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“Science is knowledge which we understand so well that we can teach it to a computer;

and if we don’t fully understand something, it is an art to deal with it.”
— DONALD KNUTH, 1974





ABSTRACT

Efficient distributed numerical word representation models (word embeddings) combined
with modern machine learning algorithms have recently yielded considerable improvement on
automatic document classification tasks. However, the effectiveness of such techniques has
not been assessed for the hierarchical text classification (HTC) yet. This study investigates
application of those models and algorithms on this specific problem by means of experimen-
tation and analysis. Classification models were trained with prominent machine learning al-
gorithm implementations—fastText, XGBoost, and Keras’ CNN—and noticeable word embed-
dings generation methods—GloVe, word2vec, and fastText—with publicly available data and
evaluated them with measures specifically appropriate for the hierarchical context. FastText
achieved an LCAF1 of 0.871 on a single-labeled version of the RCV1 dataset. The results anal-
ysis indicates that using word embeddings is a very promising approach for HTC.

Keywords: Hierarchical classification. Text classification. Word embeddings. Convolutional
neural networks. FastText.





RESUMO

Uma Análise de Classificação Hierárquica de Texto Usando Word Embeddings

Modelos eficientes de representação numérica textual (word embeddings) combinados com
algoritmos modernos de aprendizado de máquina têm recentemente produzido uma melhoria
considerável em tarefas de classificação automática de documentos. Contudo, a efetividade de
tais técnicas ainda não foi avaliada com relação à classificação hierárquica de texto. Este estudo
investiga a aplicação daqueles modelos e algoritmos neste problema em específico através de
experimentação e análise. Modelos de classificação foram treinados usando implementações
proeminentes de algoritmos de aprendizado de máquina—fastText, XGBoost e CNN (Keras)—
e notórios métodos de geração de word embeddings—GloVe, word2vec e fastText—com dados
disponíveis publicamente e avaliados usando métricas especificamente adequadas ao contexto
hierárquico. Nesses experimentos, fastText alcançou um LCAF1 de 0,871 usando uma versão
da base de dados RCV1 com apenas uma categoria por tupla. A análise dos resultados indica
que a utilização de word embeddings é uma abordagem muito promissora para classificação
hierárquica de texto.

Palavras-chave: Classificação hierárquica. Classificação textual. Redes neurais (computa-
ção). FastText.
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1 INTRODUCTION

Electronic text processing systems are ubiquitous nowadays—from instant messaging ap-

plications in smartphones to virtual repositories with millions of documents—and have created

some considerable challenges to address users new information needs. One of such endeav-

ors is classifying automatically some of this textual data so that information system users can

more easily retrieve, extract, and manipulate information to recognize patterns and generate

knowledge. Organizing electronic documents into categories has become of increasing interest

for many people and organizations (KOLLER; SAHAMI, 1997; MANNING; RAGHAVAN;

SCHÜTZE, 2008; INGERSOLL; MORTON; FARRIS, 2013; PROVOST; FAWCETT, 2013).

Text classification (TC)—a.k.a. text categorization—is the field that studies solutions for this

problem, and uses a combination of knowledge areas such as Information Retrieval, Artificial

Intelligence, Natural Language Processing (NLP), Data Mining, Machine Learning, and Statis-

tics. This is usually regarded as a supervised machine learning problem, where a model can

be trained from several examples and then used to classify a previously unseen piece of text

(SEBASTIANI, 2002; HAN; KAMBER; PEI, 2011).

TC tasks usually have two or a just few classes, for example, automatic email categorization,

spam detection, customer request routing, fake news detection, etc. Classification tasks with a

high number of possible target classes are studied as a further extension of the TC problem be-

cause they present some particular issues, which demand specific addressing or solutions. Many

important real-world classification problems consist of a very large number of often very similar

or overlapping categories that are organized into a class hierarchy or taxonomy (MANNING;

RAGHAVAN; SCHÜTZE, 2008; SILLA JR.; FREITAS, 2011). This is where hierarchical

classification (HC) arises: it is a particular type of structured classification problem, where the

output of the classification algorithm must correspond to one or more nodes of a taxonomic

hierarchy (SILLA JR.; FREITAS, 2011).

When applied to textual data, HC then obviously becomes hierarchical text classification

(HTC). To illustrate with a real world analogy, HTC is similar to the task of the librarian who

needs to find the right shelf for a book from its content. Some examples of large hierarchical

text repositories are web directories (e.g., Best of the Web1, DMOZ2, Wikipedia topic classi-

fications3), library and patent classification schemes (e.g., Library of Congress Classification4,

United States Patent Classification5), or the classification schemes used in medical applications

(e.g., Medical Subject Headings (MeSH)6).

1<https://botw.org/>
2DMOZ—product of the Open Directory Project—was a web directory that used human editors to organize web-
sites. It was closed on March 14, 2017 (SULLIVAN, 2017).

3<https://en.wikipedia.org/wiki/Category:Main\_topic\_classifications>
4<https://www.loc.gov/aba/cataloging/classification/>
5<https://www.uspto.gov/web/patents/classification/selectnumwithtitle.htm>
6<https://meshb.nlm.nih.gov/treeView>
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1.1 Motivation and Justification

Many organizations can benefit from automatically classifying documents. For example,

law firms can easily place and locate relevant cases (THOMPSON, 2001; SCHWEIGHOFER;

RAUBER; DITTENBACH, 2001; GOVERNATORI, 2009), IT service providers can identify

customer needs from incident tickets (ZENG et al., 2014; ECKSTEIN; KUEHL; SATZGER,

2016), medical organizations can categorize reference articles (TRIESCHNIGG et al., 2009;

TSATSARONIS et al., 2015; PENG et al., 2016). Some of these examples already take advan-

tage of hierarchical classification structures. Therefore, improvements within the HTC area can

have a wide and considerable impact on many applications and areas of knowledge.
Investigation towards efficient methods to build classification models is of fundamental im-

portance in this context. If a model cannot take advantage of all the training data available or

cannot be inducted within a reasonable time, it may not offer an acceptable effectiveness, which

in turn may not suit the application needs. The HTC problem poses some particular challenges,

and while many classification algorithms are likely to work well in problems with only two or

a small number of well-separated categories, accurate classification over large sets of closely

related classes is inherently difficult (MANNING; RAGHAVAN; SCHÜTZE, 2008). To ad-

dress that, some research has been applied to strategies that exploit the hierarchical structure in

problems with a large number of categories. While some results suggest this approach shows

some gain over working without using the taxonomy (MANNING; RAGHAVAN; SCHÜTZE,

2008; DUMAIS; CHEN, 2000) and is overall better than the flat classification approach (SILLA

JR.; FREITAS, 2011), some conflicting HTC competition results still keep the question open

whether hierarchical strategies really outperform flat ones (TSATSARONIS et al., 2015; PAR-

TALAS et al., 2015). This is therefore a topic that still requires further examination to reach a

consensus, as only recently evaluation measures for HTC problems have been better compre-

hended (COSTA et al., 2007; KOSMOPOULOS et al., 2015).
Moreover, in the recent years, some breakthroughs have been achieved in the machine learn-

ing and NLP fields, which have been improving the effectiveness of many TC systems. Such

progress include two main topics: (1) efficient text representation in vector space models such

as word embeddings (MIKOLOV et al., 2013a; PENNINGTON; SOCHER; MANNING, 2014)

and (2) efficient classification algorithms implementations, e.g., softmax-based linear classifiers

(JOULIN; GRAVE; MIKOLOV, 2017), scalable tree boosting systems (CHEN; GUESTRIN,

2016), and neural network variations (LECUN; BENGIO; HINTON, 2015). However, despite

the close relationship between TC and HTC, the impact of those recent advancements have not

been fully explored with regards to HTC yet.

1.2 Goals

The present work investigated whether and how some techniques that have recently shown

to improve the results of TC tasks can be extended to have a positive impact on the HTC problem
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through empirical experimentation and analysis. More specifically, this research has attempted

to at least partially address the following main questions:

• How do recently developed text representation methods—GloVe, word2vec, and fastText—

and efficient classification algorithms implementations—fastText, XGBoost, and Keras’

CNN—that have recently boosted the flat text classification results improve the effective-

ness of HTC?

• What are the classification models effectiveness difference when comparing traditional

classification measures—e.g., flat F1—against measures created specifically for hierar-

chical classification—e.g., hF1 and LCAF1?

1.3 Structure

The following chapter provides descriptions of formal HTC definitions (section 2.1), text

representation schemes (section 2.2), and classification algorithms (section 2.3) that will be

used for experimentation. Chapter 3 reviews relevant advancements within the HTC research,

and the impact of recent techniques to similar classification tasks. Chapter 4 provides a detailed

description of the experimental investigation along with its results and an analysis. Finally,

Chapter 5 summarizes all findings and conclusions.
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2 LITERATURE REVIEW

This chapter revisits the essential notions that are necessary to understand how the hierar-

chical structure of target categories can be used for TC, the methods used to represent text so

that typical machine learning algorithms can be applied to it, and some of these algorithms.

2.1 Hierarchical Text Classification

While binary classification is the more general form of TC (SEBASTIANI, 2002), the cur-

rent industry needs to extend far beyond this fundamental task, which is already challenging

in its own way depending on the domain. Some TC tasks can have multiple classes, which

can appear in different scenarios. If the classification problem allows for classes that are not

mutually exclusive, i.e. if a text piece can belong to one, more than one, or no class at all, it is

called an any-of, multi-value, or multi-label classification; on the other hand, if the classes are

mutually exclusive, i.e. each document belongs to exactly one class, it is then called an one-

of, single-label, multinomial, polytomous, or multi-class classification (MANNING; RAGHA-

VAN; SCHÜTZE, 2008). Throughout the present work, the terms in bold will be preferred.

If a multi-class task has a large set of categories, a hierarchical structure is usually present,

and taking advantage of it during the learning and prediction processes defines what hierarchical

classification is about (SILLA JR.; FREITAS, 2011). Koller & Sahami (1997) were some of

the first researchers to notice that the classification schemes that existed at the time ignored

the hierarchical structure and were often inadequate in cases where there is a large number of

classes and attributes to cope with. This coincides with the emergent popularization of Internet

directories such as Yahoo!7, which used to categorize the contents of the World Wide Web. In

their proposed approach, they decompose the classification task into a set of simpler problems,

and solve each one of them by focusing on a different set of features at each node.

As hierarchies were becoming ever more popular for the organization of text documents,

researchers from the Institute of Informatics and Telecommunications - NCSR Demokritos in

Athens, Greece and from the Laboratoire d’Informatique de Grenoble, France organized the

Large Scale HTC (LSHTC) Challenge. LSHTC became a series of competitions to assess the

effectiveness of classification systems in large-scale classification in a large number of classes,

which occurred in four occasions (2009, 2011, 2012, and 2014), and set some benchmarks for

the task (PARTALAS et al., 2015).

2.1.1 Problem Criteria and Solution Strategies

Different HC tasks may have different characteristics that affect how the problem is ad-

dressed, such as (1) the hierarchy type, (2) the required objective, and (3) the way the system

7Yahoo! (www.yahoo.com) was created as a directory of websites organized in a hierarchy in 1994. (BAEZA-
YATES; RIBEIRO-NETO, 2011)
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uses the hierarchy. As to (1) their type, hierarchical structures are typically trees or direct acyclic

graphs—the main difference is that a node can have more than one parent node in the latter. The

(2) task objective determines whether the classifier must always choose a leaf node—mandatory

leaf node prediction (MLNP)—or can choose any node in any level—non-mandatory leaf node

prediction (NMLNP) (SILLA JR.; FREITAS, 2011).

The most diverse characteristic relates to (3) how a classification system takes advantage of

the hierarchy. Many approaches have been proposed to exploit the hierarchical structure of the

target categories during the classification processes, and Silla Jr. & Freitas (2011) summarized

them into three main clusters, namely (3.a) flat, (3.b) global, and (3.c) local approaches. The

(3.a) flat classification for it ignores the hierarchy by “flattening” it to the leaf nodes level and

works any usual multi-class classification algorithm during training and testing phases. In the

(3.b) global approach, a.k.a. big-bang approach, a single classifier is trained while taking the

hierarchy into account and may use a top-down strategy at the testing phase.

The (3.c) local classification approach, sometimes incorrectly referred as “top-down” ap-

proach, uses the hierarchy structure to build classifiers using local information, i.e. only the

data that belongs to a particular node is considered to learn one or many classification models

per each node. Silla Jr. & Freitas (2011) subdivide the local classification approach further into

three subgroups depending on the way local information is used at the training phase: (3.c.I) lo-

cal classifier per node (LCN) trains a binary classifier for each child node; (3.c.II) local classifier

per parent node (LCPN) trains a multi-class classifier for each parent node; and (3.c.III) local

classifier per level (LCL) trains a multi-class classifier for the entire hierarchy level. During

the test phase, all systems built using the local classification approach use a top-down strategy,

i.e. they predict a class at an uppermost level and then use that information to predict further

under the candidates nodes from the previous step only in recursive manner until a leaf node is

reached or the blocking criteria for a NMLNP is met.

2.1.2 Evaluation Measures

As hierarchical classification is inherently a multi-class problem, many researchers use tra-

ditional multi-class evaluation measures such as P (precision, i.e. the percentage of tuples

predicted in a given class that actually belong to it), R (recall, i.e. the percentage of tuples

correctly classified for a given class), and F1 measure (a combination of precision and recall

in a single measure) (HAN; KAMBER; PEI, 2011). Equations 2.1, 2.2, and 2.3 define these

measures mathematically, where TP (true positive) is the number of tuples correctly predicted

as belonging to category c, FP (false positive) is the number tuples predicted as belonging to

category c that actually belong to other classes, and FN (false negative) is the number of tu-

ples that actually belong to class c but where incorrectly classified in other classes. As HTC

deals with many classes C, a single overall effectiveness value can only be obtained by averag-

ing the mentioned measures, which can be done in two ways, namely, micro-average (average
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of pooled contingency table) and macro-average (simple average over classes) (MANNING;

RAGHAVAN; SCHÜTZE, 2008), which are calculated as per equations from 2.4 to 2.9.

P =
TP

TP + FP
, R =

TP

TP + FN
, F1 =

2PR

P +R
(2.1, 2.2, 2.3)

P̂µ =

∑C
c=1 TPc

∑C
c=1 TPc + FPc

, R̂µ =

∑C
c=1 TPc

∑C
c=1 TPc + FNc

, F̂1µ =
2P̂µR̂µ

P̂µ + R̂µ

(2.4, 2.5, 2.6)

P̂M =

∑C
c=1 Pc

C
, R̂M =

∑C
c=1 Rc

C
, ˆF1M =

2P̂M R̂M

P̂M + R̂M

, (2.7, 2.8, 2.9)

Nevertheless, these measures are actually inappropriate for HTC because they ignore the

parent-child and sibling relationships between categories in a hierarchy, which is intuitively

wrong because (1) assigning a tuple to a node near to the correct category is not as bad as

assigning it to a distant node, and (2) errors in the upper levels of the hierarchy are worse than

those in deeper levels (SUN; LIM, 2001; KIRITCHENKO et al., 2006; KOSMOPOULOS et al.,

2015). As an attempt to resolve this problem, Sun & Lim (2001) proposed two HC measures:

a category-similarity based one, which evaluates the effectiveness taking into consideration the

feature vectors cosine distance between the correct and the predicted category; and a distance-

based one, which assigns effectiveness considering the number of the links between the correct

and the predicted category within the hierarchy structure.
Arguing that these methods are not applicable to directed acyclic graph (DAG) hierarchies

nor multi-label tasks, and do not take the node level into consideration to measure the mis-

classification impact, Kiritchenko et al. (2006) propose an approach that extends the traditional

precision and recall. Instead of considering only the actual and predicted nodes, their measures

augment the objects under consideration by considering that each tuple belongs to all ancestors

of the class it has been assigned to, except for the root node. The authors call these measures

hierarchical precision (hP) and hierarchical recall (hR), which are suitable to calculate a hier-

archical F1 measure (hF1). Although they claim having evidences that the new measures are

superior to traditional ones, no experimental results have been provided.
Kosmopoulos et al. (2015) indicate such hierarchical versions of precision, recall, and F1

excessively penalize errors in nodes with many ancestors. To address that, they propose a

variation, in which they use the lowest common ancestor (LCA) as defined in graph theory—

rather than the entire node ancestry as suggested by Kiritchenko et al. (2006)—to calculate

precision (LCAP), recall (LCAR), and F1 (LCAF1) as indicated in equations from 2.10 to 2.12

LCAP =
|Ŷaug ∩ Yaug|

Ŷaug

, LCAR =
|Ŷaug ∩ Yaug|

Yaug

,LCAF1 =
2LCAP LCAR

LCAP + LCAR
(2.10, 2.11, 2.12)

where Ŷaug and Yaug are the augmented sets of predicted and true classes. Their LCAF1

measure was studied empirically on datasets used by LSHTC and BioASQ8 HTC competitions

to conclude that “flat” measures are indeed not adequate to evaluate HC systems.

8BioASQ (<http://www.bioasq.org/>) is a challenge in large-scale biomedical semantic indexing and question
answering that uses data from PubMed abstracts.
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2.2 Text Representation

Although one can, for example, build a rule-based classifier upon a combination of key-

words, most classification systems fundamentally consist of mathematical models that use ma-

chine learning-based approaches. Such models are designed to work with examples in the form

of m tuples containing a fixed number of n attributes, ultimately represented as an m-by-n ma-

trix. To comply with this constraint, any raw text that will be submitted to a classification

procedure has to be transformed into a compliant representation, known as vector space model

(SEBASTIANI, 2002; MANNING; RAGHAVAN; SCHÜTZE, 2008).

In most approaches, TC takes advantage of the techniques developed by the Information

Retrieval community to address the document indexing problem in order to build such repre-

sentation models. Some of these techniques generate a so-called document-term matrix, where

each row corresponds to an element of the corpus and each column corresponds to a token from

the corpus dictionary (MANNING; RAGHAVAN; SCHÜTZE, 2008), while others represent

each document as a vector of an arbitrary size that contains a distribution of representing values,

usually called topic models (BLEI, 2012). A third technique group, more recently developed,

computes numerical document representation from distributed word representations previously

derived with unsupervised learning methods (MIKOLOV et al., 2013b; LE; MIKOLOV, 2014;

KUSNER et al., 2015; BALIKAS; AMINI, 2016). The following subsections present some

of the most relevant text representation methods, which will be either used as benchmark or

studied further with this investigation.

2.2.1 Document-term Matrix Approaches

The simplest way to represent text in a numerical format consists of transforming it to a

vector where each element corresponds to a unique word and contains a value that indicates its

“weight.” Such a representation is known in the literature as the bag of words (BoW) model

(MANNING; RAGHAVAN; SCHÜTZE, 2008). Transforming a document from raw text to

BoW usually begins with some data cleansing and homogenization. In general, techniques such

as tokenization (breaking a document into small chunks of text), downcasing (converting the

text to lowercase), stemming (shortening a word to its base or root form), and stop words9

removal are applied (INGERSOLL; MORTON; FARRIS, 2013). The next step concerns cal-

culating the weight, which can be done using a wide variety of methods, but usually refers to

a composite value derived from the term frequency (TF) and the inverse document frequency

(IDF). Both TF and IDF can be calculated in many ways; the most common TF-IDF method

attributes the term t and document d the weight as described in 2.13, where tft,d is the number

of times that term t appears in document d, N is the number of documents in the corpus, and

dft is the number of documents that contain term t (FELDMAN; SANGER, 2007).

9Stop words are extremely common words, such as propositions and articles, that have little value for indexing and
other text processing tasks, e.g., the, of, in, at, etc. (MANNING; RAGHAVAN; SCHÜTZE, 2008)
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TF -IDFt,d = tft,d · log
N

dft
(2.13)

After calculating the BoW values for all documents in a corpus, each one is then cast into a

sparse vector with as many elements as terms in the corpus dictionary to comply with the m-by-

n matrix prerequisite. Although suitable and efficient for many text mining tasks, BoW models

have a very high dimensionality, which poses considerable challenges to most classification al-

gorithms, and ignores the word order completely (CRAIN et al., 2012). While there are some

ways to at least partially tackle the former problem (using feature selection or dimensionality

reduction, for example), addressing the latter is impossible as the ordering information loss is ir-

reparable; as a result, classification algorithms will likely predict sentences such “China attacks

France” and “France attacks China” as belonging to the same class, which is obviously wrong

if one is trying to classify country belligerence. Furthermore, vector space representations are

unable to cope synonymy and polysemy (MANNING; RAGHAVAN; SCHÜTZE, 2008).

2.2.2 Distributed Text Representation

Rather than having a separate attribute for each term in a corpus, a distributed text represen-

tation is a vector space model with an arbitrary number (usually around tens or a few hundreds)

of columns that correspond to semantic concepts (CRAIN et al., 2012). Some of the most popu-

lar schemes in this approach, which is sometimes called topic modeling, are the latent semantic

indexing (LSI) and latent Dirichlet allocation (LDA). LSI consists of a low-rank approxima-

tion of the document-term matrix built from it using singular value decomposition (SVD), and

can arguably capture some aspects of basic linguistic notions such as synonymy and polysemy

(DEERWESTER et al., 1990). LDA is a generative probabilistic model in which each document

is modeled as a finite mixture of latent topics with Dirichlet distribution (BLEI; NG; JORDAN,

2003).

More recent approaches try to compose distributed text representation at document level

from word representations in vector space—a.k.a. word vectors or word embeddings—generated

with novel methods. Such methods include the continuous bag of words (CBoW) model, the

continuous skip-gram model (CSG)—a.k.a. word2vec models10 (MIKOLOV et al., 2013a)—

and the global vectors model (GloVe) (PENNINGTON; SOCHER; MANNING, 2014). Word2vec

models are trained using a shallow feed forward neural network that aims to predict a word

based on the context regardless of its position (CBoW) or predict the words that surround a

given single word (CSG) (MIKOLOV et al., 2013a). GloVe is a log-bilinear regression model

that combines global co-occurrence matrix factorization (somehow similar to LSI) and local

context window methods (PENNINGTON; SOCHER; MANNING, 2014). Classification algo-

rithms then use the resulting word vectors directly or a combination of them as input to train

10Many researchers roughly refer to both CBoW and CSG models as word2vec models, which is the name of the
software implementation provided by Mikolov et al. (2013a), which is available at <https://code.google.com/p/
word2vec/>
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models and make predictions (HUANG; QIU; HUANG, 2014; KIM, 2014; LAI et al., 2015;

BALIKAS; AMINI, 2016). Moreover, some recently proposed classification algorithms incor-

porate the principles used to compute those word vectors into the classification task itself (LE;

MIKOLOV, 2014; TAI; SOCHER; MANNING, 2015; JOULIN; GRAVE; MIKOLOV, 2017).

2.3 Classification Models

In a broad sense, classification is the process of attributing a label from a predefined set to

an object, e.g., classifying an album according to its music genre. In the data mining context

though, classification consists of a data analysis in two steps that (1) induces a model from a

set of training tuples using statistical and machine learning algorithms that is able to (2) predict

which class a previously unseen tuple belongs to (HAN; KAMBER; PEI, 2011). As it is a

fundamental topic in many areas, classification has been a subject of intensive research over

the last decades, which resulted in the proposal of many methods to generate, improve, and

evaluate classifiers (MANNING; RAGHAVAN; SCHÜTZE, 2008). The following subsections

provide an overview about some of them, namely, linear classifier, gradient tree boosting, and

convolutional neural networks (CNN), for future reference in section 4.

2.3.1 Linear classifiers

A linear classifier assigns class c membership by comparing a linear combination of the

features ~wT~x to a threshold b, so that c if ~wT~x > b and to c if ~wT~x ≤ b. This definition can

be extended to multiple classes by using either a multi-label (any-of ) or a multi-class (one-of )

method. In both cases, one builds as many classifiers as classes using a one-versus-all strategy.

At the test time, a new test tuple is applied to each classifier separately. While all assigned

classes are considered for the final result for the multi-label method, in the multi-class only

the label with the maximum score b is assigned (MANNING; RAGHAVAN; SCHÜTZE, 2008,

p.277–283). Rocchio11, Naïve Bayes12, and SVM13 are examples of linear classifiers.

FastText is a model that essentially belongs to this group, but uses a combination of tech-

niques to consider distributed word representation and word order while taking advantage of

computationally efficient algorithms (JOULIN; GRAVE; MIKOLOV, 2017). It calculates em-

beddings in a similar way as the CBoW model does (MIKOLOV et al., 2013a), but with the

label as the middle word and a bag of n-grams rather than a bag of words, which captures

some information about the word order. The algorithm operates in two modes, supervised and

11Rocchio classification model uses centroids to calculate decision boundaries and classify a tuple according to the
region it belongs to (MANNING; RAGHAVAN; SCHÜTZE, 2008).

12Naïve Bayes is a statistical model based on Bayes’ theorem that makes predictions based on the probability that
a tuple belongs to a class given its feature values (HAN; KAMBER; PEI, 2011).

13Support Vector Machine is a classification model that tries to find the hypothesis that minimizes the classification
error based on the structural risk minimization principle by looking for the decision boundary that maximizes
the distance between itself and the tuples that belong to either class (JOACHIMS, 1998).
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unsupervised. In supervised mode, the documents are converted to vectors by averaging the

embeddings that correspond to their words and used as the input to train linear classifiers with a

hierarchical softmax function (GOODMAN, 2001). On the other hand, in unsupervised mode,

fastText simply generates word embeddings for general purposes, then not taking classes into

account.

2.3.2 Gradient Tree Boosting

A decision tree is a knowledge representation object that can be visually expressed as

upside-down, tree-like graph in which every internal node designates a possible decision; each

branch, a corresponding decision outcome; and a leaf node, the final result (class) of the deci-

sion set. If the leaf nodes contain continuous scores rather than discrete classes, it is then called

a regression tree. In data mining, decision trees can be used as classification and regression

models, and induced from labeled training tuples through methods such as the Hunt’s algorithm

(QUINLAN, 1986), which constructs the tree by recursively partitioning the data into smaller,

purer subsets given a certain splitting criteria until either all remaining tuples belong to the

same class, there are no remaining splitting attributes, or there are no remaining tuples for a

given branch (HAN; KAMBER; PEI, 2011).

There are many ways to improve the tree induction algorithm by, for example, using dif-

ferent splitting criteria (gain ratio, information gain, Gini index, χ2, etc.), pruning too specific

branches, or using tree ensembles. Boosting is an ensemble method in which a classifier Mi+1

is learned by “paying more attention” to the training tuples that were previously misclassi-

fied by Mi (HAN; KAMBER; PEI, 2011). The final classification is done by combining the

votes of all M classifiers weighted by each model corresponding accuracy (HAN; KAMBER;

PEI, 2011). Gradient boosting is a method that creates an ensemble of weak regression trees

by iteratively adding a new one that improves the learning objective further through optimiza-

tion of an arbitrary differentiable loss function (FRIEDMAN, 2001). A recent implementation

of this method called XGBoost14 combines computationally efficient principles—parallelism,

sparsity awareness, cached data access—with additional improvement techniques, and has been

allowing data scientists to achieve state-of-the-art results on many machine learning challenges

(CHEN; GUESTRIN, 2016).

2.3.3 Neural Networks

A neural network (NN) is a set of units in the form of a DAG, where each unit node processes

a function, and each connection has a weight associated with it (FREEMAN; SKAPURA, 1991;

HAN; KAMBER; PEI, 2011; GOODFELLOW; BENGIO; COURVILLE, 2016). The most

popular NN architecture is the multilayer feed-forward, in which the units are organized in

14The system is available as an open source package at <https://github.com/dmlc/xgboost>
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three parts: the input layer, which receives the external data; the hidden layer, which might

consist of many levels, indicating the depth of the network; and the output layer, which emits

the network’s prediction. NN’s are most commonly trained by backpropagation, a method that

iteratively updates the network connection weights to minimize the prediction errors (HAN;

KAMBER; PEI, 2011).

Even though the interest on NN was less intense during some decades, it has been a topic

of continuous research since its first appearance in the 1940s, and it has been drawing consider-

able attention due to the recent emergence of deep learning (DL) techniques over the last years

(SCHMIDHUBER, 2015). Although having many hidden layers is a common characteristic

of DL architectures, their key aspect is actually the fact that they allow for the representations

of data with multiple levels of abstraction. This allowed DL to produce extremely promising

results for various tasks in natural language understanding, particularly topic classification (LE-

CUN; BENGIO; HINTON, 2015). Besides the general feed-forward neural network (FNN), a

few specialized architectures are already used heavily in industry, including CNN and recur-

rent neural networks (RNN), which can scale to, for example, high-resolution images and long

temporal sequences (GOODFELLOW; BENGIO; COURVILLE, 2016).

CNN is a specialization of FNN that employs convolution—a specialized kind of linear

operation—rather than a matrix multiplication with connection weights. Its architecture usually

consists of layers with three stages, namely, convolution, detection, and pooling. Despite its

name, the convolution stage does not necessarily execute the title operation as mathematically

defined; it applies a function over the input using a kernel that works as a kind of image filter

resulting in a set of linear activations. The detection stage runs a nonlinear activation function

over those previous results, usually a rectified linear activation. Finally, the pooling stage re-

places the detection output with a summary statistic of nearby outputs, which might be used to

make a final prediction or to connect to the next convolution layer (GOODFELLOW; BENGIO;

COURVILLE, 2016).
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3 RELATED WORK

The problem at hand has been a widely researched topic over the last two decades, and many

approaches have been attempted towards the improvement of the classification results. At the

same time, recent investigation on problems that bear some similarity with the HTC, such as

binary TC (sentiment analysis, spam detection, etc) have experienced some rapid development

with the usage of the representation and classification methods presented in sections 2.2 and

2.3.

This section aims to present past and current research status regarding HTC and some tech-

niques used in related areas that can have an impact on this field as well, considering the sim-

ilarity that it holds with other TC problems. Subsection 3.1 provides an overview about recent

HTC research, sections 3.2 and 3.3 describe the advancements that other TC problems have

seen in recent years, and finally subsection 3.4 critically analyzes all those studies and their

relation to HTC.

3.1 Hierarchical Text Classification Research

Koller & Sahami (1997) proposed probably the first model that took the hierarchical struc-

ture of the target categories into consideration to build a classification system. It consisted of a

set of Bayesian classifiers, one at each hierarchy node, which would direct a new incoming test

tuple that made it through the parent nodes to the proper child node. Before being processed

through the classifier, the text was submitted to a Zipf’s Law-based15 filter and encoded as a

Boolean vector. Experimental results using Reuters-2217316 showed a significantly higher ac-

curacy then previous models due to (1) mainly the selection of features and (2) marginally the

hierarchical disposition of the individual classifiers, as long as they are complex ones—i.e. the

benefit was inconclusive while using Naïve Bayes model, but substantial with a more elaborated

algorithm from the Bayesian family called KBD (SAHAMI, 1996).

Soon after that, Dumais & Chen (2000) used SVM to build an HTC model with two lev-

els. The classification is based on a threshold, and considers parent and child nodes either in

a Boolean decision function (LCN approach) or multiplying them (LCPN approach). In other

words, the model would classify a tuple as belonging to a node if the calculated probability

for it was higher than a user-specified value. The authors used SVM because it was consid-

ered an effective, efficient algorithm for TC, and experimented on a web content dataset with

350K records, which was a considerable amount for the time. The results showed a small F1

improvement over flat models, but still statistically significant. On the other hand, a very recent

study suggests that hierarchical SVM results do not considerably differ from the correspond-

ing flat techniques (GRAOVAC; KOVAČEVIĆ; PAVLOVIĆ-LAŽETIĆ, 2017). Cesa-Bianchi,

15Zipf’s Law is an empirical rule formulated by Zipf (1935) that states that the collection frequency cfi of the ith
most common term is proportional to 1/i (MANNING; RAGHAVAN; SCHÜTZE, 2008, p.82).

16<https://archive.ics.uci.edu/ml/datasets/reuters-21578+text+categorization+collection>



30

Gentile & Zaniboni (2006) tried to combine both Bayesian and SVM models, but the results

were unclear about any considerable advantage brought by their approach.
Ruiz & Srinivasan (2002) considered using an NN to create a model for HTC. Their col-

lection of feedforward neural networks was inspired on Hierarchical Mixture of Experts (JOR-

DAN; JACOBS, 1994), and consisted of a tree-structure composition of expert (linear function)

and gating (binary function) networks trained individually. The experiments were executed on

an excerpt of 233,455 records with 119 categories from the OHSUMED collection (HERSH et

al., 1994). The data was filtered by stop words, stemmed using Porter’s algorithm (PORTER,

1980), underwent feature selection through correlation coefficient χ2, mutual information, and

odds ratio, and then was finally submitted to the model. When comparing the results against

a flat model, the hierarchical model results (as measured by an F1 variation) are better, which

indicates that exploiting the hierarchical structure increases effectiveness significantly. Never-

theless, the proposed approach is only equivalent to a Rocchio approach, which was used as

benchmark.
In the realm of boosting methods, Esuli, Fagni & Sebastiani (2008) propose TreeBoost.MH,

which is a recursive, hierarchical variant of AdaBoost.MH, a then well-known, multi-label algo-

rithm that iteratively generates a sequence of weak hypotheses to improve upon it (SCHAPIRE;

SINGER, 1998). The researchers experimented the method on Reuters-21578 (90 classes,

∼11K records), the RCV117 (103 classes, ∼800K records), and the ICCCFT18 (79 classes, ∼1K

records), and considered the same F1 function variation as Ruiz & Srinivasan (2002) did for an

effectiveness measure. Their conclusion is that the hierarchical AdaBoost.MH variant substan-

tially surpasses the flat counterpart, in particular for highly unbalanced classes. Nonetheless,

they mention that their approach is still inferior to SVM models, but make reservations regard-

ing the validity of such a comparison.
The editions of the LSHTC Challenge brought many diverse approaches into the HTC area.

Partalas et al. (2015) report on the dataset construction, evaluation measures, and results ob-

tained by participants of the LSHTC Challenge. The most important dataset (used in 3 of the

four editions) consisted of 2.8M records extracted from DBpedia19 instances distributed among

325K classes. Instead of the original text from the DBpedia instance, each record consisted of

a sparse vector with (feature, value) pairs resulting from a BoW processing. The challenge or-

ganizers used many evaluation measures, including accuracy, precision, recall, F1 measure, and

some hierarchically-specialized ones introduced over the years by Kosmopoulos et al. (2015),

but not reported in this competition overview. The report summarizes the results by saying

that flat classification approaches were competitive with the hierarchical ones, and highlights

only a few that seem noteworthy, such as some models built upon k-Nearest Neighbor (kNN)20

and Rocchio improvements. The 4th edition winning submission, in particular, consisted of

17Reuters Corpus Volume 1 (LEWIS et al., 2004)
182007 International Challenge on Classifying Clinical Free Text Using Natural Language Processing
19<http://wiki.dbpedia.org/>
20Nearest Neighbors classifiers are labor intensive classification methods that are based on comparing a given test

tuple with training tuples that are similar to it (HAN; KAMBER; PEI, 2011, p.423)
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an ensemble of sparse generative models extending Multinomial Naïve Bayes that combined

document, label, and hierarchy level multinomials with feature pre-processing using variants of

TF-IDF and BM25 (PUURULA; READ; BIFET, 2014).

Balikas & Amini (2016) elaborated an empirical study that employed word embeddings as

features for large-scale TC. The researchers considered three versions with 1K, 5K, and 10K

classes of a dataset with 225K records originally produced for the BioASQ competition, in

which each record corresponds to the abstract, title, year, and labels of a biomedical article

(TSATSARONIS et al., 2015). Despite using datasets with that high number of classes, these

are not considered in a hierarchical fashion, which means the task consists of a flat, multi-label

classification. The word embeddings were generated using the skip-gram model of word2vec

based on 10 million PubMed21 abstracts plus 2.5M Wikipedia documents in four sizes: 50, 100,

200, and 400 elements. The resulting embeddings of all words in a document abstract were

combined using different functions—min, max, average, and a concatenation of these three—

to compose a document representation, and the resulting vector was then used as input into

an SVM classifier. The best results (as measured by F1) are achieved by the concatenation of

the outputs of the three composition functions, and are consistently better than the runner-up,

the average function. Besides the way the word embeddings are combined, the vector size has

a proportional effect on the classification effectiveness as well. The results, however, do not

reach the baseline model, which is TF-IDF based SVM model. Nevertheless, when combining

TF-IDF to the concatenated document distributed representations, the results are better than the

TF-IDF alone by a small, but statistically significant margin.

3.2 Text Classification with Distributed Text Representations

While no breakthrough has occurred with the HTC task over the last years, other TC prob-

lems, on the other hand, have benefited from the recent great improvements on text represen-

tation using distributed vector space models. Over the recent years, many researchers used

methods based on word embeddings to improve the accuracy of classification tasks such as sen-

timent analysis and topic classification. This section provides some examples from these other

TC tasks that are somehow similar to HTC and took advantage from those advancements.

With regards to sentiment analysis, for example, Maas et al. (2011) created a method in-

spired on probabilistic topic modeling to learn word vectors capturing semantic term-document

information with the final intend to tackle the sentiment polarization problem. They collected

a dataset22 with 100,000 movie reviews from the Internet Movie Database (IMDb)—25,000

labeled reviews for the classification task, 25,000 for the classification test, and 50,000 of un-

labeled ones as additional data to build the semantic component of their model. The semantic

21<https://www.ncbi.nlm.nih.gov/pubmed/>
22The so-called Large Movie Review Dataset v1.0 has been widely used as a benchmark dataset for binary senti-

ment TC and is publicly available at <http://ai.stanford.edu/\~amaas/data/sentiment/>
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component consisted of 50-dimensional vectors learned using an objective function that maxi-

mizes both the semantic similarities and the sentiment label. Their model outperformed other

approaches, in particular when concatenated with BoW, when compared results upon the polar-

ity dataset v2.023 (PANG; LEE, 2004).

Le & Mikolov (2014) proposed an unsupervised learning method that calculates vectors

with an arbitrary length containing distributed representations of texts with variable length—

the so-called paragraph vectors, which was highly inspired by the techniques used to learn

word vectors introduced by Mikolov et al. (2013b). Such paragraph vectors can be used as

features for conventional machine learning techniques, so the authors took the data collected

by Maas et al. (2011) to calculate paragraph vectors, used them as inputs to a neural network

to predict the sentiment, and compared the results against other approaches that used the same

dataset. They reported a final result of 7.42% error rate, which they claim meant a new state-of-

the-art result, with a significant relative error rate decrease in comparison to the best previously

reported method.

Still on the sentiment analysis topic, however on a slightly different scenario, Tang et al.

(2014) proposed the learning of Sentiment Specific Word Embedding (SSWE) by integrating

the sentiment information into the loss function of the model and its application in a super-

vised learning framework for Twitter sentiment classification task. This is similar to the idea

proposed by Maas et al. (2011), but uses a neural network rather then a probabilistic model.

The authors used a partial version of a benchmark dataset used on SemEval24 2013 (NAKOV

et al., 2013) with 6,251 positive/negative unbalanced records, and found that the SVM classifi-

cation model built upon their SSWE has an effectiveness (macro-F1) comparable with models

created from state-of-the-art, manually designed features. Furthermore, they compared their

SSWE with three other word embeddings—C&W25 (COLLOBERT et al., 2011), word2vec

(MIKOLOV et al., 2013a), and WVSA (Word Vectors for Sentiment Analysis) (MAAS et al.,

2011)—to conclude that the effectiveness of word embeddings that do not directly take advan-

tage of the sentiment information in the text—C&W and word2vec—are considerably lower

than the others. Their study is just the beginning of a clear strategy trend in this topic: 7 out

of the 10 top-ranked solutions for the SemEval-2016 Sentiment Analysis in Twitter Task incor-

porated either general-purpose or task-specific word embeddings in their participating systems

(NAKOV et al., 2016). As an exponent of this trend, Vosoughi, Vijayaraghavan & Roy (2016)

created a method to compute distributed representations for short texts using a long short-term

memory (LSTM)26 NN at a character-level. As their data source was the microblog Twitter,

23A publicly available dataset with 2,000 balanced, processed reviews from the IMDb archive.
24SemEval (Semantic Evaluation) is an ongoing series of evaluations of computational semantic analysis sys-

tems organized by the Association for Computational Linguistics (ACL) <https://aclweb.org/aclwiki/SemEval_
Portal>.

25C&W is a short that Tang et al. (2014) used for the method reportedly introduced by Collobert et al. (2011),
which was not formally named by the authors, but apparently first appeared in Collobert & Weston (2008)

26The long short-term memory (LSTM) was originally proposed by Hochreiter & Schmidhuber (1997), uses "a
memory cell which can maintain its state over time and non-linear gating units which regulate the information
flow into and out of the cell" (GREFF et al., 2016), and is usually associated with the deep learning algorithms
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they adequately named the method Tweet2Vec. The model was trained with 3 million records,

which consisted of texts with at most 140 characters. To evaluate the quality of the resulting

vectors, the authors used them to perform a polarity classification on the dataset provided on

SemEval-2015 Task 10 subtask B competition27. The experiment consisted on extracting the

vector representation from the texts on that dataset using their method and then train a logistic

regression classifier on top of them. Their approach has reportedly exceed all others from that

competition, and also surpassed Le & Mikolov (2014) paragraph vector, which was considered

the state of the art in that context.

On the other hand, there are also examples of the usage of word embeddings on more gen-

eral, multi category TC tasks. Huang, Qiu & Huang (2014) propose a method to learn so-called

document embeddings directly in TC task, that aims to represent a document as a combination

of the word embeddings of its words, which is learned using a neural network architecture. The

authors use resulting network in two ways during the classification phase: the network itself as

a classification model or the weights from one of its last hidden layers as the input for an SVM

classifier. They test their methods on two datasets with 9 and 100 categories, and 17,014 and

13,113 training records, respectively—interestingly enough, the dataset with more categories

was extracted from the LSHTC Challenge 4th edition, but ignored its hierarchical characteristic

and used documents with a single label only. Although the authors report that their proposed

architecture achieves better effectiveness on both datasets, the difference is only evident in one

of them, and not enough statistical information is provided to support that claim.

Ma et al. (2015) use a Gaussian process approach to model the distribution of word embed-

dings according to their respective themes. The authors assume that probability of a document

given a certain theme is the product of the probabilities of a word vector given the same theme.

The classification task then becomes a problem of selecting the most probable Gaussian distri-

bution that a document belongs to. The authors evaluate the model effectiveness with a dataset

containing 10,060 training and 2,280 test short texts that belong to 8 unbalanced classes, which

was previously used by other researchers. Their results show that the proposed method has

a 3.3% accuracy gain over two other approaches that used (1) classical TF-IDF and (2) topic

models estimated using latent Dirichlet allocation (LDA) as representation methods connected

to MaxEnt classifiers, and suggest the accuracy increase occurs because “It is clear that using

word embeddings which were trained from universal dataset mitigated the problem of unseen

words.” Nevertheless, accuracy is not an adequate metric for an unbalanced, multi-class classi-

fication (FAWCETT, 2006).

On another approach, Kusner et al. (2015) take advantage of the word embeddings to create

a distance metric between text documents. Their proposed metric aims to incorporate the se-

mantic similarity between word pairs—the lowest “traveling cost” (Euclidean distance) from a

word to another within the word2vec embedding space—into a document distance function. The

minimum cumulative cost to move from a document to another—the so-called Word Mover’s

family (LECUN; BENGIO; HINTON, 2015).
27<http://alt.qcri.org/semeval2015/task10/>
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Distance (WMD)—is then used to perform kNN document classification on eight real world

document classification data sets. The resulting kNN classification model using WMD yields

unprecedented low classification error rates when compared to other well-established methods

such as latent semantic indexing (LSI) (DEERWESTER et al., 1990) and LDA (BLEI; NG;

JORDAN, 2003).

Joulin, Grave & Mikolov (2017) built a classification model called fastText, already pre-

sented in section 2.3. The researchers ran experiments with two different tasks for evaluation,

namely sentiment analysis and tag prediction. For sentiment analysis comparison, they used

the same eight datasets and evaluation protocol as Zhang, Zhao & LeCun (2015), and found

that fastText (using 10 hidden units, trained 5 epochs, with bigram information) accuracy is

competitive with complex models, but needed only a fraction of time to process—the faster

competitor took 24 minutes to train (some took up to 7 hours), while the worst case for fast-

Text took only 10 seconds. Moreover, the authors claim they can still increase the accuracy by

using more n-grams, for example with trigrams. For tag prediction evaluation, they used a sin-

gle dataset28 that contains information about images and focused on predicting the image tags

according to their title and caption. When compared to Tagspace model (WESTON; BENGIO;

USUNIER, 2011), fastText has a significantly superior effectiveness (as measured by precision-

at-1)—because it is not only more accurate, but also uses bigrams—and runs more than an order

of magnitude faster to obtain the model. To summarize, the fastText shallow approach seems to

obtain effectiveness on par with complex deep learning methods, while being much faster.

3.3 Neural Networks for Text Classification

Neural network models have been investigated for TC tasks since mid-1990s (SCHÜTZE;

HULL; PEDERSEN, 1995; WIENER et al., 1995). Nevertheless, at the same time that Sebas-

tiani (2002) reports that some NN-based models using logistic regression provide some good

results, he observes that they have a relative effectiveness slightly worse than many other mod-

els known at the time, e.g., SVM. This scenario would not change much during the following

decade, such is that an evidence of NN models unpopularity in this area is the fact that Manning,

Raghavan & Schütze (2008) do not even mention them in their classic textbook. Its resurgence

among the TC research community would begin only in the late 2000’s (ZHANG; ZHOU, 2006;

TRAPPEY et al., 2006; YU; XU; LI, 2008) and maintain a steep increase over the following

years, as will be shown in the upcoming paragraphs.

In a follow-up of the work described in their 2008’s paper, Collobert et al. (2011) bring

some new, radical ideas to the natural language processing area while deliberately disregarding

a large body of linguistic knowledge to propose a neural network and learning algorithm that,

contrary to the usual approach, is not task-specific, but can be applied to various tasks. In

the authors’ point of view, part-of-speech tagging (POS), chunking, named entity recognition

28YFCC100M dataset (THOMEE et al., 2016)
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(NER), and semantic role labeling (SRL) problems can be roughly seen as assigning labels to

words, so they build an architecture capable of capturing feature vectors from words and higher-

level features through CNN to do that from raw text. Their training model architecture produces

local features around each word of a sentence using convolutional layers and combines these

features into a global feature vector, which is then fed into a standard layer for classification.

They compare the results using this architecture against the state-of-the-art systems for each

one of the four traditional NLP tasks just mentioned, and find that the results are behind the

benchmark. To improve them, the authors create language models using additional unlabeled

data that obtain feature vectors carrying more syntactic and semantic information, and use them

as input for the higher-level layers of the architecture. This approach not only brings the results

a lot closer to those benchmark systems’, but demonstrates how important the use of word

embeddings learned in an unsupervised way is. Not satisfied, Collobert et al. (2011) still use

some multi-task learning schemes to have even more, better features, and eventually use some

common techniques from the NLP literature as a last attempt to surpass the state-of-the-art

systems. Their final standalone version of the architecture is a “fast and efficient ‘all purpose’

NLP tagger” that exceeds the effectiveness of the benchmark systems in all tasks, except for

semantic role labeling, but only with a narrow margin.
Socher et al. (2013) proposed a model called Recursive Neural Tensor Network (RNTN) to

compute compositional vector representations for phrases of variable length that are then used

as features for sentiment classification. The input data consists of phrases parsed into binary

trees with each leaf node corresponding to a word (and its corresponding vector). The model is

based upon a standard recursive neural network (RcsNN), which computes parent vectors in a

bottom-up fashion with different composition functions using the same softmax classifier; the

RNTN, however, differs itself from those by introducing a tensor-based composition function.

The authors introduced the Stanford Sentiment Treebank, a fully labeled parse trees phrase

dataset, to accurately analyze the model at phrase level. The new model was compared to with

other recursive methods, namely standard RcsNN and Matrix-Vector RcsNN (MV-RcsNN),

and some commonly used methods—Naïve Bayes and SVMs using bag of words and bag of

bigrams representations. The authors find that the recursive methods achieve better results than

common methods, particularly because the bottom-up approach is able to capture negations at

many levels in both positive and negative phrases. Finally, the proposed new method supplanted

all others known at the time, and pushed the state-of-the-art accuracy on that dataset to 85.4%.
Still on sentiment classification studies, Kim (2014) reports on experiments with CNN

trained upon distributed text representations. This approach is similar to previously mentioned

architecture (COLLOBERT et al., 2011), but uses pre-trained word embeddings learned with

word2vec and proposes a modification to allow for the use of both pre-trained and task-specific

vectors by having multiple channels. The experiments included 7 datasets that not only related

to sentiment polarity, but also considered subjectivity and question type classification, with

number of classes between from 2 and 6, and dataset size ranging from 3.8 to 11.9 thousand

records. The experiment results show that the authors’ simple CNN with one convolution layer
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only performs remarkably well despite little tuning of hyperparameters, surpassing the state-

of-the-art methods in 4 out of the 7 analyzed tasks/datasets. It is not clear, however, what was

the exact standard used to evaluate the effectiveness, nor whether the difference had a statis-

tical significance, which is important as the tests related to 3 of the 4 superior scenarios were

executed using a 10-fold cross-validation.

Johnson & Zhang (2015) also use CNN architecture, but instead of word embeddings, their

model works on high-dimensional one-hot encoding vectors, i.e. each document is seen as se-

quence of dictionary-sized, ordered vectors with a single true bit each that corresponds to a

given word. Their intention with this approach is capturing the word order within the net-

work convolution. For evaluation purposes, the authors executed experiments on sentiment

classification—IMDb dataset (MAAS et al., 2011)—and topic categorization—RCV1 dataset

(LEWIS et al., 2004), disregarding the hierarchical structure –, and compared the results against

SVM-based classifiers. Their CNN allegedly outperforms the baseline methods as measured by

error rate, but this claim lacks some substantial statistical analysis. On a similar idea, but with

a more minimalistic approach, the model proposed by Zhang, Zhao & LeCun (2015) accepts

a sequence of encoded characters as input to a convolutional network to classify documents.

In other words, the researchers deliberately disregard the grouping of letters in words, and

transform text at character level into a 1,024 fixed length flow of vectors created with one-hot

encoding. Since such kind of model requires very large datasets, in order to perform meaning-

ful experiments, the authors had to build 8 of them, which had from 2 to 14 classes, number

of records ranging from 120,000 to 3.6 million, and related to two main tasks, namely senti-

ment analysis and topic classification. To compare the models effectiveness, besides training

their own new model, the authors also did so with models using (1) a multinomial logistic re-

gression method built upon traditional text representation techniques and (2) a recurrent neural

network using pre-trained word2vec word embeddings as input. In conclusion, they found that

character-level convolutional networks are a feasible approach for TC, and confirmed that such

models work best having large datasets for training.

Lai et al. (2015) combine recurrent and convolutional NN’s to tackle the TC problem. At the

model first level, a bi-directional recurrent structure captures the contextual information; at its

second level, a max-pooling layer finds the best features to execute the classification. The model

input consists of word embeddings that were pre-trained using the word2vec skip-gram method

on Wikipedia dumps. For experimentation, the authors used 4 multi-class datasets with differ-

ent sizes, and compared the model result in each dataset against the state-of-the-art approach

for each dataset. Their model performs consistently well in all tested datasets, and even beats

the best performing ones in half of the cases by a considerable difference, leading to the con-

firmation that NN-based approaches can compute an effective semantic text representation, and

their conclusion that such approaches can also capture more contextual information of features

than traditional methods.



37

3.4 Discussion and Considerations

Considering the works mentioned in this section, a few trends seem evident. The first thing

to notice with regards to HTC research is that no reference dataset has apparently emerged over

these two decades, and despite a few appear more often, there is no widely used standard. This

obviously impedes effectively comparing the results of different studies in any way, as using the

same data for experimentation is a prerequisite for any analysis with this intention. Although

the Reuters’ collections seemed to become popular at some point, they were disregarded by

the LSHTC Challenge, which probably demanded a larger text collection. Nowadays even

LSHTC dataset seems small, and its preprocessed format has actually become an inconvenient

for researchers who intent to use distributed text representation. On a second note, no single

effectiveness measure has been widely accepted yet as well. This is in part because of the varia-

tions within the HTC task itself (single- or multi-label), but also in part because it seems it took

a long time for the community to evolve to a point when a thorough study about hierarchical

classification evaluation could have been done. This fact not only poses a problem to compare

the results among different studies, but also suggests that the comparison against flat models

is not possible, as the measure for one problem is simply not the same as for the other. In

other words, comparing the effectiveness of hierarchical classification against flat classification

is not only inadequate, but also inaccurate, as the problem is different in its own nature (KOS-

MOPOULOS et al., 2015). In summary, the lack of consensus regarding a reference dataset and

evaluation measures has negatively affected the HTC research development.

Many different methods have been applied to HTC, and the most representative ones have

been referred, namely Bayesian models (KOLLER; SAHAMI, 1997; PUURULA; READ; BIFET,

2014), SVM (DUMAIS; CHEN, 2000; GRAOVAC; KOVAČEVIĆ; PAVLOVIĆ-LAŽETIĆ,

2017), NN (RUIZ; SRINIVASAN, 2002), boosting methods (ESULI; FAGNI; SEBASTIANI,

2008), Rocchio, and kNN (PARTALAS et al., 2015). This list is nonetheless far from exhaus-

tive, as any text classification method (and any classifier in general, by extension), could be

virtually used in this context. Nevertheless, neither a consistent effectiveness increase nor a

breakthrough seem to have occurred over these two decades in the area. It is interesting to

notice how Esuli, Fagni & Sebastiani (2008) consider the improvement achieved by their hi-

erarchical model somehow surprising, as they would expect some effectiveness counter effect

due to the unrecoverable incorrect classifications that occur in lower hierarchy levels, which is

a known side-effect since Koller & Sahami (1997).

The fact that recent results still do not show a considerable difference between flat and

hierarchical classification (PARTALAS et al., 2015; GRAOVAC; KOVAČEVIĆ; PAVLOVIĆ-

LAŽETIĆ, 2017) sounds disquieting, to say the least, as one would expect that a specialized

system should behave better than a generic one. Of course, the direct comparison does not

hold, and should not be made. However, the proximity between flat and hierarchical classi-

fication makes it inevitable. Such comparison, on the other hand, makes the fact that HTC
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researchers seem to have been paying little or no attention to the recent classification effective-

ness improvements achieved using advances in other TC tasks also surprising. For example,

considering the reports on TC competitions, while Partalas et al. (2015) do not even refer to

the usage of word embeddings in LSHTC Challenges, Nakov et al. (2016) mention that most of

the best systems performing sentiment analysis on Twitter used them in some way. However,

after some consideration, it becomes clear that such advanced techniques could not have been

applied to the LSHTC Challenge due to the way the dataset has been provided. Apparently,

some data cleansing processing was so widely accepted around the competition years that the

documents were heavily preprocessed (stemming/lemmatization, stop-word removal), and the

idea of BoW was so well established that the organizers decided to deliver the dataset in a sparse

vector format where each line corresponded to a document, and contained only token identifiers

with its corresponding frequency. Although very popular and quite effective, this format misses

some important lexical richness and lacks the word order, which is an overriding factor to detect

semantic nuances.

It seems clear that word embeddings and other vector space models improve some TC

schemes considerably. In the sentiment analysis task, techniques that either create vector space

models in a supervised, polarity-induced manner (MAAS et al., 2011; SOCHER et al., 2013;

TANG et al., 2014) or use general-purpose models (KIM, 2014; LE; MIKOLOV, 2014; LI et

al., 2016) benefit from them. Similar advantage is reported in more general problems (HUANG;

QIU; HUANG, 2014; MA et al., 2015), although some healthy skepticism is advisable regarding

those reports as the evaluation methods are questionable. Nevertheless, the ideas behind word

embeddings are undoubtedly advantageous for TC in many different ways, from calculating a

distance metric for k-NN classifier (KUSNER et al., 2015) to transforming a word embedding

learner into a classifier itself (JOULIN; GRAVE; MIKOLOV, 2017). Balikas & Amini (2016)

mention they are aware that word embeddings are sometimes used as input for convolutional

and recurrent neural network, but as their task concerns a large number of classes, they refrained

from using them to avoid computational obstacles such as memory and processing overhead.

The workaround they used, i.e. combining the word embeddings with simple arithmetic func-

tions, yields good results, but still ignores the word order. All in all, despite its promising

results, the effect of using word embeddings in HTC remains a great unknown, as no empirical

evidence has been reported on it.

Analogously, it is evident that many TC and NLP tasks have been taking advantage of recent

neural network architectures and deep learning improvements. Although Collobert & Weston

(2008), Collobert et al. (2011) do not work with TC at sentence or document level, the ideas

proposed therein seem significantly influential considering that many of the neural network

architectures used today for that task had some inspiration taken from them29. Although Col-

lobert et al. (2011) show that the use of CNN provides competitive results in more than one NLP

classification task, the concepts that have been preached by them and others influenced many

29Those two papers combined had more than 3,500 citations as counted by Google Scholar by Jan 2017.
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following researchers who later on started to reconsider NN models and find promising results

(TANG et al., 2014; KIM, 2014). Their most important contribution to the present investigation

is the indication that adequate word embeddings combined with appropriate classification NN’s

provide promising results.

On top of that, comparisons using simple feed-forward NN’s against other methods have

shown that the former are not only competitive, but even outperform the latter in many cases.

This has been confirmed time and again with more complex architectures such as recursive NN’s

(SOCHER et al., 2013), recurrent NN’s (ZHANG; ZHAO; LECUN, 2015), convolutional NN’s

(KIM, 2014), or a combination of them (LAI et al., 2015). All these works corroborate to the

belief that a neural network is the most appropriate architecture to implement a state-of-the-art

classification system. Nevertheless, this assumption lacks of empirical evidence when it comes

to the hierarchical text context, as no report has been found specifically about it and it is doubtful

that simple TC problems are adequate to evaluate deep neural networks representations, which

in theory have power expected to provide much better final classification results (JOULIN;

GRAVE; MIKOLOV, 2017).
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4 EXPERIMENTS AND ANALYSIS

Experiments have designed and implemented to analyze the effectiveness of combining

word embeddings as the text representation layer with modern classification algorithms ap-

plied to the HTC problem. After choosing an appropriate dataset for experimentation, which

is described in section 4.1, a data flow was built to transform it depending on specific needs of

each approach, as described in section 4.2, and classification models were trained using those

techniques. Each model was used to predict the labels of tuples left aside during the training

phase to evaluate its effectiveness, which was reported and analyzed in section 4.3.

4.1 Dataset

Since no dataset is widely used in the HTC research, choosing an appropriate dataset to

perform HTC experiments becomes a somewhat hard task. The results from LSHTC Chal-

lenge would probably had been the best benchmark for comparison. However, as the LSHTC

datasets are not available in a raw text format, they are inadequate for the purpose of this re-

search. Therefore, corpora provided by Reuters (Reuters-22173 and RCV1) and PubMed (from

BioASQ) were mainly considered. Although the PubMed collections have the advantage of

containing a huge number of documents, they are ratter specialized for the medical area. This is

considered as a downside for two reasons: (1) the results obtained within such a specific corpus

might not generalize to other HTC tasks and (2) GloVe and word2vec pre-trained word vectors

are general, which makes them inadequate for such a specific classification task. The Reuters

collections have the advantages of including broader areas of knowledge—politics, economy,

etc.—and the RCV1 (LEWIS et al., 2004) in particular has a reasonable size with regards to

number of documents (around 800K) and categories (103). RCV1 is conveniently available as

a collection of XML files and publicly accessible on request for research purposes30. Based on

these pros and cons, RCV1 has been chosen as the experimental dataset, which contains one

article per file with contents similar to example depicted in figure 1. The example shows that the

document labels are identified within XML tag <codes class="bip:topics:1.0">.
The data preparation consisted in a few steps to adequate the dataset to the machine learning

algorithms. First of all, those XML files were converted into text format to remove the hypertext

tags. Since this analysis is particularly interested in the (single-label) multi-class problem, but

most tuples had many labels (usually parent categories, as one can see in the example in figure

1), the number of tuples per category was calculated and only the least frequent category of

each document was kept. This approach is based on the assumption that the least common label

is the one that more specifically identifies the document. Some basic homogenization, such as

lower case conversion and punctuation marks removal, was also performed.
The RCV1 hierarchy consists of 104 nodes (including root) distributed among 4 levels, with

22 of them having at least one child. The target classes are distributed among all levels except

30<http://trec.nist.gov/data/reuters/reuters.html>
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<?xml version="1.0" encoding="iso-8859-1" ?>

...

<headline>Tylan stock jumps; weighs sale of

company.</headline>

...

<text><p>The stock of Tylan General Inc. jumped

Tuesday after the maker of process-management

equipment said it is exploring the sale of

the company and added that it has already

received some inquiries from potential

buyers.</p>(...)</text>

...

<metadata>

...

<codes class="bip:topics:1.0">

<code code="C15"> </code>

<code code="C152"> </code>

<code code="C18"> </code>

<code code="C181"> </code>

<code code="CCAT"> </code>

</codes>

...

</metadata>

Figure 1: An excerpt from a random XML file of the RCV1 dataset. (LEWIS et al., 2004)
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Root

CCAT - CORPORATE/INDUSTRIAL

C11 - STRATEGY/PLANS

...

C15 - PERFORMANCE

C151 - ACCOUNTS/EARNINGS

C1511 - ANNUAL RESULTS

C152 - COMMENT/FORECASTS

...

ECAT - ECONOMICS

E11 - ECONOMIC PERFORMANCE

E12 - MONETARY/ECONOMIC

E121 - MONEY SUPPLY

E13 - INFLATION/PRICES

E131 - CONSUMER PRICES

E132 - WHOLESALE PRICES

...

GCAT - GOVERNMENT/SOCIAL

G15 - EUROPEAN COMMUNITY

G151 - EC INTERNAL MARKET

...

Figure 2: An excerpt from the RCV1 topics hierarchy. (LEWIS et al., 2004)

for the root, all nodes are potentially target classes, which indicates this matches an NMLNP

task. In order to compare a flat classification against hierarchical LCPN approach, two data

groups were created, one with all a simple train/test split using all RCV1 tuples, and a second

one that was created by recursively stratifying subsets of the original dataset based on the parent

nodes ("hierarchical split") and also further subdivided into train/test. Initial experiments with

these datasets indicated the already expected incorrect classifications that occur with NMLNP

in deeper hierarchy levels due to the models inability to stop the classification before reaching

a leaf node or recovering from it (SILLA JR.; FREITAS, 2011). As a workaround, the subset

stratification was re-executed by including a so-called virtual category (VC) using the tuples

from the immediate parent node into the subset itself (except for the root node), as described

by (YING et al., 2011). The final result of this hierarchical split is 22 datasets that contained

between the entire dataset (root node) and less than 0.3% of that for training (node E14). The

resulting datasets had a wide class imbalance variety, ranging from about 1:1 (node E51) to

approximately 6000:1 (root node). Figure 2 shows an excerpt of the RCV1 topics hierarchy.

Besides using RCV1 and its hierarchy as the main elements for experimentation, general-

purpose pre-trained word embeddings were also employed. The group responsible for word2vec

published a dataset with around 3 million word vectors with 300 elements in length that were

trained on about 100 billion words read from Google News dataset31. The authors of GloVe also

published pre-trained versions of word vectors; for these experiments, a table with 2.2 million

31https://code.google.com/archive/p/word2vec/
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word vectors with 300 elements obtained from 840 billion words collected via Common Crawl32

was used. Both pre-trained word vectors were used by at least one of the classification models

analyzed here.

4.2 Classification Models and Data Flows for Experimentation

Out of the many possible classification models mentioned in Chapter 3, this analysis was

concentrated on those three described in the list below. As each one of them has its own data

input format, the corpus had to be processed in particular ways. Where feasible, models us-

ing both the LCPN and the flat approaches were generated—due to computational restrictions,

the same could not be done for the CNN models. The following list describes the learning

algorithms used with details about specific data preprocessing and variations attempted:

Figure 3: The flowchart depicts the processing routes used to build each classification model.

• FastText: This algorithm was used in two ways—as a supervised classification learner

and as an unsupervised word embedding generator. As fastText is able to handle the raw

32https://nlp.stanford.edu/projects/glove/
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text directly, no further pre-processing after the basic homogenization described in sec-

tion 4.1 was necessary. In supervised mode, word embeddings with 5 different vector

sizes—5, 10, 20, 30, and 40 elements—were explored to investigate how expanding the

numerical distribution affects the final classification effectiveness. All word embeddings

were generated considering bigrams. Based on the results from this exploratory phase, the

10-element word embeddings were used for the subsequent fastText experiments because

no relevant effectiveness improvement was noticed with larger vectors. They were used

to investigate 3 model construction strategy variations: (1) flat, (2) LCPN with VC, and

(3) flat with ancestors. The flat approach, as described in subsection 2.1.1, ignores the

hierarchy and works as a general multi-class classification algorithm, depicted by models

from 1 to 5 in figure 3. The LCPN with VC creates a classification model for each of

the 22 subsets that are used in a top-down strategy during the test phase and includes a

virtual category that allows the classifier to keep the tuple at the present node—model

7. The flat with ancestors approach takes advantage of the fact that fastText is able to

natively handle multi-class tasks—the data subsets were enhanced by adding the labels

for all class ancestors to each tuple—model 6. This was an attempt to minimize another

known negative side-effect of the LCPN approach—the inability to recover from an in-

correct classification in an upper node. Furthermore, both supervised and unsupervised

10-element fastText word embeddings were recycled to experiment with the other classi-

fication models as well.

• XGBoost: In order to accommodate the distributed text representation in a format suit-

able to this algorithm, pre-trained word embeddings—GloVe, word2vec, and fastText

separately—were combined to compose a document representation from the correspond-

ing word embeddings average. In other words, a column-wise mean of the word em-

beddings that corresponded to the words from each document was taken to compound

a distributed document representation. The resulting average vectors were used as input

attributes to train the classifier. These data flows are represented by models from 8 to 13

in figure 3. Although this approach is similar to the one proposed by Balikas & Amini

(2016) and also internally used by fastText, the present work used boosted trees algorithm

implemented by Chen & Guestrin (2016) instead of an SVM or a linear classifier as the

others did. The unsupervised fastText alternative was trained with both flat and LCPN

with VC strategies (models 8 and 9) to assess how effective a flat approach is in compari-

son with a hierarchical one, and the supervised fastText alternative using vectors with 10

and 30 elements (models 10 and 11). Besides these architectures that use word embed-

dings, one more was implemented with TF-IDF representation (model 14), created from

an all-lowercase, stemmed, punctuation- and stopword-free version of the RVC1 dataset.

This has the purpose of comparing the traditional TF-IDF representation directly against

the distributed text one. For all experiments, the XGBoost algorithm was set to use a

softmax objective, which is the most adequate loss function among the ones XGBoost
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has available for a multi-class task, and run it for 30 rounds, which proved to be enough

to converge to minimum loss.

• CNN: Since this neural network specialization has a fixed input layer size, the corpus

documents were padded to keep only a fraction of the input text, in a similar way as de-

scribed by Kim (2014). An initial analysis on the corpus characteristics33 indicated that

keeping the last 600 words would have a minimal, tolerable effect on the final classifica-

tion results. The Keras API (CHOLLET et al., 2015) was used to built a neural network

with the following architecture: a frozen embedding layer that uses the fastText vectors

either with 10 elements created in unsupervised mode (model 15) or with 30 elements

created in supervised mode (model 16), then two convolution layers with rectified linear

units (ReLU) and max pooling each (GOODFELLOW; BENGIO; COURVILLE, 2016),

a densely-connected layer with ReLU activation and finally another densely-connected

layer with softmax function. It was trained using categorical cross-entropy as the loss

function over 10 epochs (LAI et al., 2015).

4.3 Results and Analysis

During the dataset preparation, a holdout method (HAN; KAMBER; PEI, 2011) was em-

ployed to reserve a test data subset, which was used to evaluate the models effectiveness accord-

ing with the methods described in subsection 2.1.2. Besides the traditional flat classification

measures—precision, recall, and F1—their hierarchical and LCA versions were used to assess

the models’ effectiveness. (KOSMOPOULOS et al., 2015) have shown consistent results to

support that LCAF1 is the most appropriate measure for HTC evaluation. HEMkit34 was used to

calculate the hierarchical and LCA metrics, which are shown in table 1.

First and foremost, the results show an obvious, considerable numerical difference between

flat and both hierarchical measures. It contributes to the ever growing understanding that flat

measures are not adequate for the hierarchical context, as they insinuate a classification ef-

fectiveness well below the actual results. At the same time, there is a noticeable correlation

between both hierarchical measurement methods with 0.988 Pearson coefficient between all

corresponding pairs. This strong association may have occurred because the RCV1 hierarchy is

only four levels deep while the main improvement offered by LCA measures in comparison to

other hierarchical measures is that they prevent over-penalizing errors inflict nodes with many

ancestors. This indicates that traditional hierarchical measures are enough in low hierarchical

level classification scenarios—they might be even preferred in such cases as they are a simpler,

computationally cheaper option.

33The pre-processed RCV1 training subset prepared for this work had an average document length of 261.57 words
with 90 as the mode. Approximately 6% of the corpus has more than 600 words only.

34HEMkit is a software tool provided by the BioASQ team that performs the calculation of a collection of hierar-
chical evaluation measures.
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# Classifier
Hierarchy
strategy

Text Representation Flat (macro averaged) Hierarchical LCA
Type Size P R F1 P R F1 P R F1

1 fastText flat sup-fastText 5 0.575 0.352 0.437 0.866 0.865 0.864 0.828 0.827 0.826
2 fastText flat sup-fastText 10 0.657 0.460 0.540 0.892 0.892 0.891 0.862 0.863 0.860
3 fastText flat sup-fastText 20 0.700 0.488 0.575 0.899 0.900 0.898 0.872 0.872 0.870
4 fastText flat sup-fastText 30 0.700 0.491 0.577 0.900 0.901 0.899 0.873 0.874 ⋆0.871
5 fastText flat sup-fastText 40 0.698 0.490 0.576 0.900 0.900 0.899 0.873 0.873 ⋆0.871
6 fastText flat + ancestors sup-fastText 10 0.588 0.103 0.175 ‡0.963 0.602 0.731 ‡0.892 0.453 0.587
7 fastText LCPN + VC sup-fastText 10 0.325 0.475 0.386 0.747 †0.946 0.821 0.631 †0.933 0.720
8 XGBoost flat uns-fastText 10 0.188 0.087 0.119 0.584 0.556 0.561 0.472 0.449 0.449
9 XGBoost LCPN + VC uns-fastText 10 0.041 0.054 0.046 0.328 †0.905 0.472 0.229 †0.804 0.345
10 XGBoost flat sup-fastText 10 0.445 0.384 0.412 0.837 0.837 0.835 0.795 0.796 0.792
11 XGBoost flat sup-fastText 30 0.485 0.401 0.439 0.842 0.842 0.840 0.801 0.801 0.798
12 XGBoost flat GloVe 300 0.182 0.720 0.290 0.830 0.822 0.824 0.787 0.768 0.771
13 XGBoost flat word2vec 300 0.189 0.852 0.310 0.835 0.826 0.828 0.792 0.774 0.777
14 XGBoost flat TF-IDF ∼340k 0.581 0.530 0.555 0.892 0.891 0.884 0.833 0.833 0.824
15 CNN flat uns-fastText 10 0.456 0.329 0.382 0.782 0.766 0.769 0.677 0.666 0.665
16 CNN flat sup-fastText 30 0.483 0.359 0.412 0.793 0.790 0.787 0.690 0.692 0.684

Table 1: Performance, Recall and F1 measures in flat, hierarchical and LCA versions per classifier,
hierarchical strategy, and word embedding. Legend: ⋆Highest LCAF1. †Remarkable recall improvement.
‡Remarkable precision improvement.

With regards to classification effectiveness, fastText algorithm using no hierarchical in-

formation (flat approach) is surprisingly prominent among the models studied, and surpassed

all hierarchy-aware models when measuring it by LCAF1—highlighted with a star table 1—

reaching a maximum value with 30 word embeddings or more. It is remarkable that even

10-element vectors with very limited representational power can achieve what is considered a

somewhat high effectiveness with LCAF1 greater than 0.85, which is superior to any other clas-

sifier analyzed in this research. This might come from the fact that, when used in supervised

mode, fastText uses the class label as learning objective, which results in word embeddings that

specifically reflect the concepts behind the classes distribution. This hypothesis is supported by

the fact that fastText word embeddings created in supervised mode yielded effectiveness gains

over all other unsupervised ones.
The results also indicate that using LCPN with VC consistently increases the hierarchical

recall—marked with a dagger in table 1. This suggests that combining local classifiers with this

circular strategy seems to increase the fraction of tuples placed in the right hierarchy branch

over the total amount of tuples that should actually be there. However, this bouncing approach

comes at a cost of decreasing the precision because some tuples get stuck at a certain level while

they should be further classified at a deeper level node. On the other hand, using ancestors

greatly increased the hierarchical precision—marked with a double dagger in the same table—

which increases the chance that a prediction for a given hierarchy branch actually belongs to

it. In summary, in both cases where flat models can be compared against their hierarchy-aware

counterparts, the former are superior with regards to F1, but the latter might still suit better a

particular task depending on the specific user information needs.
The XGBoost results indicate that tree boosting methods associated with pre-trained word

embeddings are a feasible combination to achieve reasonable classification results, with LCAF1

close to 0.8. However still fall behind equivalent a model using TF-IDF representation, which

achieved the second highest LCAF1—0.824. Moreover, the word embedding systems seem to
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depend on the word embeddings quality to a very great extent. Although word2vec embed-

dings have a slight advantage over GloVe’s, the difference is not significant. Nevertheless, both

word embeddings are clearly superior to those generated using the unsupervised fastText word

embeddings. This most likely happens because those unsupervised fastText word embeddings

were trained with the RCV1 train dataset only—this is a very small fraction of the amount of

data that the other pre-trained word embeddings had been provided with. On the other hand,

XGBoost achieved fair results when using supervised fastText word embeddings even using the

same amount of data. This contributes to the understanding that even short word embeddings

specifically generated during the classification task are the most adequate representation for this

problem.

The CNN model provided somewhat interesting results despite that it had neither a thor-

oughly designed architecture nor fine-tunned hyper parameters. When using fastText 10-element

word embeddings generated in unsupervised mode, it was considerably superior to both XG-

Boost models that used the same input data. Moreover, it achieved similar results using either

unsupervised or supervised fastText word embeddings, which denotes that it is less dependent

on the word embeddings quality. Therefore, this is considered this a quite promising approach.

Its learning phase, however, requires much more computing resources than any of the other

models analyzed. Training these CNN’s–which is a rather simple implementation considering

these complexity that top-notch CNN can reach—took around 6 hours in the computer used

for the experiments (Intel R© CoreTM i5-4300U CPU at 1.9GHz with 8GB RAM), while typical

training time for fastText and XGBoost ranged from 3 to 8 minutes for the former and 0.2 to

2.2 hours for the latter. Nevertheless, from the initial results found for CNN, this model might

be able to achieve a competitive level with more elaborate network configurations and given the

necessary computing power.
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5 CONCLUSION

Throughout this work, the application of distributed text representations combined with

modern classification algorithms implementations to the HTC task has been analyzed. After an

observant literature research and careful examination of related works, three noticeable word

embeddings generation methods—GloVe, word2vec, and fastText—and three prominent clas-

sification models—fastText, XGBoost, and CNN—that recently improved the results for the

typical text classification and could potentially provide similar advancements for the hierarchi-

cal specialization were identified. The possibility to exploit the hierarchical structure to build

classification models using LCPN strategy, virtual categories, and ancestry was noticed.

In order to assess the feasibility and effectiveness of these representations, models, and

strategies to the HTC task, experiments using the RCV1 dataset were performed. An evaluation

of the models using flat and hierarchical measures confirmed that the former are inadequate

for the HTC context. A strong correlation between hierarchical and LCA measures was also

identified, that presumably occurs because the underlying class hierarchy of this dataset is rather

shallow. Although the classification models created using hierarchical strategies reduce the final

F1 values in comparison to flat approaches, they yielded improvements either on precision or

recall.

FastText was the outstanding method both as a classifier and as a word embedding gener-

ator. The algorithm seems to owe most of its superiority to the way it estimates class-oriented

word embeddings in supervised mode. These findings support the increasing understanding

that combining task-specific word embeddings provides the best results for text classification

(KIM, 2014; TANG et al., 2014), to which its hierarchical specialization can be now included.

A direct comparison between other methods and ours is not available because previous studies

have neither used hierarchical measures to asses the effectiveness or have not used the RCV1

dataset nor used a single-labeled version of it. Nevertheless, the LCAF1 of 0.871 is considered a

remarkable achievement. Although the other classification models do not reach competitive re-

sults, they are still worth of further investigation as exploring their flexibility could still provide

promising improvements.

5.1 Future Work

These methods can be applied to the PubMed data to check how they extend to the medical

text context—in particular the usage of fastText. As BioASQ provides pre-trained word embed-

dings generated with word2vec using a considerable amount of medical texts, comparing them

with those that fastText creates in supervised mode should provide us with evidence for a more

general understanding on how their quality affects the final classification results. Besides that,

as the Mesh hierarchy is much larger than RCV1’s in all senses, it would be useful to confront

the hierarchical and LCA measures in order to confirm the hypothesis about their correlation.
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Although CNN is among the models that exhibited the worst effectiveness, it deserves fur-

ther investigation as this initial impression contradicts the expectations set by other studies. At

the same time, a deeper comprehension of its architecture is necessary to understand and apply

it to the HTC context. Besides that, it is worthy to investigate how effective can LSTM’s be

with this problem, as their ability to handle sequential data matches the ordered nature of texts.

In the long term, there are plans to research on the training objective used for HTC problems.

Softmax was used in all experiments reported in this work, as this was the most suitable multi-

class function available in the algorithm implementations used for these experiments. However,

both XGBoost and CNN (through the Keras API) allow for the loss function customization.

Finding a differentiable function that approximates either hF1 or LCAF1 and using it as the loss

function rather than the softmax could finally bring together state-of-the-art algorithms with

hierarchical information to create a method that implements a global HTC approach.
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