor no trator que ele vai dirigindo. A máquina entra na taipa e por mapas, por um sistema de satélites e ele trabalha sozinho. No caso da soja agente tem o piloto automático no plantio. O Operador não faz nada. Além do piloto automático tem um monitor de linha, que controla linha por linha a quantidade de grãos que está caindo, dependendo de variedade, peso e tamanho da semente. Tudo são detalhes. Esse monitor de linha, quando tu programas, tem que ter definido. Além disso tem também a questão da pressão. Hoje o plantio mais tecnificado tu tens a vácuo. Hoje a movimentação mecânica de semente já é superada. Usa-se muito ainda, porque o agricultor nem sempre tem acesso ao custo da tecnologia. É uma inovação que veio para ficar, é o plantio à vácuo. Para o arroz também já tem plantadeiras à vácuo. Essa tecnologia está bem mais avançada do que oara o arroz, se bem que o arroz está acordando para isso também. Já temos plantadeira à vácuo para arroz, mas isso é coisa de dois anos para cá.

Produtor 5 - Praticidade e evolução na produtividade. Estando o mercado aquecido, como no caso da soja, o produtor tem o estímulo de produzir mais nas terras que tem. Quando se consegue alta produtividade estimula.

Produtor 6 - A soja dá estímulo para produzir mais devido ao mercado favorável.

Produtor 7 - Para mim, o pé no freio ou no acelerador vai de acordo com o que vai acontecer nos próximos anos. Eu prefiro ir devagar do que fazer grandes investimentos. Eu tenho duas colheitadeiras mais novas e uma antiga e planejo trocar uma delas daqui a dois anos. Por mais
que a soja seja um negócio mais promissor, eu enxergo dois negócios juntos. Não enxergo eles separados. Acho que eles têm benefícios agronômicos interligados que tem mais potencial. A soja por si só tem o risco climático que é alto, ela tem ainda que o mercado esteja aquecido, ela não é, não é que não seja um bom investimento, mas a gente usa muito maquinário do arroz na soja, então o grande benefício dela é que ela otimizou nossa utilização de maquinário, entendeu? As nossas colheitadeiras a gente já tem comprado com a capacidade de colher soja, mas também têm a capacidade de colher arroz. Eu enxergo muito junto. E a soja é necessária, senão só o arroz não daria mais.

Acho que é até por demanda que um grão estimula mais tecnologia do que o outro. A demanda está maior, porque o aumento por resultado está mais na produção do que depois que produziu. Depois para beneficiar, vamos dizer assim, a gente não tem marca no arroz. A gente não descasca o arroz. O mercado que a gente vende arroz é mais de volume e preço do que de valor agregado. É uma commodity, produto de baixo valor agregado. Não se paga muita coisa. Faz o que pode com o menor investimento.

Produtor 8 - Nós vivemos questões ambíguas. Somo, de origem, produtores de arroz. E o arroz vinha de anos bem ruins do ponto de vista de remuneração. Então os investimentos na parte do arroz baixaram muito. A gente só fazia investimento de manutenção, um trator por outro trator. E dentro disso, o que teve de inovação que a gente pode falar, teve entrada aqui de mapeamento por RPK, é um mapeamento para maracha, para dreno. Ele te mapeia o solo e te diz onde é que a maracha tem que passar, por onde é que tem que ser o dreno. Isso tudo já vem cada vez mais embutido nos tratores. Do ponto de vista da colheita aí já tem máquinas dizendo para ti sobre o secador de prova, quanto tá de umidade, de quanto ela tá colhendo por hectare, quanto ela tá jogando fora. Esses quesitos quanto mais nova a máquina, mais tecnologia tem. Em geral, a gente não busca comprar pela questão da tecnologia. A gente busca comprar porque o restante ficou sucateado. E aí a soja é um processo um pouco inverso. A soja tem muito investimento em matéria-prima, em tipos de grão. Porque não tem ainda aquele grão que é o que mais colhe para a soja na várzea aqui no Rio Grande do Sul. Então tu tens vários tipos e aí tu vais mesclando o teu risco, com ciclo curto, com ciclo longo, com ciclo médio. Então tu fazes variedade com isso aí. Já o arroz não. O arroz aqui na nossa região, o 424 é a variedade mais produtiva. Ela tem o ciclo mais longo, tu tens que plantar na janela correta. Mas se tu tens a janela correta tu sempre vais plantar o 424, a não ser que tu tenhas um escalonamento para a colheita, mas caso contrário vai ser sempre 424 no quesito produtividade. Aí tem grãos mais nobres, que vão te dar grãos mais inteiros, mas aí tu vais ter uma produtividade menor. Então, na cadeia do arroz
a gente está mais estagnado em investimento do que qualquer outro, do que na cadeia da soja. Na cadeia da soja está sempre com uma inovação, com um escarificador para plantar mais profundo, um inoculante na linha.

Produtor 9 - Eu plantava arroz antes, mas não penso mais em plantar. O que me levou a tomar essa decisão é a rentabilidade. A sensibilidade do grão da soja é muito maior depois de estar no ponto de colheita ao ataque fúngico na lavoura, se tiver umidade. Em relação à seca e gente já fala em produtividade. Sem dúvida a soja é muito mais suscetível à seca e intempérie do que o arroz. O arroz é uma cultura extremamente segura em termos de produtividade. O problema é que mesmo com produtividade ele não te entrega rentabilidade. A rentabilidade da soja é maior pela conta receita menos despesa. A receita por hectare da soja menos a despesa é maior na soja do que no arroz. A soja tem uma menor receita por hectare e um menor custo por hectare, e o arroz tem maior custo e maior receita, mas essa diferença na soja é melhor. O custo de produção de um hectare de soja é um terço do custo de produção de um hectare de arroz. O custo do arroz está em fertilizante, defensivos, a irrigação e a mão de obra para isso. O custo de maquinário por hectare também é maior. Dessa forma, o arrozeiro está sempre pouco capitalizado.

Questão 3-) De que forma você ficou sabendo da disponibilidade da nova tecnologia?

Produtor 1 - Hoje tem muitas possibilidades, feiras, dias de campo, exposições. As fábricas estão muito presentes nisso. As próprias empresas representantes de máquinas se empenham muito em levar ao campo o que recebem das fábricas. A gente acaba participando com troca de experiência.
Produtor 2 - As empresas de máquinas acessam o produtor. Redes sociais. Grupos de *whatsapp* Nas feiras com concentração de lançamentos, as empresas têm preferência de lançar tecnologias novas.

Produtor 3 - Mais mídia eletrônica, *whatsapp*, *facebook*. A mídia hoje te informa mais rápido do que o fornecedor. Hoje o boca a aboca pela internet, pelo *whatsapp* é mais rápido do que o representante vir à tua porta com um catálogo.

Produtor 4 - Hoje as informações foram muito dinamizadas pela internet. E as empresas de ponta tem os que propagam as inovações e os vendedores. Além do que a procura, diariamente nós temos aqui pessoas nos procurando para máquinas novas.

Produtor 5 - As cooperativas informam o que se inova no meio.

Produtor 6 - Eventos, em que os fabricantes sempre mostram as últimas novidades.

Produtor 7 - Esses eventos, feiras, aplicações que a gente tem no mercado, com atores do mercado de arroz e soja.

Produtor 8 - Para nós, nós temos muito a cultura da revenda, de comprar produtos na revenda, tanto de máquinas quanto do ponto de vista de químicos e adubos. Então toda inovação ele vem a partir da revenda. E aí cada revenda tem a sua metodologia. Então as nossas inovações vêm, basicamente das revendas, quando elas vêm com alguma coisa nova a gente testa se é bom ou se não é. E a gente tem o que a gente chama de dias de campo, que é uma operação que a gente executa muito troca de experiência, e aí tem assim alguns ases que tu segue mais do que outros. Tem produtores que são mais referência nesse quesito do que outros. Temos também o IRGA, mas o IRGA no quesito prático não traz nada de revolucionário. A inovação está mesmo é laboratorial, então está muito mais ligada à indústria da soja, que tem semente, tem royalties.

Produtor 9 - O canal do vendedor, o canal via grupo *whatsapp*, *google*, *internet*. Hoje está muito fácil ver o que tem de novo no mercado.

Produtor 10 - A gente tem as feiras, mas não trocamos nada desde que foi instalada a peneira e o silo. A gente trabalha com o que tem desde o início.
Questão 4-) De que forma a inovação tecnológica dos equipamentos e insumos utilizados para a produção de grãos lhe beneficiou?

Produtor 1 - Em um todo: qualidade, produtividade. Condição de trabalho para o operador. Hoje tem que se buscar uma mão de obra mais qualificada até porque essa mão de obra bruta está se acabando, e essa mão de obra mais jovem não está mais querendo trabalhar com a tecnologia antiga.

Produtor 2 - Capacidade maior de trabalho, motorização maior, manutenção facilitada, diagnóstico facilitado. Conforto. Máquinas com sensores que dão mapa de produtividade. Menos dano físico na semente. A parte de sensores mudou, mas a parte de corta palha, a parte mecânica não mudou muito. É mais a questão de capacidade, de escala. A dinâmica em si da parte mecânica é a mesma.

Produtor 3 - Muito grande. O grande diferencial com o arroz é que se eu não produzir mais, eu fico fora do mercado. Se eu não mais por hectare eu não fico competitivo com outros plantadores lá da fronteira-oeste, na região do meio do Estado. O custo faz com que eu tenha tecnologia para produzir mais. Eu sou obrigado a produzir mais para estar no mercado, senão eu estou fora. Sou obrigado a aumentar, eu tenho que ter uma variedade de grão que produza mais, tenho que ter uma máquina que colha e não perca, tudo na ponta do lápis. Desde a década de 90, a coisa mudou muito nas sementes. A evolução na semente de arroz quanto ao rendimento também ficou muito grande em termos de grão inteiro. Na década de 90 o produtor não tinha muita opção. Há uma mudança muito grande em termos de grão inteiro e grão quebrado. Hoje tu tem variedades que produzem muito. O BR 424 produz muito, só que dá barriga branca, e isso pressiona a indústria a separar isso.

Produtor 5 - Na qualidade, na colheita, o que significa maior produção, redução de perda de grão, qualidade do grão colhido e menor custo do manejo.

Produtor 6 - Maior produtividade e menor perda de grão, principalmente para quem produz semente.

Produtor 7 - Com certeza, é uma soma de fatores. A troca das plantadeiras. A boa plantadeira é fundamental para o nível de produtividade que a gente está. A colheitadeira, vai aumentado a produtividade. À medida que a gente plantou soja a gente teve que aumentar a capacidade de colheita. Pulverizador não é só uma questão de produtividade, mas também de custo, evitando fazer pulverização aérea. Espalhador de ureia foi outro investimento que deu resultado. Quanto ao trator, aumentar a capacidade de máquina, fazer as operações no momento correto e isso vai gerar produtividade. Fazer as operações no momento correto. Basicamente é aumento de produtividade e aumentar a segurança, também. Eu tenho um maquinário ajustado dentro da operação eu consigo fazer as coisas dentro do tempo correto e diminui meu risco.

Produtor 8 - Produtividade. Falar em produtividade está altamente ligado à tecnologia de plantio, à qualidade de semente, e à sua adubação do solo. Claro que a irrigação continua muito importante. Mas ela já era importante e sempre foi. O que os caras procuram hoje: colocar os produtos na água, fazer a irrigação chegar até a planta o mais rápido possível. Então, na verdade todos os processos que até hoje foram feitos até o momento em que o grão está pronto para colher é para ter uma maior produtividade. Quando a ceifa entra para colher é para tu teres uma menor perda e tu ter uma vindagem na hora da colheita. Ou seja, toda a inovação está buscando o quê? maior produtividade em primeiro lugar, e a segunda coisa é uma colheita sem desperdício. Uma colheita mais limpa, digamos assim. Só que isso tem um contra-remédio. Toda vez que tu achas um veneninho mais potente, logo, logo, tu desenvolves uma planta mais resistente, e assim vai indo.

Quanto ao desenvolvimento tecnológico da irrigação, nós vamos ter que dividir entre arroz e soja. Arroz é extremamente igual. Ou tu puxas por levante, ou tu tens um canal a partir de um açude e tu faz por nível. Isso no arroz mudou muito pouco. A lâmina de água baixou um pouco, um palmo, sempre tem, mas a base da irrigação segue igual. Agora já a de soja, pelo fato de na nossa região ela ainda ser nova, tu estudas ainda a melhor maneira de irrigar. Pivô é uma coisa consolidada, mas para alguns tipos de área. Para nós, que temos que fazer essa transformação do arroz, para o arroz inundado que eles chamam, o pivô não se mostrou a melhor
solução. O pessoal está estudando muito a questão do tamaleão e o solo com sulcos para irrigação. Mas nenhuma das duas tecnologias são dominadas para a nossa região. Mas qualquer um que dominar elas, vai ganhar muito dinheiro.

Nós fazemos rotação, integração lavoura pecuária. Em geral o que é arroz vira soja e o que é soja vira arroz. Sempre que a gente vai abrir a área a gente vai plantar primeiro arroz, muito raramente soja, e a gente sempre coloca o que não for usado com pecuária. Vou descansar uma área, então pecuária.

Produtor 9 - Inovação na lavoura, na minha opinião tem muita pouca. Até a colheita tem o que está vinculado à eletrônica e à tecnologia embarcada que vem embarcada. Tu tens pulverizadores que operam a taxa variável, tu tens tratores orientados por GPS, plantadeiras que trabalham com taxa variável de semente e de adubo. O grosso do processo continua o mesmo. Arroz tu colhes com uma colheitadeira sem cabine, soja tu não colhes, mas isso não é uma inovação. É um item da Abim.

Produtor 10 - A gente não teve nenhuma mudança desde que adquiriu os equipamentos, a peneira e só silo. O silo trabalha com ar quente, numa fornalha aquecida a lenha.

Questão 5-) De que forma a inovação tecnológica dos equipamentos utilizados para a limpeza, secagem e armazenagem de grãos lhe beneficiou?

Produtor 1 - Não realiza beneficiamento.

Produtor 2 - Não beneficia. A soja tem sido colhida abaixo de 14%, o que não precisa secagem. Quem planta milho tem secador, quem não planta não tem. Toda soja colhida tem a pré-limpeza e silo.

Produtor 4 - Nos equipamentos de beneficiamento, a tecnologia hoje é o uso de vapor, não mais de lenha nos secadores do arroz. Nos meus secadores de soja eu ainda uso lenha. Os meus
secadores ainda são os pampeiros antigos, de bandejas. E o tamanho também, hoje são muito maiores. Tem uma aparelhagem, hoje, melhor, para a avaliação da unidade de entrada, de saída, sensores, temperatura do grão na massa. Antes era o operador que tinha que controlar tudo. Isso está havendo uma evolução. Em termos de inovação não tem espaço para muito mais inovação.

Tem que melhorar o material das rosas por causa da abrasividade. O arroz é como um mandril. Nós aqui temos sempre uma equipe de manutenção. Nas máquinas de limpeza a gente já usa telas inox, chapas inox, colunas inox. Isso aí já melhorou muito. Mas bem ligeiro nós vamos ter que partir para a inovação com carbono. Basicamente o que foi inovado nesses equipamentos de beneficiamento foi o material, o volume processado, que é a dimensão do equipamento, e a automatização com sensores e controle de temperatura.

Produtor 5 - Não beneficia, manda para a cooperativa. Pretendo armazenar, pois há diferença de preço na entrega. Automaticamente eles pagam mais. Vou ter que fazer investimento na máquina de limpeza. O investimento vai valer a pena para as outros grãos que produzo, milho, aveia.

Produtor 6 - Melhor fluxo de escoamento dos grãos para armazenagem.

Produtor 7 - Não teve muita inovação. Na soja a gente não seca, coloca no caminhão e manda para o porto. No arroz a gente colhe, limpa, seca e armazena, a gente não descasca. Secador tem mais de dez anos, os silos têm mais de vinte anos. As rosacas, caçambas de elevador são trocadas, mas mais por desgaste do que por mais tecnologia. No arroz, acho que ainda não é um gargalo. Quando eu vejo que a coisa vai apertar eu mando para outra unidade, eu terceirizo. É uma coisa que eu consigo resolver assim, terceirizando. Quanto à produtividade, aumentar a qualidade do meu grão, eu acho que é pouco, não paga. Poderia fazer algum investimento visando redução de mão de obra, mas ainda não vejo assim que tenha essa necessidade, talvez futuramente possa fazer, mas não é uma prioridade, vamos dizer assim. A prioridade de irrigar a soja é muito mais importante do que melhorar a capacidade de recebimento. Melhorar o recebimento eu ainda tenho onde terceirizar. Para irrigar a soja eu não tenho o que fazer.
Produtor 8 - Para o arroz, foi a possibilidade de uma armazenagem mais barata, para uma posterior comercialização. Na unidade de secagem a utilização de placas voltaicas ajudou na redução do consumo de energia. Em termos de volume a gente colocou uns silos pulmões para dar mais vazão no processo. Na soja a gente não beneficia. Nós colhemos com uma umidade abaixo de 14% e colocamos no caminhão para mandar para o porto.

Produtor 9 - Nos equipamentos de beneficiamento, vi muita pouca inovação. O secador é o mesmo, mudou a fonte de energia. Em silo acho que nada mudou. Para soja, uso o mesmo secador que usava para arroz (Rotamax), e de vez em quando tenho que secar a soja. Isso depende da data da colheita. Não é necessário que a soja passe pela máquina de pré-limpeza, mas é bom passar. A colheitadeira já limpou um pouco. Estou tentando vender o meu secador. É mais fácil pagar alguém para secar do que ter o secador.

Produtor 10 - Selecção na peneira, bem boa, para fazer a semente para um novo plantio. Mas é que os custos são muito altos. Mas é bom ter tecnologia. Esse ano até deu um grão mais quebrado, mas a gente sempre teve um grão inteiro.

Questão 6-) Quais são as dificuldades encontradas com a nova tecnologia? Como foram contornadas?

Produtor 1 - A mão de obra ainda é o maior desafio. Fazer chegar esse conhecimento ao trabalhador. Traduzir essas oportunidades na prática. Ainda tem muita resistência por ser diferente. Precisa treinar. Precisa fazer que esse operador vá de encontro a essa máquina para ir gradativamente comprando a ideia.

Produtor 2 - Hoje tem a dificuldade da mão de obra. Tem muita tecnologia e a mão de obra não está acompanhando o treinamento necessário para operar essas máquinas.

Produtor 3 - Quando tu é o cabeçã e bota a tecnologia, vai bem, mas quando pe um gerente que não aceita a tecnologia, é mais difícil. Quando vem de cima par abaixo, vai. Se a pessoa não for bem treinada, na operação, tem problema. No início, com as colheitadeiras com mais tecnologia, foi difícil, mas agora está mais dominado. Na secagem foi difícil trazer a secagem de 13 para 12%, por que para a indústria é melhor.

Eu cri tor uma empresa (Massey-Ferguson) porque a cada ano tem uma colheitadeira diferente. Ai, para que teres cinco colheitadeiras de anos diferentes tu tens que ter um almoxarifado gigantesco de peças. Uma cor reia, banal, tu tem todo ano diferente. A John Deere, a linha base, quando tem modificações, são modificações mais amplas, o que facilita ter um almoxarifado. E não é todo ano uma máquina diferente da outra.

Produtor 5 - A gente já sai instruído. Quando a empresa lança ela já esclarece. O pessoal de operação aprende rápido.

Produtor 6 - A capacitação de mão de obra é o maior problema.

Produtor 7 - Em geral é a mão de obra para lidar com mais tecnologia. Inclusive a nível de gerência, de executivo.

Produtor 8 - Sempre a mão de obra. Mão de obra pouco qualificada.

Produtor 9 - Não tive. Na minha opinião as evoluções são pequenas e graduais. Não aparece aqui algo que tu não saibas manej ar. Eu não aceito que as fábricas digam que os operadores não sejam capacitados para equipamentos mais modernos. Eles têm que providenciar um treinamento mais adequado, se quiserem vender um equipamento caro.

As inovações ainda estão muito caras. Tu entras na inovação buscando reduzir custo, reduzindo mão de obra e melhorando rendimento operacional. No primeiro ano, segundo ano de uma máquina nova é um paraíso. Mas depois, quando essa máquina começa a dar manutenção e ninguém consegue te dar manutenção. Softwares, proteções de fábrica, se torna inviável a manutenção de uma máquina moderna. Tu não podes depender da revenda e eles venderem uma peça muito mais cara do que é. Nos últimos ano comprei muita inovação e agora estou vendendo inovação e voltando para o tradicional.
Produtor 10 - Não adotei tecnologia nova desde a compra da peneira e do silo, por isso não tive dificuldades.

Questão 7-) Como foi a relação entre você (produtor) e o fornecedor do equipamento/insumo quanto a alguma necessidade de aprimoramento tecnológico?

Houve contribuição de sua parte para uma melhoria no equipamento?

Produtor 2 - Não me lembro que tenha contribuído. Isso é pouco comum nos últimos tempos. Já vem tudo de fábrica. As máquinas não mudaram quase nada. A parte mecânica não mudou. E os produtores não têm conhecimento do que inovou para poder contribuir, como os sensores.

Eu também fui o primeiro produtor com os graneleiros Boelte, as entaipadeiras Boelte, foram criadas comigo e outro produtor. Eles vinham com os protótipos e desenvolviam conosco. Fui o primeiro produtor dessa região que colheu arroz a granel, por que antes era colheita ensacada, nos anos 1980. No beneficiamento a gente também já melhorou os equipamentos que temos. As máquinas de pré-limpeza também eu ajudei a melhorar alguns projetos.

Como beneficiador, tem mais troca com o fabricante. Acho que até é uma questão de cultura, de estudo. Os produtores pecam por não serem contestadores. O industrial cobra, chama, reivindica muito mais. Acho que isso é uma questão de cultura. O resultado das consequências é diferente. Se eu como produtor cometer um erro eu resolvo, mas tu como
beneficiador que manda produto para o mercado, se cometeres um erro grave, um descuido, te exterminas. As consequências são muito mais contundentes.

Produtor 5 - Sim, espero que sim. Todo mundo sempre tenta para melhorar.

Produtor 6 - Há sempre acompanhamento por parte do fabricante, para uma assistência técnica. A maior comunicação ocorre no momento de divulgação de uma nova tecnologia, ou no momento de entrega de algum equipamento comprado. Colaborei, sim, na semeadura. Com o uso mais intensivo a gente acaba contribuindo mais. Os fabricantes até a colheita também acabam respondendo mais rapidamente.

Produtor 7 - Às vezes sim, a gente nota que poderia ser melhorado. Mas em geral, a gente procura investir em equipamentos maiores, e em equipamentos que eu já vi operando. Eu sou mais pé no chão. Eu tive algumas experiências ruins com inovações muito aceleradas. Eu prefiro aguardar um ou dois anos e ver a coisa se consolidar, e quando entrar, aí sim, para não dar para trás. Eu vejo outros que fazem, principalmente nos equipamentos de irrigação da soja. Aquele grupo de que eu te falei é bem isso, como é que melhora o equipamento. O equipamento sofre adaptações e volta para o produtor.

Produtor 8 - Essa pergunta eu vou ter que fracionar a resposta no meu conhecimento. Para mim fica muito claro que tem alguns fornecedores que colocam produto com maior valor agregado que nos escutam e outros que só nos vendem. Um cara que nos coloca uma semente de soja ele quer saber o nosso resultado. Ele quer saber como é que aquela semente se desenvolveu. Agora uma John Deere, uma colheitadeira John Deere, um trator Valtra, eles não estão muito interessados na nossa opinião. Eles não fazem modificações nos tratores deles baseados na gente. Mas o máximo que eles podem nos escutar, nos ensinar é a utilização do produto que ele já nos vendeu. Então basicamente essa comunicação fica assim: o que que eu tenho que eu sei que existe, a irrigação por canhão, a irrigação de soja por canhão tem uma conversa muito séria entre os produtores nossos, aqui da nossa região e uma fabricante tentando desenvolver um canhão mais eficiente para áreas de várzea. E isso fica sendo um projeto desenvolvido praticamente paralelo. O canhão vem para a lavoura, o cara da lavoura vê as falhas, fala para o fabricante, os caras vão lá e modificam o projeto. Essa é a maior inovação que eu vejo que o produtor colabora com a indústria. O resto, eles são muito gigantes, para nos olharem, digamos assim. Essa irrigação de canhão para a soja aproveita as marachas e o canal
do arroz. Então o que acontece, a lavoura de soja às vezes tá seca e a do arroz tá cheia d'água. Esse canhão antes era para melancia, mas aí os caras começaram a fazer adaptação para colocar esse negócio para soja. Eles pegam a água de uma canaleta do arroz e puxam com uma bomba e jogam para o meio da lavoura da soja. Tem que ter capacidade hídrica para não deixar a lavoura de arroz secar.

O resto tá mais ou menos dominado, enfim, em tecnologia os caras dominam a gente, principalmente o arroz. o arroz é escória, ninguém gosta do arroz. os bancos não gostam do arroz, as máquinas não gostam do arroz porque estragam muito mais. Tu pegas uma máquina para soja ela dura muito mais do que uma máquina que vai colher arroz.

Produtor 9 - Eles querem vender tecnologia, dizendo que o que tu fazes agora é muito caro, pouco produtivo, etc. Eles são um canal muito tendencioso para o que eles querem, e o que eles querem nem sempre é bom para ti. Querem fazer a manutenção, mas é cara qualquer peça que forem trocar. Eles têm tecnologia pare oferecer, mas o custo é alto. Já passei, com experiências positivas e negativas, com colheitadeiras e trator. Eles já testaram novos modelos nas minhas instalações, mas foram muito prepotentes. No final houve resultado, mas o caminho foi meio difícil. No início não funcionou porque tinha que fazer algumas furações diferentes. Eu disse que isso podia ser feito em Camaquã, mas eles quiseram levar a peça de volta para a fábrica, aí eu tive que reinstalar meu equipamento antigo. Depois eles voltaram e funcionou, mas foram muito prepotentes.

Questão 8-) O que impediu a inovação em termos de equipamentos quando havia a percepção de que isso era necessário?

Produtor 1 - Altos custos. Regionalmente temos situações que não foram boas, com seca, e isso é um impeditivo. As vezes a situação econômica não possibilita. No arroz o produtor não conseguiu investir muito nessa parte. Hoje pouca gente tem na nossa região a estrutura de silo e secador. No arroz cresceu isso muito na mão da indústria, e não na mão do produtor.
Produtor 2 - Custo do investimento. Por vontade ele faria alguns investimentos, mas para a realidade da lavoura isso não se paga. Também importante é a dificuldade de conexão com a internet. Não adianta a gente ter equipamento com mais tecnologia digital se não tem conexão.

Produtor 3 - O que mais influi é o custo. Porque no arroz muitas vezes tu não consegue ter resultado. Eu até posso pecar com custo, mas eu tenho muita informação de custo. Agregar valor no arroz é muito difícil. Na soja tem mais garantia, impulsiona mais o desenvolvimento da tecnologia.

Produtor 4 - Como produtor o mais impeditivo é a questão financeira. O produtor tá saindo mais da toca com esses dias de campo. Ele conhece, ele sabe. Todos têm contato com o que está sendo inovado. Para o produtor de arroz, que tecnologicamente tem um índice menor do que o da soja, é a questão financeira. O de soja vem vindo em uma maré melhor. A soja vem numa escala ascendente de preço muito grande. Eu já tenho contrato da soja de 2020 e preços de 89,00, 87,50 e 85,00 reais.

Em termos de beneficiamento, nós precisamos colocar robotização, e já estou estudando isso. Mas tudo tem que ser bem pensado. O arroz vem de um tempo para cá, quatro ou cinco anos, com uma margem muito pequena. Acho que o fundo do poço foi a safra 2018/2019. Pesa o financeiro, muito. Mas a mudança pesa também porque tu lidas com pessoas diferentes. O comprador não aceita defeitos. Tu como comprador quer um produto bom no supermercado. O poder aquisitivo do consumidor ainda dá margem para um arroz de pior qualidade. Tu vendes arroz mais quebrado para outros mercados. O produto final de uma indústria de arroz parboilizado como a nossa é exigente. Em termos de qualidade tu tens que estar na crista da onda. Se tem que comprar um equipamento melhor, tem que comprar.

Produtor 5 - Não trabalha com irrigação, tem o custo e a questão ambiental para a liberação.

Produtor 6 - Custo e disponibilidade financeira.

Produtor 7 - A questão financeira pesa. A questão de algo que eu ainda não vi funcionar. Algo que é ainda experimental. A não ser que faça uma parceria, vamos dizer assim, se esse negócio der certo, eu pago, se não der, eu não pago.
Produtor 8 - Nenhuma dúvida no arroz a falta de remuneração nos últimos anos. Não pode errar o investimento. A gente fica muito, muito apertado. As linhas hoje estão horrorosas se tu comparar uma Selic de 2,25, a melhor taxa de financiamento nossa é 7,5. Apesar do crédito ser longo, isso aí teria que ser 3 por cento ao ano, para começar a ficar atrativo de verdade. Por exemplo, vou investir nesses canhões. Vou comprar 4 canhões desses, o preço em média vai sair uns 200 mil por canhão, mas isso tem chance de dar errado. Pô e nós vamos pagar uma taxa de 7 % nesse negócio! Com tecnologia nacional, com produto feito aqui. O risco comercial do arroz é muito grande. Esse ano o cara começa a plantar o preço estava 47, começou a colheita o preço estava 57, agora o preço tá 72. Mas isso é esse ano. Tem ano que é o contrário. O cara começa a plantar o preço está 50, acaba e colhe o preço está 30. Como é que tu balizas isso? Com a soja é mais seguro, com safra vendida antecipada, com mercado futuro, com mercado a termo. Tem cara que planta soja e vende duas safras na frente. O cara não tem risco comercial grande.

Produtor 9 - É o custo. Ninguém investe em uma coisa que não possa pagar ou que não dé retorno. Quem não tem dinheiro para gastar, não gasta.

Produtor 10 - No caso, nós tínhamos que investir para aumentar a lavoura. Vou ver se consigo colocar outro silo no lado. A gente está sempre com um pé atrás para ver se faz ou não faz.