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Abstract: The quality of the vascular access of patients with Chronic Kidney
Disease is extremely important and proves to be a decisive factor in the patient's
longevity and well-being. Currently, arteriovenous fistula is one of the most
recommended vascular access and some concerns about this access are evident,
such as arteriovenous fistula stenosis. The aim of this work is to develop a machine
learning model for analysis and prediction based on monitoring of the data generated
by the hemodialysis equipment and hemodialysis session. This study is a partnership
between Clinical Research Center located in Porto Alegre, Brazil and the Graduate
Programs in Applied Computing and Nursing at UNISINOS. The project was
previously approved by the Research Ethics Committee of UNISINOS and HCPA and
uses 1483 samples from 27 patients. Logistic Regression, K-Nearest Neighbors,
Support Vector Machine and Random Forest have been trained and tested using 10-
fold cross validation. Random Forest achieved the best performance with an F1-
score of 98.40%, sensitivity of 98.80% and specificity of 98.50%. We also found that
patient’s age, fistula age and gender had higher importance for Random Forest in
Predicting stenosis. This model used a new set of features and had higher results
compared to the related works, making it a promising predictor of arteriovenous
fistula stenosis.

Keywords: Arteriovenous fistula (AVF), stenosis, hemodialysis (HD), K-Nearest
Neighbors (KNN), Support Vector Machine (SVM), Random Forest (RF), Logistic
Regression (LR).

1 INTRODUCTION

Chronic kidney disease represents a gradual loss of kidney functions. In these

cases, hemodialysis is presented as the immediate treatment commonly used.
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Dialysis performs critical functions that the kidneys are unable to perform, such as
removing toxic substances from the metabolism and balancing the body's fluid levels,
purifying the patient's blood using the hemodialysis device (BELMONT et al, 2019).

As the volume of blood flow increases, the team of surgeons creates an
arteriovenous fistula (AVF), a vascular access between an artery and a vein. Thus,
the vein dilates with the pressure between the artery and the vein, allowing faster
blood flow, which makes the AVF the best access for hemodialysis (YEIH et al.,
2014). As time goes by, it is possible for the patient to present a reduction in the
functioning of the vein with the narrowing of the blood passage, also known as
arteriovenous stenosis, a complication that can cause fistula failure, making it
necessary to develop a new fistula, exposing the patient to invasive catheter
treatment (BHATIA et al, 2018).

The constant monitoring and the use of a computer algorithm capable of
producing reliable and accurate results will impact on the reduction of vascular
complications, increasing the patient's well-being and reducing treatment costs since
early diagnosis avoids the need for new fistulas and surgical procedures (BELMONT
et al., 2019). Technigues such as ultrasound, angiography and collection of sound
waves from the fistula are some of the most used forms of information in search of
effective characteristics in the prediction of complications of fistula and stenosis.
Some of these processes are not applied with great frequency because they are
invasive, have side effects and high cost. These obstacles often result in a small
sample of information, making the classification of the algorithms less accurate,
mainly due to the variation of information of each patient (CHIANG et al., 2019).

The dialysis process tends to be continuous and with the application of several
sessions within a short period. Each session generates a varied amount of
information, most of which are not used as these are only available during the
procedure. For reasons of access to equipment data, the collection of this data is
done manually by the nephrologist present in the procedure (BHATIA et al, 2018).

The motivation of this work is to enable the early diagnosis of arteriovenous
fistula stenosis and its aggravations, making use of the largest amount of information
available in dialysis sessions, observed and collected by specialists, taking
advantage of the large amount of data that can be lost, seeking new characteristics,

as well as the best way to take advantage of them through machine learning models.



Figure 1 illustrates the traditional model for detecting arteriovenous fistula
stenosis in patients versus the model proposed in this work. In the conventional
model, the specialist's manual records are analyzed by the team based on known
information. On the other hand, the proposed model preprocesses these records and

uses them as input to the machine learning algorithms.

Figure 1 — Traditional model vs. Proposed model.
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Source: Elaborated by the author.

Possible discoveries in the approach of this model can increase the quality of
life of the patient during the course of his treatment, helping specialists in the field to
make decisions in advance and not reactive to complications, avoiding surgical
procedures and even more severe problems in the patient.

The main scientific contribution of this work is to provide an effective model to
predict arteriovenous fistula stenosis, as well as to identify the most significant
features using data available in the hemodialysis machine and dialysis session. For
that, we will use artificial intelligence-based solutions that are trained and tested with
stenosis dataset to them compare the results obtained by the models, according to
the accuracy and other metrics applicable to the problem, providing valuable
information for early prediction of stenosis.

This article is structured in six sections. The second section presents the

theoretical foundations necessary to understand the concepts presented in this work.
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The third section describes the related works and opportunities and research open
points. The fourth section describes the proposed solution and development
methods, detailing the preprocessing and modeling steps. The fifth section discusses
the results achieved. Finally, the sixth section presents the conclusion, final

considerations and possible future research.

2 THEORETICAL FOUNDATION

This section presents the relevant concepts about chronic kidney disease,
hemodialysis, vascular access, arteriovenous fistula, possible access’s

complications, as well as forms of monitoring used in the diagnosis of stenosis.

2.1 Chronic Kidney Disease

Chronic kidney disease (CKD) is a serious condition in which there is a
progressive and irreversible decrease in kidney function, perceived by the reduction
in the glomerular filtration rate, when kidney function is affected and is no longer able
to sustain life in the long term. There are two main modalities of treatment: renal
replacement therapy, which includes peritoneal dialysis, hemodialysis and kidney
transplantation, or conservative care, also called palliative or non-dialysis care that
consists of non-invasive treatments whose objectives are to mitigate the symptoms of
disease. Currently the main form of treatment in more advanced cases of the disease
is hemodialysis (WEBSTER et al., 2017).

Chronic kidney disease has a great impact on the patient's quality of life, who
must undergo the hemodialysis process to reverse the hydro electrolytic and acid-
base imbalance caused by it. Data suggest that more than 750 million people
worldwide have CKD. The economic impact on health systems is worrying in view of
a high population of elderly with comorbidities. (CREWS; BELLO; SAADI, 2019)

2.2 Hemodialysis

Hemodialysis is a form of treatment that is part of the modality of renal
replacement therapy for chronic kidney disease. It is a process in which it aims to

eliminate harmful residues from the body, assist in the control of blood pressure and
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maintain the balance of substances such as sodium, potassium, urea and creatinine.
Hemodialysis performs functions that the kidneys are unable to perform, remove toxic
substances from metabolism and balance the body's fluid levels (SBN, 2016).

The process consists of cleaning the blood by filtering it through selective
diffusion from an extracorporeal circulation system and membrane extracorporeal.
The time of hemodialysis sessions varies according to the patient's clinical status, but
on average they last four hours and occur three times a week (SBN, 2016).

The treatment has a major impact on the patient's life, as it affects diet,
physical and social condition. Despite changing many aspects and causing several
changes in the patient's life, it should not be a negative factor, since it brings an
improvement and well-being to the condition of the chronic kidney patient,
contributing positively (GRASSELLI et al., 2012).

2.3 Permanent Vascular Access

Establishing and maintaining adequate vascular access is essential for chronic
renal patients on hemodialysis, both for an appropriate dialysis dose and for
satisfactory therapy. The ideal access for hemodialysis should have a long lifespan,
provide an adequate blood flow rate and present no complications. Currently, the
arteriovenous fistula (AVF) is the one that best meets these requirements and the
one that requires the least number of interventions (HAYASHI; HUANG;
NISSENSON, 2006).

The vascular accesses are subject to the development of stenosis. Avoiding
this complication is a challenge, as this problem contributes to the reduction of the
access life and to an inadequate blood flow. Physical examinations and instruments
to evaluate the blood flow are some of the measures taken to monitor vascular
access, which must be constant to guarantee its perfect performance. Early
diagnosis of the dysfunction is important so that it can be repaired before it can result
in inefficient hemodialysis therapy or major complications for the chronic kidney
patient (ABREO, K.; AMIN, ABREO, A., 2019).



2.4 Arteriovenous Fistula

The arteriovenous fistula (AVF) is the access for hemodialysis that allows a
better life span and a lower number of complications, it is usually done on the upper
limbs, preferably on the non-dominant forearm. They are built from an anastomosis
between an artery and a superficial vein through a small surgical intervention, the
most common vessels are the cephalic or basilic vein and radial or brachial artery.
There is a process of arterialization of the veins where they become stronger and
more resistant, this process can take some time, resulting in the complete maturation
of the fistula. For this reason, the early use of the fistula can lead to a failure in
access and its loss, because the veins are not yet prepared to be punctured.
Therefore, an AVF is considered mature when it has an adequate vein diameter,
which allows for successful cannulation and can provide the appropriate blood flow
for dialysis. Although the maturation time is not yet known, it is estimated to be more
than two or three months to obtain an AVF with less risk of failure (HAYASHI,
HUANG; NISSENSON, 2006).

Even though AVF is the most recommended type of vascular access, strict
supervision must always be maintained both for monitoring, in which it refers to the
examination and evaluation of vascular access through physical examination, and for
the surveillance that refers to the periodic evaluation of vascular access using tests
that may involve special instrumentation, being the two forms of supervision of the
AVF complementary. This control is very important for the hemodialysis therapy of
the chronic renal patient to occur without major complications (COENTRAO;
RODRIGUES, 2013).

2.5 Complications of Permanent Vascular Access

Stenosis is a narrowing of the vein or artery that can interfere with the blood
flow of the AVF, usually causing a decrease or obstruction of blood flow. Normally,
patients with vascular access should not complain of pain or weakness and this
information can be useful for the diagnosis of stenosis, which can be done through
physical examination, which includes inspection (appearance), palpation (sensation)
and auscultation (sound). The diagnosis can become difficult in cases where the

lesion is very small or the stenosis is very prominent, which can lead to thrombosis,



with venous stenosis being responsible for 80-85% of the thrombosis of the access
and arterial stenosis is responsible for 1-2% of access thrombosis. Therefore, the
findings on physical exams always need to be validated through Doppler ultrasound
(HAYASHI; HUANG; NISSENSON, 2006).

Early detection of stenosis and low AVF blood flow are essential in preventing
thrombosis and access failures, leading to loss of access. When the diagnosis is late
and thrombosis is already present, it is characterized by an undetectable flow by
physical examination. Aneurysm formation may be indicative of skin thinning by
repeated needles in the same location or a high intra-access blood flow
(COENTRAO; RODRIGUES, 2013).

2.6 Vascular Access Monitoring and Surveillance

Monitoring and surveillance in vascular access are related to control and
precautionary measures to guarantee the adequate function of the access, allowing a
longer useful life and preventing its loss from occurring. Monitoring refers to physical
examination while surveillance is through tests or special instrumentation, the two
forms of which are based on the identification of patients at risk of developing a future
dysfunction in access and allied with an early intervention, reducing the incidence of
failure in vascular access, ensuring satisfactory hemodialysis therapy for chronic
renal patients (HADDAD et al, 2012).

These methods are applied by the dialysis team and a combination of several
techniques is usually used to detect patients at risk of access dysfunction or the
dysfunction itself. As there are still no studies to prove which is the best method of
controlling vascular access, monitoring and surveillance are still very important for
the prevention of failures, as they are easy to learn, quick to perform and relatively
economical (GRASSELLI et al., 2012).

3 RELATED WORKS

In order to obtain more details regarding the solutions proposed in relevant
studies in the area, an exploratory research on prediction of stenosis and machine
learning was carried out. The chosen databases were Scopus and Google Scholar,

some of the largest bibliographic bases available, in addition to having an advanced
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search engine. The search criteria for the articles used was the combination of the
words “machine learning”, "arteriovenous fistula”, "stenosis”, With a date equal to or
greater than 2015, and articles ordered by relevance. From the search result, five
articles were selected and described below.

Grochowina (2015) used the sound emitted by the radio cephalic fistula that is
located on the wrist, with the collection point being five centimeters from the
anastomosis. The purpose of the study is to compare the Support Vector Machine
(SVM) and K-Nearest Neighbor (KNN) algorithms, with the objective of identifying the
stenosis as early as possible, evaluating the model that best fits the problem. The
data sample was distributed in such a way that the rarest cases (stenosis), have a
balanced occurrence with the cases in which there is no stenosis, as these are
usually in greater quantity. The algorithms were trained with 60% of the data and
tested with the remaining 40%, resulting in an accuracy of 81% by the SVM, while the
KNN showed an accuracy of 85%.

Bhatia et al (2018) proposes the use of the characteristics presented in the
hemodialysis session to enable the preventive creation of a new fistula. It points out
the steps that a system needs to present such results, namely: importing data,
graphical analysis of each characteristic, evaluation with different classification
algorithms, and performance reports comparing the results obtained. Since only the
idea of the model was presented, characteristics such as blood flow, venous
pressure, dialysis flow and blood pressure, were analyzed graphically and considered
important within the study sample for use in the future diagnostic process.

In the study carried out by Kordzadeh et al (2019), Artificial Neural Network
(ANN) was used to predict fistula maturation in Radiocephalic arteriovenous fistula.
The data was collected from 266 patients for four years. Some of the features used in
the study were comorbidities, blood flow, bruit, thrill and pulse. Patients who did not
achieve fistula maturation after 6 months were classified in the group of functional
maturation failure. The dataset was split into 70% training set, 15% for F-measure
evaluation and 15% for model testing. Age, vein and artery size were selected as the
best subset of predictive characteristics, resulting in an accuracy of 89% for fistula
maturation diagnosis.

Chiang et al (2019) developed a photoplethysmography sensor as a
noninvasive, portable and low-cost alternative to ecodoppler ultrasound. The data

consisted of 153 samples of soundwaves, having 74 samples for degree of stenosis
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evaluation (DOS) and 79 samples for blood flow volume (BFV). High-risk patients
were labeled based on a degree of stenosis larger than 30% and blood flow volume
greater than 600 ml/min. Naive Bayes, KNN and SVM were applied for assessing the
DOS and BFV. The SVM algorithm proved to be the most effective classifier with a
DOS accuracy of 87.84% and 88.61% accuracy for BFV.

Using data of approximately fourteen thousand patients from United States
Renal Data System, Qian et al (2020) studied important predictor characteristics for
AVF maturation focused on older patients, having all the patients aged 67 years or
older. Arteriovenous fistula maturation has shown to be reduced in older patients
compared to younger ones, resulting in the prolonged need of a central venous
catheter, which is classified as an invasive monitoring technique. The study
considered different types of features as predictors, such as: demographic (age,
gender and race), geographical and laboratorial. The data was randomly split into
66% training data and 34% for testing and was classified with Random Survival
Forest (RSF), which resulted in 45.9% Out-of-bag score with 34 features.

Lastly, Grochowina (2020) research aimed at developing a low-cost phono-
angiography based device for non-invasive monitoring of AVF condition. The data
was collected from 38 patients and 23 features were extracted from the resulting
phono-angiogram, which were used in the pre-processing step. The samples were
divided in 6 groups and labeled from A to F, having A as the best scenario for AVF
condition and F as the worst condition present in the dataset. This classification was
done through mathematical analysis and ecodoppler results evaluated by the team of
specialists. Random Forest (RF), SVM and KNN were used for classification of the
data, obtaining the best accuracy of 81% with KNN.

Table 1 shows a comparison between the articles. The items taken into
consideration were the type of collected data labeled as sound or hemodialysis (HD),
the number of patients that were part of the study, the algorithm that showed the best
result in arteriovenous fistula classification problem as well as its predictive accuracy.

It is possible to notice that the approach of collecting sound waves emitted by
the fistula has shown to be one of the most common options for non-invasive
monitoring of the arteriovenous fistula. However, it presents some problems such as
the variation of sounds for each patient, in addition to the difficulty of obtaining
diversified samples and the complex classification. Since studies focus on this type of

data, there are other viable forms of monitoring and collection that are generally not
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used. Through this exploratory research we identified the opportunity to make use of
the data presented in the hemodialysis machine that are often discarded after the
session. This way we can discover new characteristics through analysis and
modeling using such data as well as the most diversified hemodialysis session
information possible, increasingly optimizing the work performed by specialists in the
field, serving as an auxiliary method in the early prediction of complications of AVF.
In addition, the present work has the opportunity to explore different metrics for
analyzing the results obtained in the process.

Table 1. Related works comparison. (ANN, Artificial Neural Network; HD,
hemodialysis; KNN, K-Nearest Neighbor; RSF, Random Survival Forest; SVM,
Support Vector Machine)

Grochowina Bhatia Kordzadeh Chiang Qian Grochowina
Article (2015) (2018) (2019) (2019) (2020) (2020)
Data Sound HD HD Sound HD Sound
No. of
patients 9 200 266 - 14892 38
Algorithm  KNN - ANN SVM RSF KNN
Accuracy 85% - 89% 87% - 81%

Source: Elaborated by the author.

4 MATERIALS AND METHODS

This section aims to describe the model general steps, the dataset used in the
study, develop the preprocessing stages from the exploratory analysis to the feature
selection that will compose the final dataset. Based on these data, several algorithms
will be tested, evaluated with relevant metrics to choose the model that best fits the

stenosis prediction problem.

4.1 Process Overview

The general model (Figure 2) consists of an exploratory analysis of the data
collected by observing the hemodialysis machine, physical examination and doppler
ultrasound results, which are preprocessed, modeled and outputted back to the

specialist to help on planning a new arteriovenous fistula based on the model results.



Figure 2. General process for planning a new AVF based on model predictions.
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Source: Elaborated by the author.

The detailed model (Figure 3) contains three main steps, starting with the pre-
processing of the input variables. Such data compose information from the real world,
that is, they may have several errors and formatting problems since their collection is
done manually by the specialist.

One of the pre-processing steps is dealing with the outliers, which consist of
non-standard information presented by the sample. The identification of these values
leads to a better understanding of the data (DENESHKUMAR; MANIKANDAN;
KALIYAPERUMAL, 2014). Another step is identifying null or invalid values. The
validation of these data eliminates the possibility of erroneous trends, since minority
data can lead the algorithms to mistaken conclusions. Several imputation techniques
can be applied, but it is necessary to pay attention to the nature of the data and
understand the best way to apply them (VERGARA; ESTEVEZ, 2015).

The feature selection uses statistical tests to check the features correlations.
Redundant data can be found and eliminated, making the modeling and training
faster. In the feature scaling step, the previously selected features, undergo a scale
adjustment for their respective types. For categorical data, techniques such as label
encoding and conversion to dummy variables may be applied. These conversions are
important because some algorithms only work with continuous data. For the
numerical features the standardization technique is applied, leaving all values on the

same scale.
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The pre-processed inputs are then split into training and test set. The objective
is to train several algorithms in order to identify the model that best fits the data.
Training set is then used to validate the models with unseen records. The result is
defined by the model that has the best overall performance.

Figure 3. Detailed model for pre-processing, training and testing stenosis inputs.
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4.2 Dataset

This study uses stenosis dataset obtained through a partnership between
Clinical Research Center located in Porto Alegre, Brazil and the Graduate Programs
in Applied Computing and Nursing at UNISINOS. The project was previously
approved by the Research Ethics Committee of UNISINOS and HCPA (protocol
number — CAEE: 19551019.8.3001.5327).

The data sample consists of 1483 records of hemodialysis sessions of 27
patients. The collection cycle was approximately of three months, based on a 50%
decrease in the difference in diameter and an increase of 100% in the venous
systolic peak between two points of the fistula, obtained at the end of the treatment
through ecodoppler tests, having these results as the gold standard in the
identification of stenosis by specialists (HAYASHI; HUANG; NISSENSON, 2006).

The data used in this work characterize a binary classification problem, with
the output of stenosis as YES or NO. Table 2 describes the data as well as their type
and values. Altogether there are 21 characteristics, 6 of the numerical type and 15 of

the categorical type, including the class stenosis. As shown in Figure 4, the dataset
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has 1096 samples marked as no stenosis, while 387 indicate stenosis. This class

distribution represents an imbalanced distribution of 1 positive case (stenosis) for

every 3 negative ones (healthy patients).

Table 2. Stenosis dataset described by feature name, description, type in unit or

category, missing values percentage of each feature.

Name Description Type: unit/category | Missing
percentage

Age Patient’s age Numerical: years 0%

Comorbidities | Does the patient has comorbidities | Categorical: yes, no | 0%
or not

Fistula age Patient’s fistula age Numerical: years 0%

Race Patient’s race Categorical: white, | 0%

black, brown

Sex Patient’'s gender Categorical: yes, no | 0%

Arterial Arterial pressure Numerical: mm/Hg | 2%

pressure

Flow AVF'’s blood flow Numerical: ml/min | 2%

Kt/v online Dialysis dose per session Numerical: mmHg | 38%

Venous Venous pressure Numerical: mm/Hg | 2%

pressure

Aneurysm Does the patients AVF has Categorical: yes, no | 0%
aneurysm or not

Bruise (I;’rr?]séince of bruise in the AVF path Categorical: yes, no | 0.50%

Clots Presence of clots on the puncture Categorical: yes, no | 1%
needle or not

Collateral vein Presence of thrill / pulse in Categorical: yes, no | 3%
collateral venous network or not

Edema Does the patient’'s AVF limb has Categorical: yes, no | 4%
edema or not

Hemostasis Hemostasis time changed (>5 min) Categorical: yes, no | 0.50%
when removing the needles or not

Hypoperfusion c[))ror?stthe patient has hypoperfusion Categorical: yes, no | 37%

Pain Eé)tes the patient’s AVF has pain or Categorical: yes, no | 0%

Pulse Change of pulse in the AVF or not Categorical: yes, no | 40%

Punctures Are the difficulties in puncture or not | Categorical: yes, no | 0%

Thrill Change of thrill in the AVF or not Categorical: yes, no | 40%

Stenosis Does the patient has stenosis or not | Categorical: yes, no | 0%

(class)

Source: Elaborated by author.

In medical datasets, high risk patients (abnormal cases) tend to represent the

minority class as normal (healthy) cases compose most of the records. This may lead
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to a learning bias towards the majority class resulting in poor performance,
specifically for the minority class that is the target for an accurate classification. In
order not to lose important information, this study uses balancing parameters

whenever possible as seen in the following sections.

Figure 4. Distribution of class in stenosis dataset.
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Source: Elaborated by the author.

4.3 Data Preprocessing

Real world datasets are very likely to contain missing, extreme, redundant and
inconsistent data, causing misinterpretation of the data as well as inaccurate model
results. This study’s dataset is no exception. Therefore, the first step to build a useful
machine learning model is to explore and treat the data, making use of data

processing techniques.

4.3.1. Outliers

Extreme values or outliers are extreme data points that deviate from the
central tendency. These outliers are generally referred to as a noise in the data or
exceptions, meaning that they may be discarded. However, medical data demands
attention since outliers can be legitimate and have influence on the results of
stenosis detection (DENESHKUMAR; MANIKANDAN; KALIYAPERUMAL, 2014).

In stenosis dataset, these extreme values may be originated from observation

errors since the values are manually noted by the specialist. For this reason, each



15

outlier detected in the dataset is checked to know whether they can be treated as
noise or realistic data that can present valuable information.

In this study, the extreme data points that go beyond the acceptable range
clinically have been handled as missing data and then modified as described in later
sections.

Figure 5. Boxplot for venous pressure.
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Source: Elaborated by the author.

Box plots have been used to detect stenosis, as seen in Figure 5, some
records presented a venous pressure of 1500 and 1600. High venous pressure is
commonly used as AVF surveillance parameter. However, there are no registries of

such high values meaning that these outliers are not legitimate (WHITTIER, 2009).

Figure 6. Boxplot for arterial pressure.
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Source: Elaborated by the author
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Figure 6 shows extreme values of -2000 and -1500mm/Hg for arterial
pressure. Recent studies evaluate the importance of this parameter in the AVF, but
there are no mentions of values this low, so these values cannot be accepted as
normal information (SCHOLZ et al, 2019). A common explanation for these values is

a simple typo, as the data is observed and noted manually.

4.3.2 Null Values

The presence of null or invalid values is a very common problem in datasets,
usually resolved by eliminating them, as well as filling the data with the mean, mode
or median of the attribute values. Table 2 shows that approximately 57% of the
stenosis dataset has null variables. The missing percentage range from 0.5% to 40%
according to each variable. Special care is needed to replace these values, because
incorrectly imputed clinical data can generate erroneous trends and patterns.

In this study, Multiple Imputation (MI) was applied as imputation technique. In
MI, the null data is replaced m times, where m is usually a small number from 3 to 10.
Each of the simulated datasets are analyzed and adjusted according to trends
observed by the algorithm used as estimator (JONATHAN et al, 2009). In the case of
numerical features Linear Regression was chosen. As for categorical variables,

Logistic Regression was used.

4.3.3 Feature Selection

This stage employs statistical tests as well as mutual information concepts to
discover relationships between the input parameters to gain knowledge of the data,
examine their relevance to the early diagnosis of stenosis, as well as association
between themselves. The stronger the correlation between variables the closer they
are to be linearly correlated, meaning that one of them can be removed as a
redundant information. However, strong association between a parameter and the
class variable means that this parameter may be relevant to the optimal prediction of
stenosis. Conversely, weak correlations generally mean that data can be discarded
as irrelevant parameter. This is an important step to understand the level of overlap
between healthy patients and stenosis, building an effective model that can predict

valid results.
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From the result of Pearson's correlation (Figure 5), it is observed that blood flow has
a moderate positive correlation of 0.41 with venous pressure (VP). Venous pressure
consists of the positive pressure exerted to return the blood to the AVF after being
filtered. Elevations in VP may suggest complications of the fistula, however there is
no evidence that this measure is effective in monitoring the arteriovenous fistula
(WHITTIER, 2009). With a 0.04 correlation between VP and the stenosis class, this
parameter was considered not relevant.

Although there is no consensus among the studies, the blood flow achieved in
the hemodialysis equipment with values lower than 300ml / min proved to be an
indicator of dysfunctions in the AVF (POLKINGHORNE, 2006). However, only 2% of
patients diagnosed with stenosis had values in this range (Figure 6), in addition to
having a 0.05 correlation with the class of stenosis, proving to be a low impact
parameter.

The Cramer V correlation test showed a strong positive correlation of 0.85
between thrill and pulse. These characteristics are commonly used together in the
physical evaluation of the fistula, indicating the vibration caused by pulsatile arterial
blood inside the vein. The thrill is usually continuous and can be felt, while the pulse
must be smooth. Reduction or absence of these parameters indicates difficulty in
maturing the fistula or stenosis. Studies report the importance of observing the thrill
for the early detection of stenosis and the importance of observing this parameter at
each hemodialysis session (POLIMANTI, 2018). In the dataset of this study, 60% of
the patients with stenosis had a change in thrill, pointing it as a possible parameter
for identifying stenosis.

Pain at the site where the AVF is present and aneurysm have a significant
correlation of 0.71 according to the Cramer V test. Aneurysm represents areas of
enlarged AVF with a larger diameter and swirling blood flow. Pain in AVF is
commonly related to aneurysm, being reported by 48% of patients and recognized as
a parameter for surgical intervention (PASKLISNKY et al, 2011).

Reports of pain in the AVF also showed a correlation with difficulty in puncture,
this being 0.58 according to Cramer V. The performance of the puncture is essential
to obtain a good venous access, guaranteeing a quality dialysis (DIAS; NETO;
COSTA, 2008). The puncture process has a repetitive nature and can be somewhat
painful, due to the size of the needle, chosen technique and difficulties in the

process, generating reports of pain in the AVF in up to 60% of patients (KORTOBI et
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al, 2019). The parameter of pain in the AVF was identified as redundant, showing an
association with difficulty in puncture and aneurysm, confirmed by the chi-square test

with p-value <0.001.

Figure 5. Scatterplot between flow and venous pressure.
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Figure 6. Blood flow distribution grouped by class category.
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Puncture and aneurysm difficulties are also correlated with a coefficient of
0.61. Puncture problems may be related to stenosis and should be checked at each
hemodialysis session. In addition, repeated puncture can cause weakening of the
vein walls, causing an aneurysm that limits the possibility of punctures depending on

its size (KORTOBI et al, 2019). Approximately 3% of the records with a positive
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diagnosis in the dataset had difficulty in puncture. The chi-square test showed a p-
value <0.008 between difficulties in puncture and aneurysm.

Aneurysm is present in 70% of the records with a positive diagnosis for
stenosis, although this high number may originate from false aneurysms or
pseudoaneurysms, studies show equivalent numbers among patients with stenosis
and aneurysm (PATEL et al, 2014). In this study, chi-square showed a correlation
between aneurysm and the stenosis class with p-value < 0.001. Thus, difficulties in
puncture were eliminated as a redundant feature.

Lastly, Mutual Information was used as a filter method. Mutual Information
measures reduction in uncertainty between random variables, including non-linear
relationships, and is also independent to the learning algorithm (VERGARA,
ESTEVEZ, 2015).

At the end of the tests and analysis of the results, the following attributes were
discarded from the experiment: Blood flow, venous pressure, edema, pulse, bruise,

pain, hypoperfusion, clots, punctures, comorbidities and hemostasis.
4.3.4 Feature Scaling

It is common for the dataset to have values on different scales, such as
centimeter and milligrams. The data sample used in this work is no exception,
however, some techniques allow the standardization of these values. For the
numerical attributes, the standardization technique was used, which consists of
distributing the values so that the mean is zero and the standard deviation is 1,
centralizing the data on the same scale (BOLLEGALA, 2017). The categorical
attributes were adjusted using the dummy variables and label encoding techniques,
which transform the values to 0 and 1. The race column was broken into three,
representing the race variations of the dataset (white, black, brown) in the described
range. These conversions help the application of some algorithms that cannot handle

categorical variables, especially regression problems.
4.4 Modeling

Five algorithms were used in this step, namely: Random Forest, K Nearest

Neighbor (KNN), Support Vector Machine (SVM) and Logistic Regression. These



20

classifiers were chosen based on the studies carried out in related works, which
proved that these models can be very accurate tools for predicting complication in
arteriovenous fistula, especially stenosis. In addition, these algorithms can benefit the
classification of unbalanced data through the implementation of class weighting.

4.4.1 Logistic Regression

Logistic Regression (LR) predicts whether something is True or False (binary
classification). Instead of fitting a line to the data, logistic regression fits it to a
sigmoid (logistic function). The curve goes from 0 to 1, meaning the probability that a
patient has the target variable based on the inputs. Although it tells the probability of
the class, it’'s used for classification (HYEOUN-AE, 2013). For example, if the patient
has a high probability of having stenosis, then we will classify him as “stenosis”,
otherwise “no stenosis”. Logistic regression can work with continuous and discrete
data and its ability to provide probabilities and classify nhew samples using continuous
and discrete measurements makes it a popular machine learning method and a base

algorithm for classification problems.

4.4.2 K-Nearest Neighbor

In K-Nearest Neighbor (KNN) algorithm, learning is based on how similar one
data (vector) is to another and the classification of this vector occurs according to the
calculation of its distance in relation to other data. This means that a new input will be
classified according to the shortest distance from its neighbor. The calculation of this
distance is commonly performed by the Euclidean distance, but there are other
metrics that can be used accordingly to the parameters. Despite its high
computational resources demand, KNN’s flexibility on working with categorical and
numerical data makes it popular for feature selection and classification of stenosis
(GROCHOWINA; LENIOWSKA, 2015).

4.4.3 Support Vector Machine

Support Vector Machine (SVM) is a learning model that is commonly used in

classification problems. It is reported to reveal promising results in the diagnosis of
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arteriovenous fistula condition (GROCHOWINA; LENIOSWKA: BLADZINSKA, 2020).
The idea of SVM is to create an optimal hyperplane and divide the data in two
dimensions, separating the points with their respective classes. This hyperplane is
established by points near the edge of the plane, called support vectors, which are all
the same distance from the edge. New data will be categorized according to the
dimensions already classified and from the data already available (training) that are
mapped by mathematical functions known as Kernels, varying from radial basis
function (RBF), linear, sigmoid, to polynomial (CHIANG et al., 2019). In this study,

RBF has been chosen based on parameter tuning results.
4.4.4 Random Forest

Random Forest (RF) is a type of decision tree, widely used and that provides
good results. The purpose of decision trees is to divide data into subsets following a
series of rules and with a goal. This process is usually achieved by considering the
correlation between the data through the entropy calculation. However, the decision
tree can become very complex and have a series of edges that leads to overfitting. In
this case, there is a very specific learning and there may be a high computational
cost and the generalization for future data will be very weak. The RF algorithm
imposes the diversity of each tree separately by selecting a random feature. This is a
way to control the complexity of the decision trees because it creates random trees
from some labels that limit the overgrowth of the tree. Random Forest can deal with
unbalanced data that is present in healthcare datasets and it is robust against
overfitting (KHALILIA, CHAKRABORTY, POPESCU, 2011).

5 RESULTS AND DISCUSSION

Several machine learning methods and classifiers were used for early
diagnosis of arteriovenous fistula stenosis. The experiments are conducted in Jupyter
notebook, using Python v. 3.8 programming language and Sklearn v. 21 algorithms.

The result of each classification algorithm was evaluated using different
metrics and validated with k-fold cross validation, which consists of separating the
algorithm into training and test samples in k subsets, repeating k times with a

different subset. This way, it is possible to eliminate problems of bias and overfitting,
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using data samples never seen by the algorithm. The stenosis records were split into
training set (70%) and test set (30%) with stratify parameter respecting the class
distribution on the original dataset. The evaluation metrics used to compare the
overall algorithms performances are classification accuracy, Fl-score, sensitivity,
sensibility. Moreover, the evaluation includes ROC curve and measures the area
under the curve (AUC).

Each model lists different results according to the selected parameters. For
parameter tuning Grid Search and cross validation were used to estimate the best
parameter for each algorithm. The best performance for RF was obtained with
number of trees = 10, maximum depth of three = 6, minimum of 2 samples per leaf,
and balanced class weight to handle imbalance classification. These parameters
resulted in a sensitivity 98.8% and F1-score of 98.4%. KNN performed best with
number of neighbors = 15 and distance metric = “manhattan”, obtaining a F1-score of
96%. The SVM best parameters were C = 10, radial basis function (RBF) as kernel
and balanced class weight, resulting in a sensitivity of 96%. Finally, the best
performance for LR was with C = 0.1 and penalty = “L2” and balanced class weight
with an accuracy of 82.7% and F1-score of 83%.

Table 3 summarizes the average results of each model in terms of accuracy,

F1-measure, sensitivity, specificity and AUC based on 10-fold cross-validation.

Table 3. The predictive performance of machine learning models.

Algorithm Accuracy Fl-score Sensitivity Specificity AUC

Random Forest 98.20% 98.40% 98.80% 98.50% 99.90%
K-Nearest Neighbor 97.10% 96.60% 92.00%  99.10% 99.40%

Support Vector 99.00% 98.30% 96.50%  99.10%  99.80%
Machine

Logistic Regression 82.70% 83.60% 90.70% 80.60% 91.00%
Source: Elaborated by the author.

From the results showed in Figure 7, the predictive models have achieved
very good results in predicting AVF stenosis. The highest sensitivity was 98.8%
achieved by Random Forest, followed by SVM’s rate of 96.5%. These are significant
results for imbalance classification because sensitivity represents the rate of true
positives. K-Nearest Neighbor and SVM reached the best specificity performance of

99.1%. Although KNN has obtained the best specificity it was also one of the less
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sensitive to predict stenosis, second only to 90% from LR. The overall accuracy of
predictions was excellent, ranging from the lowest value of 82.7% from LR to the very
high 99% and 98.2% from SVM and RF respectively.

As Figures 8 illustrates, the highest Fl-score of 98.4% gives RF a slight
advantage over SVM score of 98.3%. The same is also true for AUC values, with a
result of 99.9% for RF and 99.8% for SVM. The ROC plot (Figure 9) summarizes the
performance of the classification models on the positive class, demonstrating the
similarity in the models results except for LR.

The precision/recall curve (Figure 10) shows that LR was the least performed
model, while all the other classifiers show a very similar curve as well, proving the
high skill of these models to predict the positive cases of stenosis. Perhaps, the
number of samples was too small for LR when compared to the number of input

features.

Table 4. Test set confusion matrices of the four models. (TN, True Negative; FN,

False Negative; FP, False Positive; TP, True Positive)

Confusion matrix Actual Prediction
Not Stenosis Stenosis
Random Forest Not Stenosis TN = 329 FP=0
Stenosis FN=2 TP =114
K-Nearest Neighbor Not Stenosis TN =328 FP=1
Stenosis FN=2 TP =114
Support Vector Machine  Not Stenosis TN = 327 FP=2
Stenosis FN=1 TP =115
Logistic Regression Not Stenosis TN =262 FP =67
Stenosis FN=7 TP =109

Source: Elaborated by the author.

The confusion matrix was also calculated for the four models (Table 4). As
shown in Table 4, LR generated a number of False Negatives (FN) = 7 and a large
amount of False Positives (FP) = 67 during the test process, while the other models
had very close number of FN (ranging from 1 to 2), where the SVM model produced
the least amount of FN =1 . The RF model produced the minimum number of FP = 1.

Considering the metrics of F1-score, sensitivity and specificity, the overall
performances showed very accurate models, even the least significant results

achieved by Logistic Regression are up to 90%.
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Figure 7. Accuracy, sensitivity and specific from the models.
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These results are higher than the performance reached by Grochowina
(2020), who’s highest F1-score of 92% was achieved with KNN, compared to the F1-
score of 96% achieved in this study by the same classifier. Also, higher performance
compared to the RF accuracy of 76% and F1-score of 88%. The SVM classifier
accuracy of 99% was higher than the accuracy of 87% registered by Chiang (2020) in
the prediction of fistula’s degree of stenosis. Hence, with an almost perfect ROC and

precision/recall curves, and a very balanced scores of 98% on average, RF had the
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best performance among the classifiers. Comparing these results with Kordzadeh
(2019) accuracy of 89% achieved by ANN and the overall performance of Random
Survival Forest presented in the study of Qian (2020), we can prove the high

predictive value of this model for early predictions of AVF stenosis.

Figure 9. The ROC curves from the four evaluated models.
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Figure 10. The Precision/Recall curves from the four evaluated models.
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Since RF achieved the most significant results, we investigate the importance
of the features. As shown in Figure 11, the patient’s age has the highest score while
thrill has the lowest score. With a degree of importance of 0.29 the age parameter
shows to be a relevant factor in the AVF condition monitoring. According to studies,

the older the patient is, the lower the chance of successful fistula maturation (QIAN et
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al, 2020). In this study, 66% of the patients diagnosed with stenosis are older than

65 years, proving the importance of this parameter.

Figure 11. Importance of features in Random Forest model.
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The fistula age also shows an importance of 0.26 for stenosis prediction.
According to the research carried out by BORZUMATI et al (2013), the survival rate
of the AVF in older patients was 76% in the first year and 71% in two years. In this
study, 34% of the patients diagnosed with stenosis and older than 65 years had
complications within the first year of the fistula creation. For the fistula age greater
than or equal four, 33% of the patients diagnosed with stenosis are older than 65.

In the stenosis dataset, 54% of all patients are male, whereas 38% of the male
patients had stenosis. Only 10% of the female patients had stenosis. Some studies
stated that the gender has interference on the fistula outcome and generally the
majority of AVF failures occur in female patients, contrary to this dataset results
(QIAN et al, 2020). However, these results were usually achieved in bigger datasets
with more diversified samples. In addition, the patient's race, development of
collateral vein, aneurysm, dose of Kt/v per session, arterial pressure and thrill were
also identified as important predictors of stenosis.

Machine learning is proving to be one of the most relevant tools to help in
health care. The large sets of data originated from the medical area in combination
with machine learning has led to great advances in the early diagnosis of innumerous
diseases. Patients undergo hemodialysis therapy for years and the arteriovenous

fistula deteriorates over time, which can lead to serious complications such as
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stenosis. The use of machine learning enhances prediction accuracy and can find
new features and relationship not previously explored, thus AVF monitoring is
essential for early identification of complications, improving the patient’s quality of life
and reduced treatment and surgical intervention costs (CHIANG, 2019). In this study,
we applied four machine learning classifiers that have already proven to be effective
in predicting stenosis and complications of arteriovenous fistula based on related
work researches. All the models showed good results, mainly RF who’s was able to
predict stenosis with an accuracy rate of 98.2% and a F1-score of 98.4%, which
indicates the balance of precision and recall considering the false positives and false
negative, proving the model excellent performance for early diagnosis of stenosis in a
imbalanced classification.

This is one of the few studies to use data from the hemodialysis machine. This
data is usually discarded as the machine doesn’t provide an easy way to access
them, making its collection only possible by manual notes which is more susceptible
to errors. Besides that, this stenosis dataset had diversified features obtained through
physical examination and clinical data, proving to be a valuable source of data.
However, this dataset is considered to be small (1483), which affects the results and
the finding of new features. Another difficult is to find datasets with the same features
for comparison.

Hence, it is necessary to build a larger dataset, thus containing more
diversified samples in order to obtain more predictors for stenosis and to consolidate
these results. Though, it would take years and thousands of patients to build a large
dataset with all these features, which is aggravated by the necessity of manual notes
that are very error prone. Therefore, it is important to come up with optimal solutions
for collecting data and AVF monitoring. Many researchers are developing non-
invasive, low costs devices to assess the quality of the arteriovenous fistula. These
devices are generally based on photoplethysmography and can provide predictions
at any time and place due to its portability (GROCHOWINA; LENIOSWKA,;
BLADZINSKA, 2020).

6 CONCLUSION

This work presented a proposal for a machine learning model to assist in the

early diagnosis of arteriovenous fistula stenosis in such a way that it is possible to
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start appropriate treatment before the need for a surgical procedure and possible
decrease in the patient's quality of life. We approach this aim by applying four
machine learning classifiers: Random Forest, KNN, SVM and Logistic Regression on
a dataset of 1483 records. In order to reduce the number of features and redundant
data, the association between variables have been studied.

The classifiers have been trained and tested using 10-fold cross-validation.
Random Forest achieved the best performance with an Fl1-score of 98.40%,
sensitivity of 98.80% and specificity of 98.50%. This result is the highest among
related works. We also found that patient’s age, fistula age and gender had higher
importance for Random Forest in predicting stenosis.

The main scientific contribution of this work is to provide an effective model to
predict arteriovenous fistula stenosis, using data available in the hemodialysis
machine and dialysis session. This data is usually discarded as the machine is not
accessible. This study is one of the few to use this information in order to find
possible relevant parameters to assist in the early diagnosis of stenosis.

There are some limitations to this work. This dataset is small, affecting the
results and the finding of new features. Another difficult is to find datasets with the
same features for comparison. These limitations open possibilities for further
development of future works, for instance, testing this model in a larger and more
diverse dataset, to compare and validate the obtained results in order to create an
optimal data pattern for early diagnosis of stenosis. Another opportunity for future
work is to develop more automate and easier ways of monitoring and collecting
arteriovenous fistula information, investing in low-cost solutions through portable
hardware or other solutions that can be replicated and validated in a less time-

consuming manner.

REFERENCES

ABREO, K.; AMIN, B. M.; ABREO, A. P. Physical examination of the hemodialysis
arteriovenous fistula to detect early dysfunction. J Vasc Access. Vol. 20(1), p.
7-11, 20109.

BELMONT, B. et al. A pilot study to measure vascular compliance changes
during fistula maturation using open-source software. J Vasc Access. Vol. 20(1),
p.41-45. 2019.



29

BHATIA, G. et al. Machine Learning for Prediction of Life of Arteriovenous
Fistula. In: 3rd International Conference for Convergence in Technology (I12CT),
2018, Pune. Proceeding. IEEE, 2018. p. 1-6.

BOLLEGALA, D. Dynamic feature scaling for online learning of binary
classifiers. Knowledge-Based Systems. Vol. 129, p. 97-105, 2017.

BORZUMATI, M. et al. Survival and complications of arteriovenous fistula
dialysis access in an elderly population. J Vasc Access. Vol. 14(4), p. 330-334,
2013.

CHIANG, P.Y. et al. Machine Learning Classification for Assessing the Degree
of Stenosis and Blood Flow Volume at Arteriovenous Fistulas of Hemodialysis
Patients Using a New Photoplethysmography Sensor Device. Sensors (Basel).
Vol. 19(15), p. 3422, 2019.

COENTRAO, L.; RODRIGUES, L. T. Monitoring dialysis arteriovenous fistulae:
it’s in our hands. J Vasc Access. Vol.14(3), p. 209-215, 2013.

CREWS, D. C.; BELLO, AK.; SAADI, G. Burden, Access, and Disparities in
Kidney disease. Kidney International. Vol. 95, p. 242-248, 2019.

DENESHKUMAR, V.; MANIKANDAN, M.; KALIYAPERUMAL, S. K. Identification of
Outliers in Medical Diagostic System Using Data Mining Techniques.
International Journal of Statistics and Applications. Vol. 4(6), p. 241-248, 2014.

DIAS, T. S.;; NETO, M. M.; COSTA, J. A. C. Arteriovenous Fistula Puncture: An
Essential Factor for Hemodialysis Efficiency. Renal Failure. Vol. 30(9), p. 870-
876, 2008.

GRASSELLI, C. S. M. et al. Assessment of quality of life in patients undergoing
hemodialysis. Rev Bras Clin Med. Vol. 10(6), p. 503-507, 2012.

GROCHOWINA, M.; LENIOSWKA, L.; BLADZINSKA, B-C. The prototype device
for non-invasive diagnosis of arteriovenous fistula condition using machine
learning methods. Sci Rep. Vol. 10(1), no. 16387, 2020.

GROCHOWINA, M.; LENIOWSKA, L. Comparison of SVM and k-NN classifiers in
the estimation of the state of the arteriovenous fistula problem. In: 2015
Federated Conference on Computer Science and Information Systems (FedCSIS).
2015, Lodz. Proceeding. IEEE, p. 249-254.

HADDAD. N. J. et al. Hemodialysis access monitoring and surveillance, how
and why? Semin Intervent Radiol. Vol. 33(1), p. 25-30, 2014.

HAYASHI, R.; HUANG, E.; NISSENSON A. R. Vascular access for hemodialysis.
Nature Clinical Practice Nephrology. Vol. 2, p. 504-513, 2006.

HYEOUN-AE, P. An Introduction to Logistic Regression: From Basic Concepts


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4806702/
https://www.nature.com/nrneph

30

to Interpretation with Particular Attention to Nursing Domain. J Korean Acad
Nurs. Vol. 43(2), p. 154-164, 2013.

JONATHAN, A. C. et al. Multiple imputation for missing data in epidemiological
and clinical research: potential and pitfalls. BMJ. Vol. 338, p. 157-160, 20089.

KHALILIA, M.; CHAKRABORTY, S.; POPESCU, M. Predicting disease risks from
highly imbalanced data using random forest. BMC Med Inform Decis Mak. Vol.
11(1), p. 51-64, 2011.

KORDZADEH, A.; ESFAHLANI, S. S. The Role of Artificial Intelligence in the
Prediction of Functional Maturation of Arteriovenous Fistula. Ann Vasc Dis. Vol.
12(1), p. 44-49, 2019.

KORTOBI, L. et al. Management of pain at arteriovenous fistula puncture:
Cryotherapy versus lidocaine/prilocaine. Saudi J. Kidney Dis. Transpl. Vol. 31(3),
p. 597-603, 2020.

SCHOLZ, S. S. et al. Effects of Arteriovenous Fistula on Blood Pressure in
Patients with End-Stage Renal Disease: A Systematic Meta-Analysis. J Am
Heart Assoc. Vol. 8(4), 2019.

PASKLISNKY, G. et al. Management of true aneurysms of hemodialysis access
fistulas. J Vasc Surg. Vol. 53(5), p. 1291-1297, 2011.

PATEL, M. S. et al. Evaluating and treating venous outflow stenoses is
necessary for the successful open surgical treatment of arteriovenous fistula
aneurysms. J Vasc Surg. Vol. 61(2), p. 444-448, 2014.

POLIMANTI, A. C. et al. Influence of intraoperative findings on immediate flow
through radial-cephalic arteriovenous wrist fistulas for hemodialysis access. J
Vasc Bras. Vol. 17(3), p. 208-214, 2018.

POLKINGHORNE, K. R. et al. Does monthly native arteriovenous fistula blood-
flow surveillance detect significant stenosis—a randomized controlled trial.
Nephrol Dial Transplant. Vol. 21(9), p. 2498-506, 2006.

QIAN, J. et al. Selecting important predictors for arteriovenous fistula
maturation in older hemodialysis patients by using random survival forests.
Seminars in Dialysis. Vol. 33(2), p. 148-155, 2020.

Sociedade Brasileira de Nefrologia (SBN). Hemodialise. <https://www.sbn.org.br/ori
entacoes-e-tratamentos/tratamentos/hemodialise/>. Accessed on: Jun. 27, 2020.

VERGARA, J.R.; ESTEVEZ, P. A. A Review of Feature Selection Methods Based
on Mutual Information. Neural Comput & Applic. Vol. 24, p. 175-186, 2014.

WHITTIER, W. L. Surveillance of Hemodialysis Vascular Access. Semin Intervent
Radiol. Vol. 26(2), p. 130-138, 2009.


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3163175/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6434352/
https://www.sbn.org.br/orientacoes-e-tratamentos/tratamentos/hemodialise/
https://www.sbn.org.br/orientacoes-e-tratamentos/tratamentos/hemodialise/

