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ABSTRACT

Manutenção preditiva é um tema abordado em diferentes contextos como indústria, logís-
tica e saúde, onde o sensoriamento dos parâmetros dos equipamentos permite monitorar a
degradação da saúde e antecipar falhas. Essa mesma abordagem tem sido usada no domínio
militar, monitorando ativos como veículos militares. O monitoramento da degradação dos
ativos gera benefícios econômicos semelhantes aos observados em outras áreas, reduzindo cus-
tos por meio da otimização do uso dos ativos monitorados. No entanto, os ativos que operam
no domínio militar realizam tarefas críticas, onde as falhas podem gerar um alto custo mate-
rial e humano. A aplicação de manutenção preditiva em equipamentos militares é desafiadora.
Veículos e equipamentos são enviados para missões em cenários já conhecidos com alta disponi-
bilidade de dados coletados. Entretanto esses equipamentos podem ser enviados a novos ambi-
entes, onde não existem dados de operações anteriores para avaliação de degradação da saúde
do equipamento. As abordagens encontradas na literatura para previsão de falhas aplicadas ao
domínio militar focam no monitoramento dos equipamentos. Este trabalho apresenta uma abor-
dagem mais ampla através do uso do MILPdM, uma arquitetura que visa a predição de falhas
aplicadas ao domínio militar, considerando o dinâmico cenário de atuação de equipamentos
militares. Nossa abordagem possui duas frentes distintas, primeiramente buscamos verificar a
possibilidade de uso dos modelos de aprendizados de máquina para a predição de falhas, e a
partir desse ponto, buscamos verificar a capacidade de predição em cenários desconhecidos,
onde aplicamos foundation models para predição do tempo de vida em novos cenários, com
uma comparação dos resultados com modelos tradicionais. Para testarmos a arquitetura quatro
casos de usos são propostos, dois casos de uso para validar modelos tradicionais da predição de
falhas, onde é empregado os algoritmos de aprendizado de máquina long-short term memory e
random forest. Outros dois casos de uso para avaliar o uso de foundation models em cenários
desconhecidos para o equipamento. Os resultados adquiridos da predição dos modelos treina-
dos mostram que o MILPdM pode antecipar falhas com alta assertividade. Já para a capacidade
de predição em cenários desconhecidos, o uso de foundation model se mostrou promissor, su-
perando modelos de aprendizado tradicionais. Essesresultados mostram o potencial do uso do
modelo de fundação em manutenção preditiva.

Keywords: Predictive maintenance. Machine learning. Foundation Model. Military.



ABSTRACT

Predictive maintenance is a topic addressed in different contexts such as industry, logistics,
and healthcare, where sensing equipment parameters allows monitoring health degradation and
anticipating failures. This same approach has been used in the military, monitoring assets such
as vehicles. Monitoring asset degradation generates economic benefits similar to those observed
in other areas, reducing costs by optimizing the use of monitored assets. However, assets oper-
ating in the military domain perform critical tasks, where failures can generate a high material
and human cost. Applying predictive maintenance to military equipment is challenging. Vehi-
cles and equipment are sent for missions in already known scenarios with high availability of
collected data. However, this equipment can be sent to new environments where there is no data
from previous operations to evaluate the degradation of the equipment’s health. The approaches
in the literature for failure prediction applied to the military domain focus on equipment mon-
itoring. This work presents a broader approach through the use of MILPdM. This architecture
aims to predict failures applied to the military domain, considering the dynamic scenario in
which military equipment operates. Our approach has two distinct fronts. First, we seek to ver-
ify the possibility of using machine learning models to predict failures, and from that point on,
we seek to verify the prediction capacity in new scenarios, where we test the new foundation
models for predicting lifespan in new scenarios, with a comparison of results with traditional
models. We propose four use cases to test the architecture. Two use cases validate traditional
failure prediction models using long-short term memory and random forest machine learning
algorithms. Two other use cases evaluate the use of foundation models in new scenarios. The
results acquired from the prediction of the trained models show that MILPdM can anticipate
failures with high accuracy. As for the prediction capacity in new scenarios, using the founda-
tion model proved promising, surpassing traditional learning models. These results show the
potential of using the foundation model in predictive maintenance.

Keywords: Predictive maintenance. Machine learning. Foundation Model. Military.
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1 INTRODUCTION

The application of Industry 4.0 concepts is impacting several areas beyond the industry
(DALZOCHIO et al., 2020). Advances in this domain are allowing the large-scale use of
network-connected sensors and actuators for several different tasks. With the spread of sensors,
more and more data are being generated, which opens up possibilities for use in applications,
such as artificial intelligence algorithms, enabling the execution of autonomous tasks, such as
predicting the degradation of the health of equipment (YAN et al., 2017).

Failure prediction is a matter of great interest and a high priority for the industry, partic-
ularly considering the current networked industrial plants (DALZOCHIO et al., 2020). This
type of prediction allows the anticipation of failures in equipment and components, increased
performance, and minimized periods of unscheduled downtime for maintenance, reducing their
inefficiency (YAN et al., 2017). Implementing systems that anticipate these failures is a chal-
lenge for the industry (DALZOCHIO et al., 2020) and for other sectors, such as transport (ATA-
MURADOV et al., 2017), health (SHAMAYLEH; AWAD; FARHAT, 2020) and military.

The context of military use can take advantage of the application of failure prediction
through foundation models (FM). Studies show FM plays a crucial role in a context where
an asset that operates in certain conditions may, in future missions, operate in conditions where
there is no prior data that could anticipate equipment degradation. To anticipate the equipment
degradation, the learning model must have generalization capacity. Studies show that FM can
be a solution for generalizing scenarios (JIN et al., 2023a) where, with a pretrained FM on a
large benchmark dataset and performing fine-tuning, it is possible to obtain a model that can
solve similar tasks (ZHOU et al., 2023a).

The military domain has characteristics and challenges that differ from other areas. In this
chapter we present the motivation and definition of the problem, related to the application of
failure prediction in the military domain, summarizing the objectives to be achieved and the
methodology applied.

1.1 Motivation

Military operations presuppose the use of a large amount of armament, supplies, and equip-
ment that need to be ready for the maneuvers on the battlefield. In order to achieve it, the main-
tenance management projects and operations (KOSZTYÁN; PRIBOJSZKI-NÉMETH; SZA-
LKAI, 2019), whether preventive (KOSZTYÁN; PRIBOJSZKI-NÉMETH; SZALKAI, 2019;
NORDAL; EL-THALJI, 2021; VILLA et al., 2021), predictive (FERNÁNDEZ-BARRERO
et al., 2021; VILLA et al., 2021), or corrective (KOSZTYÁN; PRIBOJSZKI-NÉMETH; SZA-
LKAI, 2019; NORDAL; EL-THALJI, 2021), are an essential part in the military domain. The
troops rely on maintenance management to preserve the ordinary conditions of using the mate-
rials or restore them to combat or training. The military maintenance projects and operations
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include military land vehicles (WOLDMAN et al., 2015), Unmanned Aerial Vehicles (UAVs)
(HRÚZ et al., 2021), military aircraft (BAYOUMI; MATTHEWS, 2020), watercraft and war-
ships (FERNÁNDEZ-BARRERO et al., 2021), rail and communication material, tactical intel-
ligence, electronic warfare, sensors material (ARMY, 2019), optical and individual equipment,
military systems in general, and even non-tactical equipment. This results in an extensive,
diverse, and complex military equipment ecosystem (FERNÁNDEZ-BARRERO et al., 2021)
that, on the battlefield, needs accurate maintenance planning to optimize the supply chain.

However, keeping these assets operated and available is a costly task that needs to be op-
timized constantly. Only the maintenance investment made by the United States Department
of Defense in 2019 achieved $78 billion (PESCHIERA et al., 2020). Part of this total cost
was for the predictive maintenance (PdM) strategy, based on the periodic measurement of the
variables that determine the conditions of the equipment while it is operating (FERNÁNDEZ-
BARRERO et al., 2021). Nevertheless, to minimize maintenance-related costs, it is necessary
to be accurate in the maintenance operations and projects, extracting as much of each resource
as possible and avoiding wastes that unnecessary maintenance can generate (BABBAR et al.,
2009). In this context of PdM in a modern military environment, intelligent concepts such as the
Internet of Battlefield Things (IoBT) that brings the Internet of Things (IoT) technologies to the
military scenario (RUSSELL; ABDELZAHER, 2018) can be helpful to implement a predictive
maintenance policy.

Through this PdM strategy, sometimes called intelligent maintenance strategy (NORDAL;
EL-THALJI, 2021), failure prediction is one of the facets of prognostics and health management
(PHM). E. g., IoT technologies combined with time series analysis make the failure forecasting
conceivable to estimate the remaining useful life (RUL) of specific equipment. Furthermore,
several areas use the data resulting from the monitoring to put in place PdM strategies to opti-
mize the use of equipment, reduce maintenance costs, minimize downtime, and increase equip-
ment availability (LEE et al., 2014). Consequently, tasks such as accurate fault diagnosis and
forecasting through PHM make it possible to optimize maintenance investment in PdM.

Some points must be considered when applying a PdM system, regardless of the context
used, as in the industry (DALZOCHIO et al., 2020), transport (ATAMURADOV et al., 2017),
or health (SHAMAYLEH; AWAD; FARHAT, 2020), for instance. A PHM system, applied for
equipment, has in general four stages, widely discussed in the literature (LEI et al., 2018): (i)
data acquisition, (ii) health indicator construction, (iii) health stage division, and (iv) remaining
useful life prediction. Therefore, to implement a system of PHM, some points must be taken
into account, such as, which critical component should be analyzed, which sensors to use,
which characteristics to analyze, which prognostic methods, and the evaluation methods to use
(ATAMURADOV et al., 2017). Besides that, a PdM system must be integrated with other
areas concurrently, such as logistics and fleet management (KILLEEN et al., 2019). Each of
the contexts cited has its unique characteristics. For example, we may search for increased
productivity in industry; in transport, we may search for increased security; and the criticality
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of eventual failures in a healthcare context.
The military domain of a PdM system has its particularities and challenges, such as those re-

lated to the type of equipment and vehicles operated, the environment and operating conditions,
the need to maintain the readiness of equipment and vehicles in cases of external aggression,
and the security of the information. Also, the equipment maintenance in battle is related to
damages from weapons, types of ammunition, combat vehicles, and the enemy attack modes on
the battlefield (LI; ZHAO; PU, 2020).

1.2 Problem Definition

Equipment monitoring for failure prediction is receiving attention from different sectors in
society, such as industry, healthcare, and the military. In the military domain, assets like military
vehicles generate data that we can use to identify behavior changes to anticipate possible failures
in run-time, avoiding unnecessary maintenance interventions. Failure anticipation is crucial, as
assets operated in the military domain perform critical tasks, in which unexpected equipment
failures result in high material and human costs.

In a dynamic battlefield, ensuring safe and high-quality access to sensor data is a challenge.
The success of any operation relies heavily on the accuracy and reliability of the data accessed.
When implementing a predictive maintenance system, one must consider such data restrictions.
One moment, a vehicle operates in a desert climate on flat terrain. In a second moment, that
exact vehicle may be operating in a tropical environment on rough terrain. It is only sometimes
possible to access equipment behavior data in all these different contexts. This lack of data can
affect the ability of traditional learning models to understand asset behavior in operation and
accurately predict health degradation. Approaches found in the literature typically deal with
condition monitoring, aiming at analyzing the equipment’s behavior, but do not address data
restrictions.

Based on these challenges, we have come up with the following research question:

Is it possible to develop a failure prediction architecture to predict equipment degradation
in unknown operational scenarios?

1.3 Objectives

This work proposes MILPdM, an architecture for predictive maintenance applied to the mil-
itary context. The architecture defines the steps that must be applied to first predict equipment
failures, and then predict equipment degradation in unknown operational scenarios.

In military operations, having access to high-quality data is challenging. Therefore, MILPdM
must consider the lack of data issues, in this way, one objective of the architecture is, through
the application of machine learning, to anticipate future failure for the maintenance team. In
this sense, learning models must be able to make predictions, even when the mission scenarios
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in which the asset is operating are new and without previously collected data.

The main goal of this thesis is to design and propose an architecture for predictive main-
tenance applied to the military domain that can overcome the challenges of lack of data for
training traditional learning models and predict equipment degradation in unknown operational
scenarios.

To achieve these objectives, this work will focus on the following specific objectives:

• Conduct a systematic review of the literature covering the application of predictive main-
tenance in military scenario.

• Propose an architecture for PdM, named MILPdM, describing the steps necessary to im-
plement a military PdM system, from data collection to anticipating the failures for the
maintenance team.

• Obtain a dataset of a failed equipment for training traditional machine learning models.

• Create the machine learning models that are used by MILPdM in the failure prediction
process.

• Elaborate scenarios for application of the architecture using the trained learning models
together with the dataset previously obtained.

• Elaborate scenarios for application of the architecture using the foundation models to
predict equipment degradation in unknown operational scenarios.

• Evaluate the architecture through the discussion of the results obtained from the founda-
tion models and traditional learning models.

1.4 Contributions

Among the contributions of this work, we have carried out a systematic review of the litera-
ture involving the application of PdM in the military domain, highlighting challenges, machine
learning techniques used, and application scenarios. We also have the creation of MILPdM, an
architecture for PdM that considers the challenges of the military domain in its design. Specifi-
cally, concerning MILPdM, we can cite the following contributions:

• Failure prediction architecture.

• Adaptability to various military equipment.

• Recording prediction results together with feedback from the maintenance team, allowing
for retraining the machine learning models when needed.



18

• Creation of history of machine learning models and their results obtained through asset
monitoring, this history allows applying existing prediction models in new but similar
scenarios.

• Evaluation of a novel approach that uses foundation models to predict equipment degra-
dation in unknown operational scenarios.

1.5 Methodology

Figure 1 shows the steps to achieve the objectives described above. The first step will be
to carry out a study on topics related to the MILPdM. This first study will serve as a basis for
consolidating knowledge on topics such as existing maintenance policies and existing machine
learning techniques applied in the military context.

Identify related work challenges 
and open issues in PdM in the 

military domain

Study of related
topics

Systematic review 
literature

Propose an architecture

Validate the feasibility of the architecture

Obtain a 
database with 

failure data

Train machine learning 
models for failure prediction

Collect and 
evaluate 
results

Evaluate the proposed architecture, identify challenges 
faced, and point out directions for future work

Create training 
scenarios

Train foundation 
models with part of 

the data

Train machine 
learning models 

with part of the dataPerform 
prediction with 
new scenarios

Figure 1: Methodology steps

The next step to achieve the proposed objectives is to carry out a systematic review of the
literature to understand the use of PdM in the military domain and identify the particularities
that differentiate the military domain from others. The systematic review of the literature also
aims to identify the challenges and open issues in PdM in the military domain. Which military
contexts PdM is applied and which techniques the authors use. Between these techniques, in
recent years, machine learning is something that the proposed works use. What technologies
and actions do the related works employ concerning data transmission.

After the systematic review, an architecture, called MILPdM, is proposed. It is composed of
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layers with different functions and objectives, which together help in the process of implement-
ing a predictive maintenance policy, keeping in mind the need to adapt to new usage scenarios
that exist in military use.

To validate the feasibility of the MILPdM architecture, it is necessary to carry out use cases
to obtain and analyze the results. Thus, collecting a database for training traditional learning
models for failure prediction tests and creating scenarios for training and testing foundation
models and their prediction capacity in new scenarios.

In the end, we will do final considerations about the results obtained, listing points identified
with challenges in the implementation of MILPdM and pointing out possible directions for the
implementation of future works.

1.6 Text organization

This proposal is organized as follows: chapter 2 describes the concepts of the themes re-
lated to the proposed architecture. The topics covered include maintenance concepts, failure
prediction, machine learning, and foundation models. Chapter 3 presented a systematic liter-
ature review to identify the works related to the theme of the proposal, explore the challenges
and open possibilities. The works resulting from the literature review and is closest to the theme
of this proposal are used as a comparison with the proposed approach. Chapter 4 presets the
architecture MILPdM, its layers and components. Chapter 5 presents the ML model and FM
results. Chapter 6 presents the proposal contributions and future work.
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2 BACKGROUND

Keeping an asset in an operational state is not a trivial task. It is necessary to put in place
a set of actions to maintain this asset in operation for as long as possible. In this section, we
will present some of the concepts that which, when applied, allow equipment to be used for
a longer period at a lower cost. We can say that to reach a high operational level, there are
some possible paths, and initially, it is necessary to take into account the existence of two basic
maintenance policies. A maintenance policy aimed at taking actions only after the resource
or asset presents some type of problem is called corrective maintenance. The second policy
seeks to anticipate failures, this anticipation is achieved through a maintenance policy called
preventive maintenance. Each of the maintenance policies has its positive points, its negative
points, and challenges related to its implementations.

First, it is important to point out that regardless of the policy adopted, it is necessary to have
a broad understanding of the functioning of both the corrective maintenance policy and the pre-
ventive maintenance policy. This understanding allows to evolve and improve the maintenance
strategy, always pursuing the objective of increasing the availability of the asset at the lowest
possible cost. Only then, upon reaching an advanced stage of maintenance, is it possible to
determine when a failure might occur, preventing the asset from going into a failure situation.
To achieve this level of ability to anticipate failure, a set of practices and tools must be adopted.

In certain domains, such as the domain of military use, the application of maintenance
policies is necessary, since many of the assets operated by the army require high availability
and security in their use, such criticalities are better explored in the section 3 of related works.
To meet the needs of the domain of use in military assets, a set of tools is used to achieve
the ability to anticipate the occurrence of failures. These tools which, within their functions,
constantly monitor the life condition of an asset, are part of a maintenance philosophy that we
call predictive maintenance (PdM) or condition-based maintenance (CBM).

Along with the concept of CBM and PdM new acronyms usually appear as, Prognostics
& Health Management (PHM), Remaining Useful Life (RUL), and Machine Learning (ML),
where each acronym represents a concept within a CBM system. In the following sections,
we will present each of these concepts, from the existing maintenance policies to the tools
available to achieve maintenance capacity in which it is possible to anticipate failures. In the
end, we present the concepts related to foundation models, which ensure the ability to make
predictions in new scenarios.

2.1 Maintenance Policy

Historically, when we talk about maintenance policies and the tasks involved in the main-
tenance process, we have as an initial view the image of broken equipment undergoing some
type of intervention so that this equipment returns to its normal operating state. Eventually, at a
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more advanced stage in the application of maintenance policies, we see periodic examinations
being carried out, such examinations are carried out following the equipment manufacturer’s
standards or manuals (JARDINE; TSANG, 2013).

If we consider the vision of broken equipment undergoing an intervention by the mainte-
nance team, we can locate this task as part of a corrective maintenance policy. As we move
towards the process of carrying out periodic reviews, such activity is classified as a preventive
maintenance task. Figure 2 presents these two views throughout history.

In addition to these two views, we can have a maintenance policy that fits the so-called
predictive maintenance. The predictive maintenance policy is the result of several technolog-
ical advances, both in the hardware areas (use of sensors) and in the software area with the
development of robust algorithms for failure prediction. This view can be addressed with a spe-
cialization of preventive maintenance (KOBBACY; MURTHY, 2008). So, in the next section,
we will present in detail the corrective and preventive maintenance policies.
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Figure 2: Evolution of maintenance policies over the years, adapted from Vogl, Weiss e Helu
(2019)

2.1.1 Corrective Maintenance

Also known as reactive maintenance or breakdown maintenance (JARDINE; TSANG, 2013).
Corrective maintenance has been used as a primary maintenance policy for hundreds of years
(KOBBACY; MURTHY, 2008). Its application and use are based on the maintenance task of
equipment when it has already failed and is in a non-operational state, in other words, it is a
"Run-to-failure" policy where if a device has not broken, simply don’t fix it, so as much as
possible is extracted from a device without any intervention (MOBLEY, 2002).

If, on the one hand, in the corrective maintenance policy we have the maximum extraction of
equipment, without unnecessary changes or maintenance, on the other hand, this type of policy
can be dangerous. Such danger is a result of the unpredictability of the damage that a failure can
cause to a complex system or equipment, and how that failure can propagate and affect other
systems (JARDINE; TSANG, 2013). Thus, even if the corrective maintenance policy requires
less attention and less investment in maintenance initially, turns out to be more costly in the
long term, especially in a more complex system. In addition, even if the current maintenance
policy is corrective, minimal tasks invariably continue to be carried out preventively, such as a
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periodic oil change, for example (MOBLEY, 2002).

2.1.2 Preventive Maintenance

Known for being a time-driven approach (JARDINE; TSANG, 2013), preventive mainte-
nance covers the periodic inspection of parts and equipment that are in an operational state.
Historically, it is after World War II that the prevention of failures begins to receive attention
and investments. Fast forward to the early 1960s (BARLOW; HUNTER, 1960) the need for
maintenance plans for more complex systems regularly is mentioned, using metrics character-
istics such as the number of operating hours of equipment or operating cycles.

In general, the application of a preventive maintenance policy involves a higher maintenance
cost, however, this cost is eventually rewarded by the decrease in corrective maintenance and by
the decrease in losses caused by the occurrence of failures. This relationship between increased
costs in performing preventive maintenance tasks and reduced costs in correction tasks, as the
costs arising from any unscheduled shutdown of systems is not a constant, and the correct
balance between these costs is a challenge inherent to the area (MOBLEY, 2002).

As already mentioned, preventive maintenance is efficient in the task of reducing failures
during the operation of equipment and, in general, can be classified as periodic maintenance (at
fixed intervals) or sequential maintenance (at different time intervals) (NAKAGAWA, 1986).
We can expand these classifications in more detail as follows (WANG; PHAM, 2006):

• Age-dependent PM Policy: The most commonly used of maintenance policies, where
interventions take place in the asset to change materials in a given time T or in case a
failure occurs.

• Periodic PM Policy: Maintenance is performed at each pre-fixed interval or period of
time.

• Failure Limit Policy: In this preventive maintenance policy, indexes such as failure rate
or reliability are applied. If the assets reach predetermined levels, intervention is carried
out, in this way the equipment always operates above a minimum level of confidence.

• Sequential PM Policy: In this maintenance policy, there is no fixed period or interval of
maintenance, occurring at unequal intervals that become shorter as time goes by. Here it
is taken into account that the older the equipment, the more frequent the need for mainte-
nance.

• Repair Limit Policy: The repair limit policy can be two, by cost or by repair time. In
case of equipment failure, if the cost limit or the repair time limit is reached, then the
equipment is replaced, and the repair is not performed.
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• Repair Number Counting and Reference Time Policy: There is no schedule for this type
of maintenance, here a unit is replaced in the kth failure where k is the policy decision
variable.

As seen, preventive maintenance is commonly classified as time-base maintenance. Thus,
the current state of the system is not taken into account and assets that are in operation end
up being stopped for some inspection and preventive maintenance, respecting the stipulated
maintenance schedule. This happens regardless of whether or not there is a real need for main-
tenance. For example, there are environments such as helicopter operations where half of the as-
sets are removed from operation even though they are still operational (KOBBACY; MURTHY,
2008).

One way to mitigate this type of situation involves the development of prediction tech-
niques for maintenance, which is currently implemented with a maintenance philosophy called
condition-based maintenance (CBM) (KOBBACY; MURTHY, 2008). The next section presents
the concepts involved in a maintenance policy that uses CBM.

2.2 Condition-Based Maintenance

Technological advances in recent years make possible constant and non-intrusive moni-
toring of the condition of equipment through vibration measurement, thermography, ferrogra-
phy, and spectroscopy, laying the foundations for a Condition-Based Maintenance (JARDINE;
TSANG, 2013), an alternative approach to the time-based one previously mentioned in the sec-
tion 2.1.2 (JARDINE; TSANG, 2013). This monitoring is done in an automated way through
the use of software and hardware, which are capable of detecting, isolating and, predicting the
degradation of an asset until the moment when the failure occurs (KIM; AN; CHOI, 2017).

Between the 1950s and 1970s, industries such as automobile, aerospace, manufacturing,
and military have applied the concepts of CBM, bringing several benefits in terms of costs
(PRAJAPATI; BECHTEL; GANESAN, 2012), currently being involved and injecting resources
into the development of technologies for CBM institutions like the Department of Defense
(DoD), which encompasses other institutions such as the army, air force, navy, and marines. The
data collected and analyzed from assets helps in the maintenance, performance, and forecast of
the RUL, giving insights to help decision-making regarding the maintenance of the assets.

For complex systems that have requirements such as high availability, preventive mainte-
nance by itself becomes complex and expensive to maintain (KIM; AN; CHOI, 2017), being
the Condition-Based Maintenance system a more cost-effective maintenance strategy, and in
the task of implementing CBM a PHM system is critical.
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2.2.1 Prognostics & Health Management

PHM applied to machinery and equipment is an approach that uses real-time data to de-
termine the operating conditions of an asset, determine its deterioration state, and predict up-
coming failures (KIM; AN; CHOI, 2017), providing information that will help in the decision
support activity (VOGL; WEISS; HELU, 2019).

To implement a PHM system that is effective in protecting the integrity of equipment and
anticipating any failures, it is necessary to use a multidisciplinary approach, as shown in Figure
3. We present these tasks separated between the activities of observing the asset through sensing
and data processing. The analysis activity involves anomaly detection, diagnosis, and failure
prognosis tasks. Finally, the task of acting concerns a capacity to support the decision of the
system of PHM.

Analyze
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Data Processing

Detection

Diagnostics

Prognostics

Decision

HM Interface

Figure 3: PHM multidisciplinary approach, adapted from Atamuradov et al. (2017)

In a PHM system like the one shown in Figure 3, we can prevent the occurrence of a failure
by estimating the RUL, which is the final end of a larger set of steps. Such tasks, ranging
from data collection through asset monitoring, detection, diagnosis, and finally to the prognosis
process through understanding the degradation of equipment to failure (VOGL; WEISS; HELU,
2019) will be detailed in the next sessions.

2.2.2 Data Acquisition and Processing

The first step of a PHM system is responsible for collecting and analyzing the data used
in the detection, diagnosis, and prognosis of failures. The collected data can have two dif-
ferent sources, being possible to obtain through the sensing of an asset or system, or through
the capture of event data such as system logs and maintenance team intervention information
(ATAMURADOV et al., 2017).
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Specifically, in a condition monitoring maintenance system, the data are essentially those
captured through the sensing of systems. The captured data may contain vibration, temperature,
pressure, humidity, oil quality, and others information (ATAMURADOV et al., 2017). However,
the importance of event data, despite involving human intervention and being more susceptible
to errors, should not be overlooked, being important to ultimately validate the performance of
indicators obtained through sensing (JARDINE; LIN; BANJEVIC, 2006).

Before the collected data to a PHM system use, it is necessary to guarantee its quality. As
a quality, we can contemplate three distinct dimensions, being them: a data size sufficient to
use; an accuracy of data that can correctly represent the real world; and finally, ensure the
completeness of the data through the treatment of any gaps in the collections (OMRI et al.,
2021).

After obtaining the data and guaranteeing its quality, the next step is to pre-process the raw
data for the PHM system to use. Among the pre-processing objectives, we have treatment of
the large amount of data collected in a PHM system, aiming, among other things, to clean the
data by removing errors or noises (ATAMURADOV et al., 2017). After this data cleaning step,
the process of extracting the main characteristics that represent the monitored system is carried
out, generating a set of data that is later used in the creation of accurate models for detection,
diagnosis, and prediction of failures (CARBERY; WOODS; MARSHALL, 2018).

We can be base the feature extraction process on three approaches, time-domain-based,
frequency-based, and time-frequency-based techniques. In the time-domain-based approach,
features such as mean, calculations performed on the data generate standard deviation, and high-
order statistics from the time waveform. The frequency-domain-based approach transforms the
signal in the frequency domain, facilitating the identification and isolation of certain frequency
components of interest, enabling the identification of failures that would not be possible when
compared to the time-base. Finally, we have the time-frequency-based approach, where it is
possible to analyze both the time and frequency domains, making it possible to work with non-
stationary waveform signals (JARDINE; LIN; BANJEVIC, 2006).

2.2.3 Detection

Considered the first task among the main PHM tasks (OMRI et al., 2021). Its function is
to indicate when something outside the normal behavior of a monitored system happens (JAR-
DINE; LIN; BANJEVIC, 2006). According to (ROY; DEY, 2018), we can divide the fault de-
tectability and two notions, they are being structural or intrinsic detectability and performance

based fault detectability.

Structural or intrinsic detectability refers to the signature of system failures, without a refer-
ence to fault diagnosis algorithms. The intrinsic property elucidates system behavior on faults
and explores system limitations in fault detection. It is necessary to verify the intrinsic failure
detectability before designing any failure detection algorithm. Performance based fault de-
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tectability, on the other hand, is defined in relation to a diagnostic algorithm used, quantifying
the ability of this algorithm to detect failures.

2.2.4 Diagnosis

The process of diagnosing a failure is carried out through the recognition of patterns gen-
erated from the information mapping. This information is obtained through measurements
of characteristics of failed systems. Some tools help in pattern recognition, the tools, when
operated by a trained person, make pattern recognition as automatic as possible (JARDINE;
TSANG, 2013).

Diagnosis plays a crucial role in the failure prognosis process, since a failure prognosis starts
with its diagnosis, in addition, a properly functioning diagnostic system prevents failures from
occurring in systems. However, implementing a diagnosis process is difficult due to the lack of
standardized methods or guides to validate a diagnosis, in addition to the aforementioned need
for trained and qualified personnel (VOGL; WEISS; HELU, 2019).

The approaches can be made based on statistical analysis and models of equipment failure,
and with the use of machine learning, as can be seen in the following section.

2.2.4.1 Model-Based Approaches

In the task of predicting the behavior of a failure, it is necessary to compare the real condition
of a system with an object model, that way we can achieve a model-based diagnostic approach
(YAM et al., 2001). To diagnose a failure through the use of model-based approaches it is
necessary to use a mathematical model that uses the physical specifications of the system.

Figure 4 shows the model-approach functioning, where residual generation methods, pa-
rameter estimation, and parity relations are used to obtain so-called signals or residuals, that
point to the presence of a failure. After indicating the presence of a fault, the residues are evalu-
ated to arrive at fault detection, isolation and identification. In this process, algorithms are used
as a Kalman Filters or Petri net (JARDINE; TSANG, 2013).

Residual 
Generation

Residual 
Evaluation

Fault 
DiagnosisObservations Residual Diagnostic signals

Figure 4: Model-based process for diagnosis, adapted from Jardine e Tsang (2013)

2.2.4.2 Data-Drive Approaches

As it is not always possible to represent a system through a model, in these cases we can use
strategies that are capable of learning by example, without the need for prior knowledge of the
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system. Learning in these cases is done using a large volume of data, and applying sophisticated
machine learning algorithms. In this way it is possible through the establishment of standards,
making correlations and viewing trends, detecting and performing fault diagnosis. Learning
using a large volume of data to diagnose failures is called the data-driven approach (PECHT;
KANG, 2019).

There are several approaches and techniques to perform fault diagnosis using a data-driven
approach, but in general, an approach that uses machine learning can be represented in a set of
steps shown in the figure 5. The realization of the prediction is the last of a sequence of steps
that involve the generation of a dataset, training, and evaluation of the learning model.

Access and 
collect data

Pre-processing

Historical data

Training data Test data

Train model

Evaluate the 
trained model Prediction

Model

Future data

Dataset creation Model creation Use of the model

Figure 5: Machine-learning process for diagnosis, adapted from Machine Learning: Diagnos-
tics and Prognostics (2019)

There are several techniques for performing fault diagnosis using machine learning, which
can be classified between supervised and unsupervised learning. Among the learning algo-
rithms used, we can mention the use of Naïve Bayes, Decision Trees, Random Forest, Neural
network, Support vector machine, K-nearest neighbor. In addition, we have the application of
deep learning techniques with several different architectures such as convolution neural network
(CNN), the stacked autoencoder (SAE), deep belief network (DBN), deep Boltzmann machine
(DBM), deep transfer learning network (DTLN). The techniques can be used separately or to-
gether through techniques such as Ensemble Learning (KUNDU; DARPE; KULKARNI, 2020;
PECHT; KANG, 2019).

2.2.5 Prognosis

Classified as a more challenging task than diagnosis and still considered an element to be
developed in PHM systems, being an emerging field of study (VOGL; WEISS; HELU, 2019).

The implementation of a prediction system brings several benefits, such as reductions in
operating costs, extracting the most from each resource. For example, the oil change of a
vehicle takes place at pre-determined periods, but through monitoring and forecasting, it can be
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done only when necessary. In the logistics area, it is possible to make maintenance resources
available at the right time, helping with fleet management. Another relevant benefit concerns
safety, anticipating failures, especially in critical systems such as an airplane, prevents accidents
with large losses from occurring (KIM; AN; CHOI, 2017).

Implementing a diagnostic system is challenged. We have a lack of tools and methods for
evaluating predictive algorithms, and for estimating the impact on the system as a whole. Other
factors are the difficulty of dealing with multiple failures and implementing methods to estimate
the RUL in real-time (VOGL; WEISS; HELU, 2019).

To overcome such challenges and achieve the benefits of a prediction system, it is necessary
to make use of a set of tools and algorithms, which can generally be classified as Model-Based
and Data-drive.

2.2.5.1 Model-Based Approaches

We use a model-based approach when there is a mathematical model about asset degrada-
tion available. To develop such a model, a broad knowledge of both the asset’s operation and
its behavior in failure mode is necessary. When the model is available, it plays a central role
in predicting failures through the RUL (KORDESTANI et al., 2019). Among the advantages of
using a model-based approach is the ability to incorporate the physical understanding of the sys-
tem, and if the understanding of the system increases, the model can be adapted incorporating
possible new parameters, thus increasing its accuracy (LUO et al., 2003).

There are several techniques in the literature for mathematical models and the prediction
of failures, the most commonly used techniques using estimation and filtering, such as Kalman
Filtering Based Prognosis, the Particle Filtering Based Prognosis, and the Model-Based Ob-
servers for Prognosis. All models mentioned have the characteristics of the use of a state-space
mathematical model of a failure to estimate the RUL (KORDESTANI et al., 2019).

Compared with data-driven approaches, the model-based approach has several advantages,
being able to perform long-term prediction. This capability comes from the characteristic of
the base model that requires, in advance, an identification of the parameters involved. The
propagation of these parameters values over time is a form of accurately determining the RUL.
Furthermore, less data is needed for model-based predictive algorithms when compared to data-
driven algorithms (KIM; AN; CHOI, 2017).

On the other hand, the construction of the models must observe some aspects. The first
point is the model adequacy, that is if the model is capable of predicting the degradation of
the system since as the complexity of the system increases, the more difficult it is to estimate
the parameters. Estimating the parameters is the central task in building a prognostic model.
Finally, to build the models it is necessary to obtain quality degradation data, which is not a
simple task, as data with noise, for example, can induce prediction errors (KIM; AN; CHOI,
2017).
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2.2.5.2 Data-Driven Approaches

Data-driven prognosis is preferred over model-based when there is a lack of knowledge of
the functioning of the system being monitored (KORDESTANI et al., 2019). However, they
require a large amount of data for the creation of prognostic models, being computationally
expensive (HU et al., 2012). This data for the creation of the models comes from monitoring
carried out previously and that measures the degradation of the asset under current or previous
conditions of use (KIM; AN; CHOI, 2017).

Regarding the prediction of failures using data-drive, some characteristics must be observed,
such as the fact that there is no guarantee that the model will anticipate a future failure if
this failure is not related to the data monitored in the past. Thus, to determine what data and
the amount of this data should be collected, it is necessary to have an understanding of the
monitored system function, with the need for a large volume of data being common. Another
feature is the practicality of implementation concerning the base model, since from a large
volume of data and using machine learning and data mining tools it is possible to identify
previously unknown correlations (KIM; AN; CHOI, 2017).

Data-driven approaches are commonly performed using artificial neural networks (KIM;
AN; CHOI, 2017). However, there are a variety of techniques that can also be applied as linear
regression, Markov base methods, probabilistic methods as Bayesian e Fuzzy based methods
(KORDESTANI et al., 2019). A data-driven approach is capable of estimating equipment life
(SI et al., 2011).

2.2.5.3 Remain Useful Life

The remaining useful life is the lifetime of an asset before a failure 6, being considered one
of the key issues when addressing the use of a CBM and PHM system. Estimating the RUL
brings a set of advantages that go beyond preventing a failure from occurring. Estimating the
moment that a failure will happen allows maintenance planning to be carried out in advance,
allowing to order parts for the equipment at the ideal time, avoiding an unnecessary spare parts
inventory, and avoiding waiting for parts in case of not possessing. Estimating the RUL also
allows the operator of an asset to optimize its maximum in normal condition, being able, in
certain scenarios, to save energy and raw materials (SI et al., 2011).

Failure it is just one of the stages that the degradation process of equipment goes through.
We can divide it into another three stages of degradation, thus totaling four stages. A system
is classified at the stage of Healthy when it is operating normally, however with advancing the
operating time and useful life of the asset, it is natural for a degradation process to occur, in
this degradation process the indexes that measure health enter a descending curve. Depending
on the equipment, the threshold values of the indexes used may vary for each determination of
stage. After a period, the downward curve of system health enters a regime of Caution and, by
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Figure 6: Functioning of Remain useful life, adapted from Xiongzi et al. (2011)

maintaining the health index degradation trajectory, enters into a regime of Repair. Eventually,
the system will enter the last health stage of failure if in this repair period no action is performed,
and the repair does not occur. Estimating the trajectory of the descending curve of equipment
health from a pre-failure point to the moment in the future time when a failure occurs is the
objective of RUL (XIONGZI et al., 2011).

There are several approaches described in the literature to determine the RUL of an asset.
We can classify these approaches as methodologies or as techniques. Among the approaches
classified as methodologies, there are the Model-Bases with the application of Statistics and
Computational Intelligence(CI), the Analytical-Based approaches that make use of techniques
for the physical representation of the failure, the Knowledge-Based approach through the com-
bination of tacit domain experience and Computational Intelligence, and a Hybrid approach
with the combination of more than one of the methodologies. Within the techniques applied
to determine the RUL, there are the Statistics, with the use of methods such as the autoregres-
sive moving average (ARMA), the Experience approach where judgment is made through tacit
knowledge, Computational Intelligence Using Machine Learning Like Artificial Neural Net-
works, Physics-of-Failure with the use of techniques such as Continuum Damage Mechanics
and finally the fusion approach with data fusion and the use of fuzzy methods (OKOH et al.,
2014).

2.2.6 Decision and human machine interface

Time-based maintenance (TBM) decisions are generally made by specialists. These types
of maintenance are carried out following the manufacturer’s recommendations and technical
manuals. However, as seen so far, in a CBM system we seek to optimize the use of existing
resources, thus indicators are used that enable the detection of failures before their occurrence.
This anticipation occurs through, for example, detection and measurement of asset anomalies or
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trend analysis of some monitored feature, thus enabling the prediction of failures (YAM et al.,
2001). Based on a specific diagnosis or prognosis, a set of actions among a set of possible
actions previously mapped must be taken. These actions can be at the operational level, where
we carry out an intervention in the asset, or at the design level through, for example, replacement
or even addition of new sensors (ATAMURADOV et al., 2017).

In the case of an operational action, a decision support system aims to assist the mainte-
nance tasks choices. Within the tasks we can mention, for example, we have the definition of
which systems need repair and which must be replaced by determining the security levels that
these systems can achieve. A decision support system can also help in managing the supply
chain estimating the consumption of materials and equipment to perform maintenance. At the
end of the maintenance process, the decision support system can still help to define when a
new intervention tends to occur, helping in the planning and scheduling of both material and
human resources for the next intervention in the system (TSANG, 1995; KUNDU; DARPE;
KULKARNI, 2020).

All information regarding the current status of the monitored equipment can be presented
in a graphical interface (ATAMURADOV et al., 2017). In addition, a display and notification
system is helpful in the operational control of maintenance, helping to plan maintenance tasks
by providing information about when maintenance should be performed and providing data to
streamline the maintenance process.

2.3 Machine Learning

Algorithms are part of a set of tools used to solve computer problems. Algorithms have a
sequence of instructions that, from a given input, carry out a data transformation process and
generate an output. However, there are tasks that conventional algorithms are not able to solve,
such as classification, clustering, and prediction tasks. In this set of tasks, where no algorithm
solves the problem, we can adopt a strategy that uses a large volume of data to serve as example
data. By using this data, it is possible to detect and understand the existing patterns and, through
approximations, make predictions. Predictions assume that the future has a pattern similar to
past data used as an example (ALPAYDIN, 2014).

To make it clearer, we can mention two examples of tasks that are complex to solve through
traditional algorithms. The first example task is the process of identifying and classifying emails
as being of type spam. Although we have an input to the algorithm, which is the email itself
represented as a text file, and we have the desired output, which is its classification, the classi-
fication process, when done conventionally, requires that we study all the features that identify
that email as spam to elaborate a set of rules to be implemented in the algorithm. Creating this
set of rules is challenging given the enormous variability of emails. Another example that fits as
a challenging problem to solve by conventional algorithms is the indication of handwritten let-
ters. Although there is a limited and known set of existing letters, the variability of their writing
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makes creating a set of rules to implement a traditional algorithm a complex task (ALPAYDIN,
2014; REBALA; RAVI; CHURIWALA, 2019).

Machine learning (ML) is the field of computing that studies algorithms for solving complex
problems that conventional algorithms cannot solve. ML algorithms use a large volume of
annotated data to learn, eliminating the need for an explicitly detailed design. The greater the
volume of this data, the more assertive the algorithm becomes, as the algorithm seeks to create
a model by processing this data. These models make predictions when new inputs are given to
the algorithm. This process is called machine learning.

We can separate the learning process into four categories. When the data used for training
has an annotation we call supervised learning, the same process with the use of unannotated
data we call unsupervised learning, and the implementation of algorithms that consider the use
of both annotated and unannotated data at the same time we call semi-supervised learning.
Finally, we have the so-called reinforcement learning, which works with penalties and rewards
(REBALA; RAVI; CHURIWALA, 2019). We will detail in the next subsections the four ways
of training, covering the two types of tasks that an ML model can solve, the classification task
and the regression task.

2.3.1 Supervised learning

As already exemplified in the task of classifying e-mails, in a supervised learning process,
we give the algorithm a large amount of annotated data. Through this annotated data the algo-
rithm identifies the key features, and through this carry out the learning process. Thus, when
new data is made available to the algorithm, it must be able to predict the output based on the
previously identified key characteristics (REBALA; RAVI; CHURIWALA, 2019).

Figure 7 shows the supervised learning process, where the training algorithm receives the
data originating from the environment, culminating in the generation of prediction models. The
model is created to minimize as much as possible the errors between the expected output values
(noted in the data) and the realized ones (predicted by the algorithm). The minimization of
the error is achieved by adjusting the model’s parameters to determine the key characteristics
so that, when the model receives the new environmental data, classification based on the key
characteristics occurs (JO, 2021).

Supervised learning algorithms fall into two distinct categories, algorithms for solving clas-
sification problems and regression problems. In classification problems, the algorithm has the
task of classifying something in a group of classes or categories, whereas in regression prob-
lems, the algorithm must be able to predict a value of a continuous variable. Each of the cate-
gories will be better addressed in the sections 2.3.4 and 2.3.5.
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Figure 7: Supervised learning diagram, adapted from Jo (2021)

2.3.2 Unsupervised Learning

In unsupervised learning there are no annotated data, thus the algorithm has no prior knowl-
edge of the correct answer. As there is no correct answer, the algorithm will identify trends or
similarities in the data set provided, separating these data into clusters or groups, so when a new
input is given, the model will analyze and generate an output based on similarity.

To exemplify this learning process, we can use as an example the way a child learns to use
a Blocks Shape Sorter Toy. In this toy, there is a box with a set of holes in specific shapes and
several independent block pieces. Although the child does not know the name of the shapes,
he knows after a few attempts which blocks can be placed in the specific hole in the box, thus
separating the blocks by their shape (REBALA; RAVI; CHURIWALA, 2019).

Environments
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Desired Labels

Machine 
Learning

Cluster

Similarity

Figure 8: Unsupervised learning diagram, adapted from Jo (2021)

Figure 8 shows the training process by separating objects by similarity or clusters. Initially,
depending on the similarity between the training items, the algorithm will optimize the proto-
type clusters, the cluster number being eventually pre-defined, and the updating of the cluster
prototypes are iterated until their convergences. The objective of the algorithm will be to maxi-
mize the similarities between the cluster prototypes and the data items (JO, 2021).
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2.3.3 Semi-supervised Learning

Figure 9 shows that semi-supervised learning has characteristics that approximate both su-
pervised and supervised learning. This is because in semi-supervised learning a partially an-
notated dataset is provided. So, the clustering process still needs to occur as in unsupervised
learning, in which case the annotated data will provide the annotations for those in the same
cluster or group (REBALA; RAVI; CHURIWALA, 2019).
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Figure 9: Semi-supervised learning diagram, adapted from Jo (2021)

The advantage of using this approach is that the process of annotating unlabeled data is
automated, eliminating the need to manually annotate a large set of data. Furthermore, we use
semi-supervised algorithms in both regression and classification tasks. For its implementation,
it is necessary to apply supervised and unsupervised learning algorithms (REBALA; RAVI;
CHURIWALA, 2019; JO, 2021)

2.3.4 Classification Problems

Classification algorithms are those that have the ability, within a set of classes, to identify
and classify an individual by creating a model based on a set of training data. Classification
models can be simple threshold values, regression techniques or other learning techniques such
as neural networks or random forest (REBALA; RAVI; CHURIWALA, 2019).

We can use the classification process to perform a binary classification, where there are
only two classes of items, which is the simplest form of classification. It is also possible to use
classification for classes through multi-classification. In the case of multi-classification, there is
the possibility of transforming it into a binary classification problem, through the decomposition
of the problem. Figure 10 shows the functioning of multi-classification (JO, 2021).
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Figure 10: Multiple classification types

2.3.5 Regression Problems

Regression tasks also apply to supervised learning, in which the objective is the prediction
of continuous values, such as predicting the value of a product, based on past values (JO, 2021;
REBALA; RAVI; CHURIWALA, 2019). The utilization of a regression model takes place in
two ways: to determine if a value will be reached, such as whether a company stock will reach
a specific value, through logistic regression, or predict a value of a continuous variable through
Linear Regression (REBALA; RAVI; CHURIWALA, 2019).

Furthermore, we use regressions to predict a value using univariate regression or to predict
a set of values using multivariate regression. In univariate regression, we can mention as an ex-
ample the prediction of the value of company stock, using current and past data, this prediction
is also called time-series prediction. Now, if we want to predict the value of a set of company
stock, which will have more than one continuous variable as output, then we have a multivariate
regression. We can separate time series prediction as a specific type of prediction when using
past and current measures to predict a value in the future (REBALA; RAVI; CHURIWALA,
2019).

2.3.6 Machine Learning Techniques

The literature already proposes several machine learning algorithms applicable to a series of
problems, such as classification and regression. In this subsection, we present two algorithms
with different approaches that this work use. A recurrent neural network, which uses a neural
network approach, and a random forest, which uses a decision tree approach.

2.3.6.1 Recurrent neural networks

Recurrent neural networks (RNN) is a neural network that uses deep learning to solve prob-
lems. Through their ability to remember data processed in the past, RNN is well suited to
solving tasks that involve sequential data input. We can cite natural language processing (NLP)
as a task with sequence data, where it is necessary to understand the context of a word by look-
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ing at the previously processed words and words that will enter in the future. Tasks such as
those related to genetic sequencing and in time series, by predicting a future value based on
past data are also tasks where RNN can be applied. (REBALA; RAVI; CHURIWALA, 2019;
GÉRON, 2019).

The functioning of an RNN is somewhat similar to a natural neural network (NN), having
as the main characteristic that differentiates it from a NN the use of values from the past in the
activation function. Figure 11 shows how past values impact the process to compute value Y ,
where do we have a<t − 1> as previously calculated activation value, X<t> the input value,
Y ′<t> the output value generated, Wx is weight input vector, Wy is weight vector for output
vector, Wa is weight vector for activation input. The activation function for input is tanh and
Sigmoid for output (REBALA; RAVI; CHURIWALA, 2019).

a<t-1>

X<t> Wx Y’<t>

Wa

Wy

Figure 11: RNN learning process, adapted from Rebala, Ravi e Churiwala (2019)

In an RNN, during the training process, the error values generated by the network are used
to adjust the weights through the loss function. A loss function, in this case, is the sum of the
loss of each sequence in the network, the output of the RNN is the result of all sequences in the
network. This weight adjustment process is done following the gradient descent concept to min-
imize the loss. This adjustment process at each stage of the network is called backpropagation
(REBALA; RAVI; CHURIWALA, 2019).

One of the limitations of an RNN is capturing long-term dependencies, such as in situations
where the input sequence is large. For example, in sentences where words that are in different
parts of the text and that are related, in this case, due to the problem of Vanishing Gradients,
this relationship between the words can, through the process of weight adjustments, be lost. The
use of different activation functions minimizes Vanishing Gradients problems. However, other
RNNs deal better with long-term dependence (REBALA; RAVI; CHURIWALA, 2019).

2.3.7 Long-Short Term Memory

While the RNN does not learn satisfactorily when there is a lag between the event input and
the target signal that is bigger than 5 - 10 discrete time steps. The Long-Short Term Memory
(LSTM) can learn with lags bigger than 1000 discrete time steps, solving tasks with long time
lags, which until the LSTM proposal, other RNN were not able to solve. This is because it has a
gradient learning-based characteristic, which allows considering long-term information becom-
ing able to deal satisfactorily with time series, while a standard RNN uses information from
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nearby previous tasks as input to the neural network (GERS; SCHMIDHUBER; CUMMINS,
2000).

The memory of the network is the neuron’s responsibility, which can allow information to
be added or not in the cell through the use of gates. The LSTM cell is composed of a neuron and
three types of gates, an input gate, a forgot gate, and an output gate. These gates may or may not
allow information to be added An LSTM cell is composed of the following seven components:

• Forgot gate: denoted as f , is responsible for decide if the previous state information will
be kept or forgotten.

f t = σ(Wfii
t) (2.1)

• Input gate: denoted as g, is responsible for decides if a new information enter the cell, has
a layer with a tanh function that creates a vector of values for the new candidates.

gt = σ(Wgii
t) (2.2)

• Output gate: denoted as o, is responsible to decides if the internal state values is passed
out to the hidden state in the next step.

ot = σ(Woii
t) (2.3)

• Input data: LSTM input data, denoted as x.

• Hidden state: denoted as h, and is used to determine what will be forget, enter, and exit
in the next step

ht = ot
⊙

mt (2.4)

• Input state: denoted as i, is the combination of the hidden state and the current input

it = σ(Wixx
t +Wihh

t−1) (2.5)

• Internal state: denoted as m, a value that has the memory function

mt = gt
⊙

it + f tmt−1 (2.6)

Figure 12 show the functioning of the LSTM memory cell. The construction of the input
data using the previous hidden state described in Equation 2.5 is shown in 12 (b). Figure 12 (c)
present the calculation of the input gate (Equation 2.2) and the forget gate (Equation 2.1). The
output gate described in the equation 2.3) is presented in Figure 12 (d), meanwhile the equation
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Figure 12: The working flow of a LSTM memory cell, adapted from Wang e Raj (2017)

2.6) describing the update of the internal state is show in Figure 12 (e). Finally, the update of
the output of the hidden state (Equation 2.4) are also presented in Figure 12 (f).

2.3.8 Random Forest

Random Forest (RF) is an algorithm capable of generating accurate classifiers and regres-
sors. It works through the use of a combination of decision trees, where each tree receives
sampled input vectors independently and with the same distribution. RF uses a random selec-
tion of data to split nodes, with an internal error, strength, and correlation estimators to identify
the number of features used in each split and estimate the importance of each variable in classi-
fication or regression tasks (BREIMAN, 2001).

As Random Forest works with n decision trees, each tree receives a subset of data created
from the original set to generate a classifier (bootstrapping), using about two-thirds of the data.
This way RF maintains accuracy even when missing data, in addition, it can handle a large
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amount of data and variables, including being able to identify the variables that have greater
weight, that is, it is even able to reduce the number of variables resulting in a decrease in the
dimension of the data. At the end of the process, voting of the results of each tree is carried
out, which will select the most voted class for classification or average for regression (LIAW;
WIENER et al., 2002; BREIMAN, 2001).

As the bootstrap uses two-thirds of the data to create the classification or regression tree,
one-third of the data is used to calculate the error obtained with the training data through the
so-called out-of-bag (OOB). The error obtained (OOB) in each tree is used to determine the
importance of each variable, changing the choice of one variable while the others remain the
same. The importance of each variable is difficult to determine, especially when there are
complex interactions between each variable Liaw, Wiener et al. (2002).

The information gained in each step is maximized by dividing the nodes, for this, we com-
monly use two forms of division. The Gini criteria are given by gini = 1 − Σ

j
p2
j where p is

the probability that we have a given data class in our dataset. The Entropy criteria is given
by entropy = Σ

j
− pj ∗ log2(pj) with the value closest to zero being better. In general, the

results obtained by both types, Gini and Entropy, tend to have little difference in the final result.
Hartshorn (2016).

2.4 Foundation Models

First introduced by Bommasani et al. (2021), foundation model are trained with a large
volume of data. Generally, this training uses self-supervision at scale and can be fine-tuned
to perform a wide range of tasks. Figure 13 presents the process of collecting data through a
curation process, using this data to train a model and adapt the model to specific tasks.
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Figure 13: Multimodal foundation models, adapted from Bommasani et al. (2021)

Creation of foundation models is only possible through a pretraining approach using trans-
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fer learning. This approach allows the use of knowledge learned in a specific task and adapts
through fine-tuning it to perform another task. An example of this adaptability is using an
image recognition model to perform, for example, the recognition of activities in videos (BOM-
MASANI et al., 2021).

Scale is of great importance in the feasibility of using foundation models. Access to a large
volume of data allows the training of large models. However, it is necessary to have process-
ing capacity for this data, which has been made possible by increased hardware capacity in
recent years. Finally, a model architecture capable of using this large volume of data and pro-
cessing capacity is needed. Transformers models have an architecture that uses the hardware’s
parallelism capacity to be trained (BOMMASANI et al., 2021).

In addition to Transformer and Scale, self-supervised learning (SSL) plays a fundamental
role in developing foundation models. Cost does not impose a practical limit on the benefits
of pre-training, and in self-supervised learning, the pre-training task is automatically derived
from unannotated data. Self-supervised tasks are scalable and are designed to force the model
to predict parts of the inputs, making the model richer than models trained on a more limited
label space (BOMMASANI et al., 2021).

The research fields where foundation models are receiving the most attention in performing
tasks are natural language processing (NLP), computer vision (CV), and graph learning (GL)
(ZHOU et al., 2023a). Large language models (LLMs) have been developed to solve NLP tasks,
which learn to solve tasks through the complex semantic knowledge acquired from large-scale
text corpora. For example, the GPT-3 model and its ability to generate text and even snippets of
computer programs (BOMMASANI et al., 2021).

However, new areas have been receiving attention from the scientific community in using
foundational models, such as time series forecasting. Whether through reprogramming LLM to
work with time series or creating specific foundation and general planning models using only
(JIN et al., 2023a) time series data.

In this context, figure 14 shows how foundations model can be trained with time series data
and readapted for general or specialized uses for specific domains, such as healthcare, finance,
and transportation (JIN et al., 2023a).

The first Pretreined Foundation Model (PFM) for time series prediction capable of produc-
ing accurate predictions without additional training is TimeGPT (GARZA; MERGENTHALER-
CANSECO, 2023). Presented last year, TimeGPT proposes an accessible and accurate PFM and
reduces computational complexity and time consumption. TimeGPT works using a Transformer
with self-attention mechanisms. The prediction uses a window of historical values, adding local
positional coding to enrich the input. The architecture includes an encoder-decoder structure
with multiple layers, each with residual connections and layer normalization. Finally, a linear
layer maps the decoder output to the prediction window dimension.

TimeGPT model can process time series of varying frequencies and characteristics while
adapting to different input sizes and forecast horizons. Even though it is not based on an existing
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Figure 14: Time series foundation models, adapted from Jin et al. (2023a)

LLM, it follows the principle of training a large transformer model on a vast dataset. The
difference is that the TimeGPT architecture is specialized in handling time series data and is
trained to minimize prediction error.

Figure 15 presents an overview of the data input for generating time series inference. TimeGPT
uses historical data about the target and additional exogenous variables as inputs to produce the
forecasts.
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Figure 15: TimeGPT schema, adapted from Garza e Mergenthaler-Canseco (2023)
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3 RELATED WORK

In predictive maintenance, numerous challenges are shared in different contexts, such as
Industry 4.0 (DALZOCHIO et al., 2020). In addition, the benefits obtained are also similar,
such as maintenance cost reduction and predictability in maintenance tasks. However, some of
the desired benefits are specific to the military domain. While in Industry 4.0, the aim, in many
cases, is to increase productivity, the use of PdM in the military field focuses its attention on
tasks such as increase asset availability and vehicle fleet management, preventing a crucial area
such as the air defense of a country from being lacking maintenance tasks.

Furthermore, maintenance must be treated as a strategic logistical function because its per-
formance will directly affect the operation of the Force (ARMY, 2009). Because of that, in the
upcoming sections, we discuss background aspects of predictive maintenance management in
the military context and machine learning in the context of predictive maintenance to contextu-
alize the readers before presenting details on the systematic literature review.

3.1 Predictive Maintenance Management in the Military Context

Maintenance management includes preventive, predictive, and corrective approaches. Pre-
ventive maintenance (KOSZTYÁN; PRIBOJSZKI-NÉMETH; SZALKAI, 2019) avoids the de-
terioration suffered by a piece of equipment. This approach anticipates functional failures in a
planned, programmed, and controlled manner (FERNÁNDEZ-BARRERO et al., 2021). Predic-
tive maintenance is the set of routine procedures involving systematic actions aiming to reduce
or prevent failures or drop in material performance and reduce the possibility of breakdowns and
degradation through inspections, tests, repairs, or replacements (ARMY, 2009). This model in-
volves periodic measurement of the variables that determine the condition of the equipment
while it is operating, prematurely detecting failures and developing actions to correct them
(FERNÁNDEZ-BARRERO et al., 2021). Corrective maintenance intends to repair or recover
the material damaged to put it back in usable condition (ARMY, 2009).

Predictive maintenance in the military context implements a type of maintenance that al-
lows predicting the most appropriate time to perform maintenance activities and, in this way,
get as close as possible to the useful life limit of parts and components, optimizing the cost-
operation-maintenance triad. Failure prediction in the military domain involves the predictive
control of maintenance, with the determination of a predictive point from which the probabil-
ity of the equipment to fail assumes undesirable values, both on the technical and economic
aspects. Moreover, the determination of the predictive point can be assessed in two ways: sta-
tistical analysis or symptom analysis (ARMY, 2009). For this reason, failure predictions are an
essential part of keeping the state of readiness.

The literature describes several techniques to predict the appropriate time to perform main-
tenance. Current approaches use methods like the Autoregressive Moving Average (ARMA) or
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experience-based procedures, considering tacit knowledge, often applying computational intel-
ligence using machine learning (ML) (OKOH et al., 2014). This systematic review investigates
the challenges and opportunities of applying PdM in the military context.

3.2 Machine Learning in the Context of Predictive Maintenance

Implementing predictive maintenance tasks, such as estimating the remaining useful life
of components, involves enabling the prediction and prognosis of failures. There are several
approaches to applying predictive maintenance, using data-driven or physics models. In solu-
tions that use a data-driven approach, successfully implementing these tasks demands monitor-
ing, collecting, and storing data captured from asset sensing. These data are input to an ML
algorithm responsible for predicting the health degradation of machines or equipment being
monitored (DALZOCHIO et al., 2020).

In a more general perspective, machine learning is well known in the context of predic-
tive maintenance in areas such as aviation (BEHERA et al., 2019), automotive (GIORDANO
et al., 2021), and naval (PAL et al., 2019). Examples of these approaches include a Bayesian
optimized discriminant analysis for a vertical machining center (BAJAJ et al., 2021), a deep
Neural Network classifier in fault diagnosis using power transformers (ANDRADE LOPES;
FLAUZINO; ALTAFIM, 2021), and a Merged-long-short term memory network (CHEN et al.,
2021) for automobile maintenance.

In model-based approaches, characterized by the use of mathematical models of the system,
it is necessary to compare the actual condition of a system with an object model to achieve
a model-based diagnostic approach (TINGA et al., 2014). To diagnose a failure using model-
based approaches is necessary to describe the physical behavior of degradation or failure modes.
As in data-driven solutions, several approaches are viable. In this sense, we highlight the pro-
posal of a new physical model to the application of methods such as particle filtering (PF) for
performing prognoses, autoregressive moving-average (ARMA) techniques, Bayesian filtering
algorithms, and empirically-based methods (LIN; LUO; ZHONG, 2018; VACHTSEVANOS;
VALAVANIS, 2018).

Combining methods through hybrid approaches to improve prediction accuracy is a possi-
bility explored in the literature (WANG, 2018; PAL et al., 2019). However, several challenges
exist in predicting failures, as already pointed out in areas such as industry 4.0 (DALZOCHIO
et al., 2020). Most of these challenges also apply to the military domain.

Authors have also explored other approaches besides failure prediction, including frame-
works and architectures that establish methods to perform predictive maintenance (FERNÁNDEZ-
BARRERO et al., 2021), feature modeling proposals (HUANG; LIU; TAO, 2020), or new main-
tenance policies (TINGA et al., 2020). In this article, we discuss these approaches and their
challenges, giving greater attention to how they affect military operations and how to deal with
them.
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3.3 Research Methodology

The literature review highlights the gaps in a given research area and points to new research
opportunities (KITCHENHAM, 2004). It can occur empirically or through applying a method
that helps the researcher identify and analyze publications in the area of interest. In this paper,
we chose to follow the research method proposed by Kitchenham et al. (2010) to develop a
systematic literature review (SLR), applying four steps:

1. The definition of the research questions: definition of the general research question to
be used in the literature search.

2. The search process: databases and string definition for the consultation and development
of the search strategy.

3. The studies selection: criteria elaboration to determine the relevant papers for the study.

4. The quality assessment: quality criteria definition to be applied in the selected studies.

3.3.1 Research Questions

The research question is a part of any research. This paper seeks to identify the open op-
portunities in predictive maintenance in the military context, with a particular interest in ML
applications. In order to define the research questions, we used our previous experience in pre-
dictive maintenance to carry out an initial search for its applications in the military domain.
Samples extracted from the resulting papers were analyzed to evaluate the potential relevance
of conducting an SLR in this field. A preliminary analysis indicated that the area is relevant
and, therefore, based on these preliminary results, we elaborated the general research question
(GRQ) that guides this work:

What are the challenges and open questions in applying predictive maintenance in mili-
tary assets?

Based on the GRQ, we proposed the following specific questions (SQ):

• SQ1: What are the principles of PdM used in the context of military environments?

• SQ2: What are the open questions of applying predictive maintenance in a military con-
text?

• SQ3: What are the scenarios that allow the application of PdM in the military context?

• SQ4: Which techniques are used in this context to predict failure?
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The purpose of SQ1 is to verify whether it is feasible and how to apply PdM in military
scenarios. SQ2 focuses on identifying the challenges of implementing a PdM policy within the
military domain. SQ3 intends to discuss applying PdM in the several possible assets operated
by the military forces, such as combat vehicles, ships, and airplanes. Finally, SQ4 aims to
understand what techniques, methods, and algorithms can predict failures and what role each
method plays in the failure prediction process.

3.3.2 Search Process

The first step of the search process is to build a search string (SS). The initial search, de-
scribed in section 3.3.1, resulted in references that assisted the construction of the research
question. The previous step identified keywords to help build an accurate SS. A crucial part of
this process involved combining the resulting keywords using boolean operators and synonyms.
In order to expand the scope of the search and decrease the possibility of relevant papers in the
area not being selected, we created two search strings. In the first search string (SS1), we focus
on finding the PdM implementations involving assets in the military context:

("Predictive Maintenance") AND ("Military Vehicle" OR "Military Aircraft" OR
"Warships" OR "Artillery" OR "Army")

In the second search (SS2), we focus on finding papers related to machine learning to solve
problems in the military domain:

("Machine Learning" OR "Deep Learning") AND ("Predictive Maintenance") AND
"Military" AND ("Vehicles" OR "Fighter Aircraft" OR "Warships" OR "Artillery")

The second task of the search process is the database joint (figure 16). After constructing
the SSs, the next step is to search and select the scientific databases that will serve as the data
source for the queries. We selected electronic databases with journals and conferences where
relevant works related to predictive maintenance and machine learning are published. Five
electronic databases were selected: IEEE Xplore Library1, Google Scholar2, Springer3, ACM
Digital Library4, and ScienceDirect5. Finally, the database joint grouped the results to start the
papers selection process.

1https://ieeexplore.ieee.org/
2https://scholar.google.com/
3https://link.springer.com/
4https://dl.acm.org/
5https://www.sciencedirect.com/
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3.3.3 Papers Selection Process

1. Title and abstract analysis: consists of reading the title and the abstract to remove
publications that are not in the scope of this SLR.

2. Introduction analysis: papers that pass the first phase of the analysis have their intro-
duction read. This step avoids the early removal of papers that may be relevant for the
SLR but in which the contributions are not evident in the title.

3. Full-text analysis: in some cases, the title, the abstract, and the introduction are not
enough to evaluate whether the manuscript fits the SLR goals, so a complete analysis of
the text is essential.

After the complete text analysis, another analysis is also carried out following three exclusion
criteria (EC) to remove those not considered relevant:

• EC1: If the papers are not directly related to PdM.

• EC2: If the papers do not cite the military context.

• EC3: If the papers presented results of surveys or reviews.

Two researchers executed the entire selection process to minimize the possibility of remov-
ing relevant work. In case of divergence about some papers, a third researcher was used as a
termination criterion.

3.3.4 Quality Assessment

After the filtering application process, the papers were classified according to the pre-
defined quality parameters, following Kitchenham’s methodology (KITCHENHAM et al., 2010).
In this step, we follow the questions to selected papers to meet the quality requirements (QR)
presented in table 1.

Considering the specifications in the table, two researchers scored each selected work in-
dependently and compared their results. In case of discrepancies in the evaluations, a third
researcher discusses the scores with the two referees and decides the more appropriate score.
Next, we apply the criteria presented below to decide which papers should remain in the original
corpora and which ones should be removed.

• Articles that generally present opinions and comments of a personal nature, and that do
not present a methodology for validation.

• Articles that do not reach a cutoff score of 2.5 points; that is, works that reached half or
less than half of the possible score are removed.
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Table 1: Questions, descriptions, answers, and scores.

Description Answer Score
QR1: Is the purpose of the research presented?
If the paper explicitly presents the research proposal. Y (Yes) 1.0
If the research proposal is implicit. P (Partial) 0.5
If there is no defined research proposal. N (No) 0.0
QR2: Is there a research methodology presented?
If the paper presents a methodology for the development of the work. Y (Yes) 1.0
If the research proposal implies the use of a methodology. P (Partial) 0.5
If the work does not present a defined methodology for the development
of the research. N (No) 0.0

QR3: Are the research results presented and discussed?
If the paper generated results from the application of a use case, and these are
presented and discussed in the paper, presented conclusions from the results. Y (Yes) 1.0

If any results, even partially, are presented. P (Partial) 0.5
If the work does not present results or use cases with practical
applications of what is being proposed. N (No) 0.0

QR4: Is the research context specifically in the military area?
If the development of the work took place specifically in the military context. Y (Yes) 1.0
If the research proposal is developed in another area, but there is a
relationship with the military area. P (Partial) 0.5

If there is no relation between the work presented and the military context. N (No) 0.0

After applying the methodology for selecting works, filtering, and keeping in the original
corpora the papers considered most relevant for this study, we read the selected studies again to
answer the research questions presented in section 3.3.1. Section 3.4 presented the results.

3.4 Search Results

This section presents the results obtained through searching, selecting, and analyzing the
selected papers. Figure 16 shows each step of the process, describing the number of papers
selected at each stage until we reach the 50 articles analyzed. The results presented include the
two search strings (SS1 and SS2), with the duplicated results already removed.

Following the SLR methodology, section 3.4.1 presents the paper filtering process. We
discuss how each filter is applied until we reach the final number of papers applying the quality
assessment filter. The results of the application of quality assessment are presented in section
3.4.2.

3.4.1 Search and Selection Processes

Figure 16 presents the filter process result of the selected papers, from the Initial Search
(section 3.3.2) until the Full Text Filter (section 3.3.3). After the Initial Search in each re-
search database, the database joint results in 2453 papers. Next, the Impurity Removal process
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Figure 16: Search, selection, and filter processes of the selected papers

removed non-research papers, resulting in 1716 papers. The non-research papers texts are re-
turned mainly in the Google Scholar results, which largely explains the number of results found
in this database compared to the other databases like IEEE. The process of Filter by Title re-
sulted in 344 selected papers, and the Filter by Abstract results in 160 papers. We observed
that in these two processes (by Title and Abstract), those papers that quote the words in the
search strings were removed mainly because the words just appear in the related works section
or reference section of the papers. The papers resulting from the Filter by Introduction were
then analyzed in more detail through a complete reading of the works in Filter by Full Text,
resulting in 54 papers to begin the quality assessment.

The exclusion process removed high-quality papers from this SLR that did not fit this paper’s
purpose: Military Employment Material (MEM). The work developed by Leão et al. (2008) pro-
poses a methodology to analyze the cost-benefit of applying PHM in aircraft. As mentioned by
the authors, PHM enables the application of PdM. The methodology allows to analyze the cost-
benefit of these PHM systems; however, the methodology considers the characteristics of civil
aviation and not military aviation. Rui, Xiaofan e Yuhai (2018) work is restricted to proposing
an approach to damage estimation and fatigue life prediction without clarifying the viability in
the military context. The research conducted by Desell et al. (2014) is also restricted to appli-
cation in civil aviation, where neural networks are employed to predict flight data parameters,
achieving predictive ability and the potential to detect anomalous flights. Such results can be
helpful to warn the pilot of possible problems and can be used to predict engine failures and
other hardware. Following in the aviation context, it is of great importance to prevent engine
failures, given their criticality and the severe consequences involved in possible failures. Wang
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(2018) proposes a new prediction method to improve its accuracy. The proposal is limited
to specific engine applications and does not explicitly mention its applicability in the military
context.

In contrast to works that apply PdM, but not specifically in the military context, we have
works like the paper presented by Furch, Nguyen e Glos (2017), where the detection and diag-
nosis of failures in bearings installed in military vehicles are proposed. However, the work does
not advance to the concept of failure prediction. This way, we chose to remove the work from
this SLR.

3.4.2 Quality Assessment to Select Relevant Papers

Table 2 presents the results to the quality assessment score, where the papers are classified
based on the quality requirements (from QR1 to QR4). It also includes the references, years,
and authors.

Table 2: Results of the Quality Assessment Score

Year Authors SQ1 SQ2 SQ3 SQ4 Score
2023 Min, Wood e Joo Y Y Y Y 4.0

2023 Purnama, Susmartini, and Herdiman Y Y Y Y 4.0

2023 Ulricson, Mickle e Sanders Y Y Y Y 4.0

2021 Balakrishnan et al. Y Y Y Y 4.0

2021 Fernandez et al. Y Y Y Y 4.0

2021 Novoa Paradela et al. Y Y Y Y 4.0

2020 Ranasinghe et al. Y Y Y Y 4.0

2020 Tinga et al. Y Y Y Y 4.0

2019 Peschiera et al. Y Y Y Y 4.0

2019 Pal et al. Y Y Y Y 4.0

2018 Cipollini et al. Y Y Y Y 4.0

2018 Homborg et al. Y Y Y Y 4.0

2018 Nixon et al. Y Y Y Y 4.0

2018 Vachtsevanos and Valavanis Y Y Y Y 4.0

2017 Banghart Y Y Y Y 4.0

2017 Le et al. Y Y Y Y 4.0

2014 Banks et al. Y Y Y Y 4.0

2012 Shao et al. Y Y Y Y 4.0

2009 Blechertas et. al Y Y Y Y 4.0

2009 Khatri et. al Y Y Y Y 4.0

2007 Cook Y Y Y Y 4.0



50

Table 2 continued from previous page

Year Authors SQ1 SQ2 SQ3 SQ4 Score
2007 Li et al. Y Y Y Y 4.0

2007 Li et al. Y Y Y Y 4.0

2005 Roemer et al. Y Y Y Y 4.0

2014 Tinga et al. Y Y Y Y 4.0

2002 Byington et al. Y Y Y Y 4.0

2023 Akrim et al. Y Y Y N 3.0

2022 Cho, Carrasco e Ruz Y Y Y N 3.0

2022 Shah et al. Y Y Y N 3.0

2020 Baker et al. Y Y Y N 3.0

2020 Huang et al. Y Y Y N 3.0

2020 Vidyasagar et al. Y Y Y N 3.0

2019 Behera et al. Y Y Y N 3.0

2019 Chan and Chin Y Y Y N 3.0

2019 Ducoffe et al. Y Y Y N 3.0

2019 Iannace et al. Y Y Y N 3.0

2019 Kála et al. Y Y Y N 3.0

2019 Tagliente et al. Y Y N Y 3.0

2019 Yiwei et al. Y Y Y N 3.0

2018 Lin et al. Y Y Y N 3.0

2015 Vali’s et al. Y Y Y N 3.0

2015 Woldman et al. Y Y Y N 3.0

2013 Tinga et al. Y Y N Y 3.0

2012 Lall et al. Y Y Y N 3.0

2012 Lall et al. Y Y Y N 3.0

2010 Tinga Y Y Y N 3.0

2008 Babbar et al. Y Y Y N 3.0

2008 Siegela et al. Y Y N Y 3.0

2007 Lijun et al. Y Y N Y 3.0

2001 Boller Y Y N Y 3.0

2015 Tambe et al. Y Y N N 2.0

2011 McNaught et al. Y Y N N 2.0

2006 Rahej et al. Y Y N N 2.0

2002 Campos et al. Y Y N N 2.0

Figure 17 shows the scores obtained for each question. One can observe that, of the four
specific research questions, the filtering process through the reading of the analyzed papers kept
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only the papers that present a straightforward research question and a well-defined methodol-
ogy. The variation in the scores was due to questions about the results presented in the paper and
the application context, which should directly involve the military area, not just as a possible
area of application. In this way, we removed from the corpus those works that do not entirely
satisfy two last questions, so we removed the papers (TAMBE et al., 2015; MCNAUGHT;
ZAGORECKI; PEREZ, 2011; RAHEJA et al., 2006; CAMPOS; MILLS; GRAVES, 2002).

Figure 18 shows the selected papers of this SLR by year and the source database, being
the y-axis of the figure the amount of paper and the x-axis being the year of the papers. It
is possible to observe that although there has been an interest since the beginning of the 21st
century, more than half of the selected papers have been published since 2017. We discussed
each of the papers presented in the figure in the section 3.5.
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3.5 Answer to the research questions and discussion

In this section, the questions elaborated in 3.3.1 will be discussed based on the final corpora
obtained after applying Kitchenham’s methodology (KITCHENHAM, 2004). We applied the
SLR methodology as a practical example (KITCHENHAM et al., 2010) to answer the RQ
elaborated in Section 3.3.1. In this way, we analyzed the entire corpora considering each RQ,
extracting from each selected article the characteristics that match the answers to each question.

As in the article selection process, presented in Section 3.3, at least two researchers analyzed
each work to discuss RQs. In cases of divergence about any selected works, a third researcher
assisted in the discussion, reducing the possibility of incorrect interpretations and loss of infor-
mation. Ultimately, we organized the answer in this section, separating each RQ into a specific
subsection.

3.5.1 The principles of PdM used in the context of military environments

This research aims to understand which principles must be applied by a military organization
to achieve failure prediction capability. In this way, we strive to list the approaches presented in
the literature to predict failures and how this translates into benefits for a military organization.

We also present table 3 to group the leading strategies and the works that used each method.
Through reading selected works, we identified the approach proposed by each work. As pre-
dictive maintenance is a broad subject, the proposals presented in the literature use one or more
approaches to achieve the proposed objectives. In this way, through the complete reading of
the articles, we identified six main approaches used by the authors to reach the presented ob-
jectives in the area of failure prediction. We describe the characteristics of each approach in the
description column of the table and the reference column identifying the related research.

We overview the concepts for failure prediction by analyzing the keywords of the works
selected in the systematic review of the literature. Figure 19 summarizes our findings by show-
ing keywords that appeared more than once. An important outcome of this figure is the key-
word condition-based maintenance, which appears in nine of the selected works. Applying a
condition-based maintenance policy is one of the possible approaches, which relies on collect-
ing data and training learning models to predict failures. Approaches applied to these tasks will
be detailed in this section.

3.5.1.1 Data acquisition

Data collecting is the first task one should perform towards failure prediction. The remain-
ing phases of the process encompass the capture of this data and the transmission, subsequent
analysis, and treatment. The need to perform these tasks becomes more evident when predicting
failures using ML.
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Figure 19: Word cloud from article keywords

Data plays a central role in the so-called data-driven method, where a large volume of histor-
ical data feeds the creation of predictive models (YIWEI et al., 2019). In the literature, several
approaches are explored for dealing with data. In complex systems, data may be previously
available for use, covering several pieces of equipment through the storage of thousands of
variables, as proposed by Fernández-Barrero et al. (2021). However, before using the data for
training failure detection models, pre-processing may be necessary. For instance, Iannace, Cia-
burro e Trematerra (2019) used this pre-processing to prepare the data before training a learning
model by applying data normalization.

Data acquisition depends on strategies such as interviews and questionnaires with experts,
as proposed by Banks et al. (2014). In the authors’ case study, the interviews consisted of ques-
tions answered by vehicle maintainers, field service representatives, and vehicle operators. They
also apply statistics to infer which components have been replaced most often over consecutive
years. Based on the results, they proposed a component reliability indicator. Babbar et al.
(2009) uses a similar approach in the aeronautical sector. They collect data to predict the canni-
balization of parts from discrepancy reports made by pilots and crew members. In addition, the
authors treated outliers manually, requiring the help of experts to identify inconsistencies and
going through the pre-processing process to be then used to train the models.

One of the widely used ways to acquire data is sensing equipment performance. There are
architectures to assist in this task, such as the Health and Usage Monitoring System (HUMS)
(DUCOFFE et al., 2019), the Vehicle Health and Usage Monitoring System (VHMUS) (LE
et al., 2017), the Aircraft Condition Monitoring System (ACMS) (BABBAR et al., 2009), and
Modern Signal Processing Unit (MSPU) (BLECHERTAS et al., 2009). Ranasinghe et al. (2020)
installed sensors in armored personnel carrier vehicles and employed a HUMS architecture to
collect data and annotate it for spatial and timing information. An on-board link performs the
transmission via the controller area network (CANBus). Data is stored locally, converted into
a standard format, compressed, and transmitted in encrypted form over a Wi-Fi network or a
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commercial 3/4g network.

Embedded sensors, commonly found in diesel engines, are used by Nixon et al. (2018) to
estimate the useful life of the equipment. These onboard sensors, when installed in vehicles, are
called VHUMS. A VHUMS can collect data such as engine RPM, engine temperature, throt-
tle position, oil temperature, odometer, vehicle speed, fuel usage, and ambient air temperature.
Other information, such as chemical conditions of the oil, can also be included for analysis (LE
et al., 2017; VALIŠ; ŽÁK; POKORA, 2015). Tagliente, Ludwig e Marston (2019) employed
diagnostics and system health (DASH) vehicle health management system (VHMS) on a mili-
tary vehicle for data collection. DASH is a client-server application that implements common
diagnostics, maintenance, and user interaction capabilities. It provides a highly adaptable plat-
form for vehicles and weapons systems that performs tasks like file compression to work on a
low bandwidth network. Modern aircraft, such as a Boeing 737, implement an onboard ACMS
that collects data such as parameters for Takeoff, Cruise, and Landing flight mode and records
the complete set of in-flight parameters. Babbar et al. (2009) combined data obtained from
ACMS with information such as problem descriptions and corresponding corrective obtained
from Pilot Reports, PreMat Reports, and Delay Cancellation.

MSPU, used by Blechertas et al. (2009) is a data capture system that helps the equipment
sensing process. Military helicopters use the MSPU with an onboard sensor for vibration data
acquisition and signal-processing equipment for health monitoring critical mechanical compo-
nents. This data is processed in conjunction with other data collection systems such as the
specialized laboratory data acquisition system, recording torque, speed, temperature, vibration,
and acoustic emission monitoring.

In some cases, data may already exist but not be accessible before the maintenance process
begins on the equipment. In this case, looking for data from other sources is possible. In
this sense, Kála, Lališ e Vittek (2019) proposed to search this data in historical files or even in
information based on past experiences, such as the required number of hours spent on unplanned
maintenance tasks, and equipment data, such as age, cycles, and hours of use. The authors
analyze the data using Pearson’s correlation coefficient, helping identify variables contributing
to particular outputs.

Although it is a crucial phase of the process, obtaining raw data is not always necessary. For
example, when proposing a new prediction model, a possible approach is to consider existing
datasets. For example, Pal et al. (2019) used public datasets to train artificial neural network
(ANN) models. Behera et al. (2019) used the C-MAPSS datasets, made available by the prog-
nostic center of excellence stationed at NASA Ames Research Center.

Predictive maintenance techniques do not always require sensors for data collection. The
approach adopted by Tinga et al. (2020) allows the construction of usage profiles to estimate the
average time interval. This approach allows optimizing the use of equipment without the need
for high investment in sensor acquisition or development, eliminating the need to build datasets
with an operation history.
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Data collection can be performed in several different ways, depending on the problem the
author intends to attack or the scenario in which the collection will take place. Each approach
has its benefits and challenges involved. In section 3.5.2 we specifically present data acquisition
challenges.

3.5.1.2 Model training

The increased computational capacity has enabled a leap in demand in areas such as predic-
tive analytics, artificial intelligence, and ML. When applied to a large set of data, data-driven
techniques give an organization the ability to detect behavior anomalies in assets, classify fail-
ures and estimate the equipment’s useful life, supplement or even replace the use of physical
models (BAKER et al., 2020). Several approaches are available for training ML models. In
the literature, solutions like adapting existing algorithms, proposing new ones, or employing
hybrid strategies by using algorithms simultaneously are common (FERNÁNDEZ-BARRERO
et al., 2021; HUANG; LIU; TAO, 2020; BEHERA et al., 2019). These strategies are necessary
because obtaining a model capable of predicting the health condition of an asset is not a trivial
task, typically requiring experiments with multiple models to ensure the most efficient strategy
(BAKER et al., 2020; SHAH et al., 2022).

The use of data by the learning models must eventually go through pre-processing, where
new features are extracted from the data and data preparation is performed. Behera et al. (2019)
presented the benefit of such tasks, where a feature engineering process can achieve results
with greater accuracy when compared to using the original dataset. Such tasks aim to use higher
quality training data, increasing the predictive capacity of the models (IANNACE; CIABURRO;
TREMATERRA, 2019). For behavior prediction using supervised learning algorithms, it is
necessary to have data labeled with failure behavior. In the absence of labeled data, there are
strategies to overcome this problem, such as the artificial generation of data to simulate failures
based on previously known failure values (FERNÁNDEZ-BARRERO et al., 2021).

Learning models have been gaining more attention in the last five years. In Subsection
3.5.1.3, we discuss how these models are integrated into solutions for predictive maintenance.
We also analyze literature proposals in 3.5.4.

3.5.1.3 Approaches

Using predictive maintenance is challenging, and there is no universal solution or approach.
Table 3 presents the approaches identified while reading the related research. The table sum-
marizes these approaches into six groups: (I) Framework, (II) Model-based, (III) Data-driven,
(IV) Features Modeling, (V) Maintenance Policy, and (VI) Agent software. The Framework

approach presents research in which the objective is dealing with complex ecosystems where
an architecture helps organize information flows for predictive maintenance.
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In the Model-based approach, the focus of the research is to build the physical model of
a system, which can be applied to estimate the degradation of equipment. In a Data-driven

approach, there is the creation of models using a large volume of data, which, combined with
artificial intelligence techniques, is capable of, among other things, estimating the useful life of
the equipment. When we talk about Feature modeling, the objective is to improve the estimation
of some prediction models through feature extraction techniques. The feature extraction can
better represent the equipment’s state and improve the models’ accuracy.

Policies involving data collection, enabling data-driven approaches such as CBM, and model-
based policies, are widely used in the literature, each with its pros and cons. However, new
Maintenance policy proposals can fill existing gaps. The Software Agent approach concerns
the approach where the authors propose software solutions that use and practice techniques for
predicting failures.

In this context, frequent approaches found in the literature are the proposal of architectures
or frameworks to implement predictive maintenance. Fernández-Barrero et al. (2021) presented
Soprene, an architecture composed of three main areas, covering data preparation and use in
the training and operation modules. Soprene is used to predict failures in military ship engines,
where Lamas-López et al. (2022) uses its flexibility and wide range of methods, as it is scalable.

Ranasinghe et al. (2020) propose a framework that uses HUMS to obtain data. The frame-
work aims to analyze the current state of health and estimate the degradation of a power train
subsystem of an armored personnel carrier. A feature of HUMS is the ability to apply ML to the
data collected to identify trends, perform inferences, and obtain insights into the large volume of
data collected. The framework also introduces a virtual dynamometer, where data from several
sensors calculate the torque on the motor and thereby estimate its degradation. This approach
can be applied in other areas, such as aerospace and defense.

Cho, Carrasco e Ruz (2022) uses a framework previously developed by the authors for
detecting failures in a new environment. In this new environment, improvements in data pre-
processing, such as cleaning spikes or possible outlines and smoothing time series, show the
adaptation framework’s capacity. New strategies for estimating the RUL are also part of the
work developed, employing techniques such as RNN and a time series decomposition model
called Prophet to measure the precision of the RUL.

Lin, Luo e Zhong (2018) presented a combination of two methods for predicting aircraft
structures subjected to fatigue loads, the probability–damage–tolerance (PDT) and the model-
based particle filtering (PF). This type of strategy has the advantage of, on the one hand, ex-
tracting the benefits of each method and, on the other hand, mitigating their limitations. In the
authors’ proposal, the PF method performs system state (e.g., crack size) estimation in parallel
with parameter identification of the prediction model as its function. In complement, the PDT
method combines the result of the estimate obtained by the PF to predict the reliability of the
structure. Together with the model-fusion framework, the authors propose the multi-objective
decision-making model based on condition-based maintenance (MODM-CBM) to minimize
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Table 3: Main approaches to failure prediction

Approach Description Reference

Frame-
work

They present strategies, establishing
methods and steps of the failure prediction
process. They may cover tasks such as,
data collection pre-processing data
modeling, use or implementation, new
methods of fault diagnosis and prognosis,
and decision making.

Fernández-Barrero et al. (2021)
Ranasinghe et al. (2020)
Vachtsevanos e Valavanis (2018)
Tinga et al. (2014)
Blechertas et al. (2009)
Cho, Carrasco e Ruz (2022)

Model-
based

Describe the behavior of equipment through
a physical model. From the physical model
of a component, it is possible to simulate
its uses mechanisms and apply strategies,
such as making a prognosis by
understanding how a failure progresses.

Yiwei et al. (2019)
Woldman et al. (2015)
Liu, Cartes e Quiroga (2007)
Vališ, Žák e Pokora (2015)
Tinga et al. (2014)
Shao et al. (2012)
Lijun et al. (2007)

Data-
driven

Creating physical models of complex
systems is not a trivial task. In this way, it
is possible to apply a pattern recognition
strategy, where a set of data representing
the behavior of a device is provided to
algorithms such as machine learning.
A model that is able to predict the future
state of the equipment from the data
provided in the past is generated at the
end of the process.

Iannace et al. (2019)
Pal et al. (2019)
Behera et al. (2019)
Le et al. (2017)
Nixon et al. (2018)
Siegel, Ghaffari e Lee (2008)
Babbar et al. (2009)
Chan e Chin (2019)
Lamas-López et al. (2022)
Shah et al. (2022)
Akrim et al. (2023)
Min, Wood e Joo (2023)
Ulricson et al. (2023)

Features
modeling

Increased accuracy of prediction models
can be achieved by improving the quality
of data available for learning models.
Strategies with Data-fusion and techniques
for generating new features can help in the
task of improving he accuracy of the models

Raheja et al. (2006)
Huang, Liu e Tao (2020)
Khatri et al. (2008)
Shah et al. (2022)

Maintenance
policy

Maintenance policies such as corrective
maintenance and preventive maintenance are
strategies used today. Condition monitoring-
based policy is widely used to enable the
ability to predict failures, however, new
policies can help in the task of failure
prediction.

Tinga (2010)
Tinga et al. (2020)
Banghart (2017)
Kála, Lališ e Vittek (2019)

Software
Agent

Implementation of the sets of techniques for
the prediction of failures involves the
development of software. The results
obtained in practice need to be validated
through metrics that point out the economic
benefits of implementing failure prediction.

Roemer et al. (2005)
Liu et al. (2007)
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the fleet maintenance cost and maximize its availability through decision-making based on the
current state of the structure.

Purnama, Susmartini e Herdiman (2023) presents an approach for predicting failures in
radars in the defense sector where a Failure Mode Effect and Criticality Analysis (FMECA)
method analyzes all possible losses and then calculates the risk priority number (RPN). FMECA
collects all failure mode information from failure data and causes, effects, and risks associated
with each component and subsystem represented by the RPN. The RPN is a value that evaluates
the criticality of the system to consider the type of maintenance, whether general predictive
and preventive or corrective maintenance. Hypertext Pre-processor (PHP) software provides
visualization of information to assist in taking action, such as equipment health status and pre-
dictions of critical failures that may arise. It guides technicians on which components should
be prioritized for maintenance or repair before a problem, a critical failure, or a system failure
occurs.

As a way to increase fleet availability and avoid downtime due to the time for parts to be
ordered and delivered, Ulricson, Mickle e Sanders (2023) propose a new approach to predictive
maintenance. Sequential Pattern Mining (SPM) examines patterns and predicts when and which
parts are most likely to fail based on historical data. The authors state that previous studies are
limited to the commercial context. In the approach proposed by the authors, the assessment
uses a military helicopter. With the use of SPM in the use case, collected maintenance data is
analyzed to compare which Work Unit Codes occur most frequently and simultaneously with
others, allowing parts to be ordered and replaced preventively, reducing costs and maintenance
time.

Vachtsevanos e Valavanis (2018) present an approach for developing critical health manage-
ment technologies with an emphasis on prognosis, using a test case to evaluate a new approach
to an architecture for the implementation of failure diagnosis and prognosis. This architec-
ture consists of the components of integrated Vehicle Health Management (IVHM), Condition-
Based Maintenance (CBM), and PHM, achieving an end-to-end approach. The architecture also
features Particle Filtering Based Prognostic, providing a long-term prognosis while accounting
effectively for uncertainties. Particle filtering combines model-based techniques, data-driven
methods, and a Bayesian estimation method to achieve accurate failure detection and RUL
prediction. According to the authors, this combination of model-based and data-driven method-
ologies produces accurate, precise, and robust results.

Other approaches focus on data and its processing for later use by learning models through
techniques such as data fusion and data mining. Data fusion automates the process and com-
bines information from several sensors, achieving decision-making based on the state of an
object. In the data-fusion process, tasks such as keeping data in units on a common time and
unit basis, heterogeneous data integration, and data normalization are performed before creating
the learning algorithms (RAHEJA et al., 2006). Huang, Liu e Tao (2020) use the data fusion
approach. The authors compare the Joint Directors of Laboratories (JDL) fusion model and
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the Hierarchical fusion model. Although widely applied in military scenarios, JDL models are
limited by the need for human interaction, leading to higher processing time. The Hierarchi-
cal fusion model, in contrast, is the mainstream model for multi-source perceptual information
fusion modeling. Despite having many layers and suffering from a slow processing speed, the
amount of information dramatically reduces as data passes through each model layer, leading
to a good performance. Khatri et al. (2008) also focus on data by proposing an approach for
generating additional features for use in diagnostic systems. The authors propose decompo-
sition in an empirical way of measuring signals, which differs from the traditional means of
obtaining features based on statics of the collected data. This new feature generation approach
aims to improve the performance of classifiers applied to the data. In the case of the authors’
experiments, three sets of new features are provided from vibration data, complementing the
existing features.

There is a class of research works that, instead of analyzing the health degradation of equip-
ment through condition monitoring, focuses on other aspects that impact failure prediction. One
of these aspects is evaluating the existing condition-based and load-based maintenance policies,
identifying limitations, and proposing new solutions. Authors also seek to optimize the time
spent on each revision maintenance. In this context, Tinga (2010) introduce a novel mainte-
nance concept by using a physical model in usage and load-based maintenance concepts. They
claim it is unnecessary to monitor equipment’s condition in these scenarios, but only equipment
usage, through metrics like operating hours, cycles, loads, temperature, and electrical current.
Using usage and load-based maintenance concepts in a test case showed that the approach is
functional when a usage uncertainty scenario exists. Thus, incorporating the monitored usage
or loads into the physical model provides a clear benefit in the prediction accuracy compared
to other maintenance models, such as calendar time-based maintenance, behind only the per-
formance presented by CBM. Still working with maintenance policies, Tinga et al. (2020) pro-
posed a maintenance policy with lower technical demand when compared to traditional ones,
focusing on specifying the maintenance interval more precisely based on equipment usage pro-
files. The premise of the authors’ proposal is to define a limited number of usage profiles to
assess the effects of usage on equipment degradation. The usage profile definition combines the
equipment’s performed tasks and the operational context, analyzing parameters such as mileage,
speed, continuous hours of operation of a vehicle, and the type of operation terrain.

According to Banghart (2017), predictive maintenance relates to the probability of canni-
balization, a concept so far not covered in the literature. In the process of cannibalization, one
piece of equipment, such as an aircraft, provides parts for another. This cannibalization action
maintains the equipment readiness when parts are not available. The authors propose a method
to predict which parts will undergo cannibalization, anticipating time-consuming processes,
such as reverse engineering, improving the supply chain, and identifying new suppliers. Thus,
using methods such as Bayesian predicts cannibalization actions, as demonstrated in the test
case presented by the authors. Kála, Lališ e Vittek (2019) proposed maintenance optimization
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and overhaul time by predicting unplanned tasks or work in the maintenance process. The au-
thors use Maximum Likelihood Estimation (MLE) and Bayesian linear regression modeling to
make this prediction, justifying the choice as two common approaches to solving this type of
promise. The authors achieved an accuracy of 75% in predicting unplanned work.

Model-based is an approach frequently used in the literature for predicting equipment degra-
dation, being an alternative solution to data-driven techniques, offering superior performance
in degradation models. In this way, Yiwei et al. (2019) propose a new model-based predic-
tion method divided into two steps, estimate the fatigue crack size and predict the evolution
of the crack size using a new linearization method. The authors’ approach differential is the
model’s ability to consider situations with unknown parameters, where the Extended Kalman
Filter (EKF) is used to estimate such parameters. When compared with Monte Carlo methods,
the results obtained with the new linearization method were equally efficient, correctly indi-
cating the panels for replacement or repair. But the authors’ linearization method presented a
lower computational cost.

Lall, Lowe e Goebel (2012a) present a proposal where an EKF is employed to predict the
remaining useful life of the BGA components. However, in the proposed approach, the use
of EKF is made in a new way, using particle swarm optimization to robustly demonstrate and
quantify the repeatability of the resistance spectroscopy measurements and the prognostic moni-
toring algorithms. The authors created five individual failure experiments using the pre-existing
threshold value of data to determine a failure. The authors chose Particle swarm optimization
to find an optimum set of parameters to apply on the ‘left out’ data set used for validation due
to its robust ability to cover an unfamiliar optimization space.

Woldman et al. (2015) propose models to describe the abrasive mechanism of sand and how
it causes wear through the movement of scratching a sprocket of a military vehicle. This model
predicts the amount of abrasive wear. However, its modeling requires detailed knowledge of
the wear mechanism since it needs the means to quantify the amount of wear as a function,
considering the types of sands and the amount of time and kilometers the vehicle will operate
in a given condition. The results show that the model can predict the magnitude of the service
life. However, uncertainty in the input values, such as the amount of sand in the contact and the
distribution of the driven kilometers over the various operating conditions, may lead to a less
accurate prediction of the service life. A proposal using a Model-based approach applied to a
permanent magnet synchronous motor, a component of a Navy Ship, is proposed by Liu, Cartes
e Quiroga (2007). Vališ, Žák e Pokora (2015) propose using Wiener’s process to analyze the
presence of particles such as iron and lead in the oil and relate these particles to the degradation
of equipment components, indicating which system is deteriorating, anticipating failures.

A failure prediction system implementation that uses a CBM policy requires a collabora-
tive effort between different sectors of society, such as industry, academia, and government.
This transition to a CBM policy, including its expansion to the military context, is presented by
Blechertas et al. (2009). The authors present the steps involved in implementing a condition-
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based monitoring system and the techniques and practices to be adopted at each stage. Among
the methods, we can highlight the multi-sensor approach and data fusion that significantly im-
proves the robustness and accuracy of fault detection. In this way, the authors give an overview
of the implementation process of a monitoring system. The authors exemplify the approach
through a use case where the benefits achieved are presented, such as a decrease in maintenance
test flight hours, a decrease in unscheduled mechanical components maintenance operations,
decrease in replaced mechanical components costs.

Proposals for new physical models and the integration into frameworks to expand their
applicability is an alternative, as proposed by Tinga et al. (2014). In this way, the stages of
construction of the physical model to achieve the failure prediction can be schematized, pass-
ing through the stage of monitoring the equipment. It is not always possible to monitor the
condition of the equipment by accessing data like vibration or oil analysis. It is possible to
use load monitoring (strain gauges, thermocouples) or usage monitoring (operating hours, ro-
tational speed, power setting, number of starts) to assess the condition of the equipment. The
framework validation containing the physical model considers four test cases, which proved to
be adaptable to the profile use of each applied system (vehicle, helicopter, and navy frigate),
demonstrating increased predictability of failure.

Other approaches apply existing artificial intelligence algorithms. Iannace, Ciaburro e Tre-
materra (2019) propose a system that uses acoustic measurement data of the noise produced by
an UAV to detect an imbalance in a quadrotor’s propeller. The author proposes an artificial neu-
ral network used to achieve the ability to predict. Pal et al. (2019) also use an artificial neural
network, comparing an artificial neural network with Principle Component Analysis (PCA) in
predicting failures of a Combined Diesel-Electric and Gas (CODLAG) propulsion plant used in
naval vessels. The results obtained show that ANN had better results than ANN with PCA.

Using the well-known Gradient Boosted Trees (GBT) and Random Forest (RF) algorithms,
Behera et al. (2019) propose to estimate the RUL of a turbofan aircraft engine. The approach
adopted by the authors differs in the aspect of the application, giving an ensemble tree over
feature engineered dataset. In the feature engineering process, attributes were added to the
dataset, such as statistical measures, an RUL decremented at each time step, and the target
attribute, which contains operational status, such as warning and normal.

Le et al. (2017) used a Decision Tree to classify a land vehicle’s oil condition into three
distinct classes, being normal, degraded, and unsuitable reaching a high accuracy in the pre-
diction. The authors also apply ML in the rule extraction stage, using a neural network and
a Decision Tree (DT) to extract knowledge from the data, such as the impact of certain input
features on the output. The authors’ results demonstrate that using a rule extraction step can
supplement the prediction capacity of the trained models. Nixon et al. (2018) uses various ML
approaches, such as LDA-Naïve Bayes, RF, and Support Vector Machine (SVM) for prediction.
Physical model data is grouped with log data to train the algorithms.

In addition to the so-called traditional machine learning methods, we have been following
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the evolution of applications that use self-supervised learning and various applications in the
last year. However, the PdM area still presents a limited number of works that apply self-
supervised learning. One of the first proposals is presented by Akrim et al. (2023). The approach
investigates using SSL self-supervised learning and its ability to estimate RUL with scarce
labeled data. The results presented show promising results, presenting an ability to surpass
traditional models.

To demonstrate the benefits of failure prediction for military applications in general, Siegel,
Ghaffari e Lee (2008) apply a methodology to assess and predict the health of a military vehi-
cle’s alternator using a logistic regression model. The results were promising, and the resulting
method proved feasible for application in other components of military vehicles. A data-driven
approach using double exponential smoothing is proposed by Babbar et al. (2009) to identify en-
gine health deterioration and link this information to off-board maintenance procedures, helping
in the decision-making process and making maintenance a more accurate process. The prog-
nostic approach is based on double exponential smoothing, a smoothed time series prediction
approach where older data tends to have less weight than newer data in an older time series.
The authors’ case study considered that past flight parameters assign confidence intervals to
future flight parameters, helping in the maintenance decision-making process according to the
projected values in each flight mode.

Virtual prototypes are an approach adopted to perform time series prediction and predict
possible failures in the future. This approach adopted by Lijun et al. (2007) uses ADAMS, a
platform that simulates a device’s operation, gets the change rules, concludes the membership
functions, confirms the current failures, and finds out the reasons for the corresponding failures.
Shao et al. (2012) propose a virtual prototype for simulation and failure prediction for breech
mechanism-based. The virtual prototype allows measuring the signal of velocity, accelerated
velocity, and force. These measures enable the acquisition of fault development rules such as
the rule of collision force, constraint force, and spring force. The analysis of this data allows
simulating the abrasion process and estimating the life cycles of the automatic breech opening
process.

Roemer et al. (2005) present a software prototype for the implementation and validation
of a PHM system, which includes processes such as pattern definitions, metrics for detection,
diagnosis, and prognostics, as well as a forum for exchanging information between users. The
software is a response to the lack of methodologies to access PHM’s technical and economic
benefits. The proposal is validated through a use case in an F-35 aircraft. The advantage of the
software is the ability, through plug and play, to collect and transmit data to the evaluation sys-
tem. Another contribution is the development and evaluation of prognostic metrics considering
the maintainer’s point of view, in which the focus is on determining when maintenance should
be performed and considering the field commander’s point of view, who needs to know if an
asset will be available for the mission.

Liu et al. (2007) followed the strategy of using software for fault detection, diagnostics,
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and prognostics. The authors discussed the application of a Software Agent solution on ships
to reduce crew requirements, replacing such conditions by performing work tasks by software
agents. Boring, repetitive, time-consuming, complex, and analytical tasks can be performed
more accurately and reliably by software agents than by people, leaving higher-level tasks such
as decision-making in charge of human agents. The authors conducted a case study on a ship-
board power system using fault detection and diagnostics utilizing software agents. In this use
case, agents were used for monitoring, detecting, and diagnosing, leaving the implementation
of an agent to perform the failure prognosis as future work.

3.5.2 The challenges and open questions of applying predictive maintenance in the military
context

This research question aims to contribute to the scientific community by unifying challenges
and research questions in the use of PdM in the specific domain of military application. We
propose a taxonomy (figure 20) to assist researchers in visualizing the challenges and open
questions in the use of PdM in the military application domain.

The taxonomy is composed of two distinct components shown in the figure. The compo-
nents in green are the areas of more comprehensive studies, and each green box is associated
with several blue boxes. The blue boxes represent the challenges that we find by following the
research questions. This form of organization avoids the duplication of blue boxes, helping to
organize the taxonomy. Below each blue box is the reference number to the paper that presents
the challenge. We divided the taxonomy into three major areas: (I) Data, (II) ML/Statistic
Models, and (III) Others. In the following, each of these areas will be further explored and
detailed.

3.5.2.1 Data

Starting with open issues related to Data, PdM faces challenges in Data Acquisition and
Interoperability. When monitoring an asset, it is necessary to sense and obtain the data in
real-time. However, the dataset adopted for a study can be difficult to obtain in the real world
(FERNÁNDEZ-BARRERO et al., 2021; BALAKRISHNAN et al., 2021; CIPOLLINI et al.,
2018). Also, real-time access to the asset is not always possible, making sensing unfeasible, so
it is necessary to use other data sources such as environmental data or asset’s operational data
(HOMBORG; TINGA; MOL, 2018). Another critical situation regards components that affect
an asset’s security. In this case, it is not possible to let the component evolve to failure, thus,
making it impossible to collect failure data to train ML models (VIDYASAGAR, 2020).

In addition, when acquiring the data, characteristics such as the quality and accuracy of the
data collected must be taken into account (SHAO et al., 2012; YIWEI et al., 2019). Knowing
what to monitor in a complex system (LIN; LUO; ZHONG, 2018; BOLLER, 2002), and being
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able to relate the asset data to the operations performed at the time of collection (DUCOFFE
et al., 2019) are challenges related to Data Acquisition which impact the implementation of a
PdM system. Another characteristic of Data Acquisition is the variety of sensor manufacturers,
which, despite having the same purpose, generate different degrees of errors and the possibil-
ity of a sensor malfunction, leading to incorrect data. Furthermore, data comes from diverse
sources with different standards and formats, making it difficult to use it with data processing
tools. Another challenge relates to the fact that sensors operate at different frequencies, making
it necessary to determine an ideal transition frequency pattern to avoid data redundancy or lack
of data (TAMBE et al., 2015; HUANG; LIU; TAO, 2020). Situations like the ones mentioned
make it challenging to apply existing diagnostics architectures in new contexts, hindering the
Interoperability of the fault diagnosis methods (BYINGTON; ROEMER; GALIE, 2002).

There are challenges and open questions related to Data Context, Imbalanced Data, and
Data Size. A common feature of military assets such as vehicles and aircraft is their opera-
tion. These assets operate in a variety of environments and, sometimes, in extreme conditions.
Collect the Data Context is of great relevance. The impossibility of collecting this data may
compromise the creation of prediction models. In this case, alternative options such as the cre-
ation of physical models are an option (BABBAR et al., 2009; TINGA, 2013; WOLDMAN
et al., 2015). In addition, there are cases where the asset is of high importance, affecting the
collection of degradation data since it is impossible to assume the risk of operating such assets
until the state of failure or degradation. This operational characteristic may lead to the creation
of and Imbalanced Database, i.e., one composed of a higher proportion of normal operation
data than failure-related data. (CHAN; CHIN, 2019; BAKER et al., 2020). These data collec-
tion limitations make it challenging to create a dataset with the necessary Data Size. Mitigating
this problem typically involves creating simulated environments or implementing prototypes
to collect data in a controlled scenario. (ROEMER et al., 2005). On the other hand, when
large amounts of data are available, other kinds of challenges arise. High data density and
high data collection rates may lead to network resource and storage consumption, demanding
infrastructure-related investments (BAKER et al., 2020).

Other challenges and open questions are related to Data Security, Bandwidth, and Latency.
One of the points of attention in applying PdM within the military domain concerns data se-
curity. The use of techniques such as data encryption can minimize security problems. Such
security measure becomes even more important when there is the necessity of using civilian net-
works for data transmission. Ideally, the transmission of sensitive information should happen in
military networks. Despite improving the transmission’s security, the use of military networks
can lead to other challenges, such as Bandwidth limitations and increased Latency (TAMBE
et al., 2015; TAGLIENTE; LUDWIG; MARSTON, 2019).

Next, we have the challenges and open questions related to ML/Statistic Models and data
availability and quality. Creating learning models with an adequate amount of labeled data
for ML training is a complex task (CIPOLLINI et al., 2018). In addition to an appropriately



66

sized dataset, it is essential to ensure that the available data covers all possible failure situations.
However, in practice, knowledge about the failures of the monitored asset can be scarce, directly
impacting the dataset quality, and consequently on the machine learning-based prediction model
(BANGHART, 2017; MCNAUGHT; ZAGORECKI; PEREZ, 2011; AKRIM et al., 2023).

The Operating Environment and Domain Specialist challenges affect data capture and the
creation and training of failure prediction models. Data captured under a given operating con-
dition in the past may not reflect the operating condition in the future (YIWEI et al., 2019).
For example, assets such as military aircraft have different operating conditions in takeoff sce-
narios, cruise flights, and landing. This operational characteristic may lead to the creation of a
dataset that does not reflect all assets’ operating scenarios (DUCOFFE et al., 2019; SIEGEL;
GHAFFARI; LEE, 2008; BOLLER, 2002). In the naval context, proposals for new architectures
seek to work in a modular way, aiming to adapt to new environments quickly (FERNÁNDEZ-
BARRERO et al., 2021).

Additionally, there is no guarantee that a dataset collected in a vehicle or aircraft reflects
the operation of others of the same model, mainly due to the extreme and distinct environments
that the same vehicle model can operate (LALL; LOWE; GOEBEL, 2012b; TINGA, 2013;
CIPOLLINI et al., 2018; KÁLA; LALIŠ; VITTEK, 2019; BEHERA et al., 2019). Sometimes,
such extreme environments are only possible to obtain data by operating in simulated envi-
ronments (LIJUN et al., 2007). Another challenge involves the complexity of some scenarios,
making it necessary to have a Domain Specialist both to create prediction models and for data
collection. Domain Specialists can assist in tasks such as defining metrics and characteristics
to be monitored (NIXON et al., 2018) or providing an understanding of the physics involved
in the failure to build models capable of estimating the RUL more accurately (TINGA, 2013;
MCNAUGHT; ZAGORECKI; PEREZ, 2011). Thus, we increased the possibility of creating
more accurate prediction models and threshold values (DUCOFFE et al., 2019).

The challenges and open questions related to Feature Selection and Extraction and Data

Uncertainty are of great interest for training ML models to deal with big data-related problems.
Selecting the most relevant features helps create more accurate prediction models (SHAO et al.,
2012; TINGA, 2013). In some contexts, new features can be created to enhance prediction ac-
curacy (KHATRI et al., 2008). Exploring new attributes is also necessary when data availability
is limited (VALIŠ; ŽÁK; POKORA, 2015). On the other hand, there are scenarios where a wide
range of features is available. In these cases, selecting the most critical features is necessary
to avoid the problems generated by data excess (TINGA et al., 2014; HOMBORG; TINGA;
MOL, 2018; TAGLIENTE; LUDWIG; MARSTON, 2019). Features can receive data gathered
directly from sensors. Another possibility for feature creation is the fusion of information com-
ing from multiple sensors. In this case, feature selection can be automatic or manual, depending
on the specific characteristics of the ML model. Data fusion and feature selection processes are
helpful when there are network connection limitations. They can decrease the dimensionality
of the data and speed up the transmission of data collected from the asset (TAMBE et al., 2015;
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BANGHART, 2017; HUANG; LIU; TAO, 2020). Data Uncertainty also impacts feature ex-
traction. The main reason for that is that data may carry environmental noise. Dealing with
data uncertainty involves pre-processing the dataset (HUANG; LIU; TAO, 2020). Uncertainty
is an inherent problem of the prognosis task, requiring actions that, for example, improve the
signal-to-noise ratio (VACHTSEVANOS; VALAVANIS, 2018).

3.5.2.2 Machine Learning Models

The resulting corpora also brought challenges and open questions related to Machine Learn-

ing Models, that involve issues like Machine Learning Model Evaluation, Overfitting, and
Model Training Time. One can deal with failure prediction in different ways, either by data-dive,
model-based, experience-based, or implementing hybrid approaches (BAKER et al., 2020).
These processes involve tuning the models to achieve the best possible performance. Results
achieved for a model or strategy pass through a Machine Learning Model Evaluation and can
eventually improve by creating ensembles with other models (IANNACE; CIABURRO; TRE-
MATERRA, 2019; BEHERA et al., 2019; BAKER et al., 2020). Even a standalone model
can be tuned to achieve more satisfactory results. However, good metric values are not al-
ways an indication of good performance. Frequently, models that achieve high accuracy, for
example, are facing problems like Overfitting (HUANG; LIU; TAO, 2020) or can demand a
long Time to Train a Model, making the model unfeasible for application in a real-world sce-
nario (DUCOFFE et al., 2019; PAL et al., 2019; BEHERA et al., 2019; HUANG; LIU; TAO,
2020). The literature deals with these problems by proposing new prediction models, either
by incorporating new strategies for the task of monitoring the condition of an asset or propos-
ing the use of new tools or ML approaches in the failure prediction process (LIU; CARTES;
QUIROGA, 2007; TINGA, 2010; LALL; LOWE; GOEBEL, 2012a; BALAKRISHNAN et al.,
2021; AKRIM et al., 2023).

3.5.2.3 Others

Another perspective highlighted in the corpora analysis regards the Cost of Implementing

PdM. The literature claims that this cost should be considered to determine where the predic-
tion will be most effective. For example, predicting the failure of a non-crucial component does
not necessarily mean that an overall system failure will be predicted (TINGA et al., 2020). Solv-
ing this issue generally involves interviewing and using the experience of Domain Specialist to
decide which pieces of equipment should be monitored (BANKS et al., 2014). Domain Special-
ists also play a role in correctly understanding and modeling the Component interaction failure
of one component over another. The task of determining whether the PdM of an asset is viable
takes into account the costs involved in the process of implanting the prediction system. This
task is vital to avoid unnecessary costs, especially in the military environment where budgets
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are limited (TINGA et al., 2014). Developing effective PdM strategies should take into account
the cost as a factor (RAHEJA et al., 2006) and verify the possibility of reusing technologies and
standards (CAMPOS; MILLS; GRAVES, 2002). The development of new maintenance poli-
cies, such as a policy based on profile usage, is an alternative that eliminates the costs related to
sensor acquisition and data collection, which are fundamental in the CBM approach (TINGA
et al., 2020).

The Automation of detection, diagnostics, and prognostics process through the use of agents
to replace human operators is a solution commonly applied to decrease the number of people
involved in the maintenance processes (LIJUN et al., 2007). There are also challenges related
to Fleet Management. Deciding on the right moment for one of these assets to be maintained
is crucial for the military operation. Such a decision must consider the fleet’s availability and
ensure that the asset will be unavailable for the shortest period possible (COOK, 2007; LIN;
LUO; ZHONG, 2018; PESCHIERA et al., 2020).

3.5.3 Scenarios of PdM application in the military domain

There are several scenarios in which predictive maintenance is applied, involving the im-
plementation and evaluation of effectiveness (ROEMER et al., 2005). This section we focus on
practical applications, such as what type of vehicle or asset applies PdM. One of the most cited
areas is aviation, given the severe consequences of any failure occurring. Nevertheless, we also
see applications in land and water vehicles domains, according to figure 21.

3.5.3.1 Aerial Vehicles

In the aviation context, scenarios such as the prediction of failures, specific components
studies, fleet availability, cannibalization, and monitoring, receive the most attention from the
community. As an airplane is composed of several systems and sub-structures, in general,
each work concentrates on a specific component, as Yiwei et al. (2019), which focuses on
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the analysis of the aircraft fuselage, more specifically on fatigue crack propagation in fuselage
panels. Structure monitoring is also an approach adopted by Boller (2002); the focus is on
monitoring old planes, and building load models since these planes tend to receive updates and
operate in different environments and missions than initially proposed in the vehicle’s design.

In addition to monitoring the fuselage, it is essential to consider fleet availability before
performing maintenance as proposed by Lin, Luo e Zhong (2018), and deal with the long-term
Military flight and maintenance planning problem as Peschiera et al. (2020). A feature on
airplanes is the cannibalization of other vehicles as a way of supplying parts. Banghart (2017)
propose a PdM approach taking into account such characteristics. Min, Wood e Joo (2023)
propose and evaluate using a multiple machine learning tool that uses 33 aircraft operated by
the US Air Forces to minimize aircraft downtime and predict aircraft failures.

Other authors propose solutions for predicting aircraft engine failures, such as the ex-
periments on a Boeing 747 engine (BABBAR et al., 2009), or focus on identifying prob-
lems on maintenance processes. Another approach monitors the airplane’s operation (land-
ing, takeoff, and cruise), analyze the health of aircraft engines by monitoring parts conditions
(VIDYASAGAR, 2020). Balakrishnan et al. (2021) propose a new solution for monitoring the
health of an aero-engine and estimate the remaining useful life of a turbofan engine using a
data-driven approach and Shah et al. (2022) apply an ensemble model for failure prediction in a
turbofan engine. Research conducted within the US Navy proposed a plug-and-play prognostic
solution to monitor gas turbine engines, and gearbox systems of aircrafts (BYINGTON; ROE-
MER; GALIE, 2002). Also in the aviation context, PdM can be applied to monitor the operation
of helicopters (KHATRI et al., 2008; BLECHERTAS et al., 2009; TINGA, 2013; TINGA et al.,
2014; DUCOFFE et al., 2019). Similar to the approach used with airplanes, before putting a
helicopter into service, it is crucial to consider the availability of the fleet (COOK, 2007). UAV
are relatively new in the military context when compared to aircraft. However, they are also the
subject of research (IANNACE; CIABURRO; TREMATERRA, 2019).

3.5.3.2 Land Vehicles

In the land vehicle domain, we have a series of approaches in different types of vehicles and
different components. Just as in aviation, where the engine receives significant attention, this
also happens in land vehicles. Some approaches use the sensors installed in specific engines
to estimate the RUL (NIXON et al., 2018), or by monitoring the oil condition to estimate the
ideal time for changing (LE et al., 2017). As the vehicles operate in adverse conditions, it
is necessary to research models of component failure prediction considering the action of the
environment, as in combat vehicles that operate in places like the desert and are exposed to sand
and its abrasive action (SHAO et al., 2012; WOLDMAN et al., 2015).

To demonstrate the feasibility of predicting failures in different environments that a vehicle
operates, a methodology for the multi-purpose vehicle alternator can be used (SIEGEL; GHAF-
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FARI; LEE, 2008). The M109A7 / M992A3 Family of Vehicles are used as a case, exploring
the challenges of implementing vehicle monitoring in the military environment (TAGLIENTE;
LUDWIG; MARSTON, 2019). Ranasinghe et al. (2020) used an armoured personnel carrier
vehicle to assess the health of its power train system and validate the proposed architecture ve-
hicle is used. For the monitoring stainless steel, without a specific a vehicle, can be used as a
use-case example (HOMBORG; TINGA; MOL, 2018).

3.5.3.3 Naval Vehicles

PdM also applies to the naval context. Pal et al. (2019) and Cipollini et al. (2018) propose the
use of ML to monitor the condition of the propulsion system of a frigate. The air compressor and
the advanced carbon dioxide removal unit are the systems that Baker et al. (2020) evaluate the
potential of an on-board PHM. The authors’ objective is to use existing sensors to deploy a PdM
system using ML techniques. Chan e Chin (2019) propose solutions to deal with unbalanced
data, using the propulsion system of a naval asset as a use case.

A naval turbine is evaluated by Tinga (2013). Attention is given to operational conditions,
the selection of ideal parameters, and how these tasks impact the results of a prediction sys-
tem. In modern Navy all-electric ships, there is an amount of data flowing that humans can-
not process, so agents are proposed to monitor the systems continuously (LIU et al., 2007).
Fernández-Barrero et al. (2021) proposed a modular architecture that applies to various naval
platform equipment and assets and that is capable of predicting the health of equipment in the
future, and Lamas-López et al. (2022) apply the architecture to naval assets.

3.5.4 Techniques Used in the Predict Failure Context

There is no strategy capable of simultaneously solving all problems related to PdM activity.
Thus, each scenario has its challenges and requires different approaches. For this reason, we
explore model-based methods, machine learning, and deep learning techniques in this section.

In model-based approaches, Yiwei et al. (2019) proposed prognostic tasks to predict the
fatigue crack growth evolution in fuselage panels, estimating the size of the crack using data
collected from the plane applying the Paris’ law crack growth model. Another model-based
approach is the creation of physical models. According to Liu, Cartes e Quiroga (2007), devel-
oping fault prediction models is challenging since systems and equipment can be very complex
and dynamic. Physical models can quantify the degradation of a system through a relationship
with its use, as demonstrated in the approaches adopted by Tinga (2013) and Tinga et al. (2014).

Woldman et al. (2015) proposed creating a physical model to predict the amount of abra-
sive wear. This proposed model integrates into a framework with a usage-based maintenance
concept. The usage-based maintenance concept uses parameters such as equipment operation
hours, kilometers traveled, and terrain of operation. This way, it is possible to quantify the
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abrasive action in different vehicles with different application contexts. Shao et al. (2012) also
create a physical model to simulate the abrasion process in a specific mechanism.

Vališ, Žák e Pokora (2015) apply a stochastic diffusion model based on a Wiener process to
estimate the lifetime of a system. In the case of use presented by the authors, the objective is
to optimize the engine oil use time. The presence of particles during the operation is analyzed
to achieve the objective proposed by the authors. One of the particles analyzed is iron. For
the authors, the problem of iron particle levels observed has a time dependence, thus making it
appropriate to apply a diffusion model.

In data-driven approaches, table 4 presents several ML techniques and models proposed
to predict failure in the military context. Figure 22 shows the rising interest in using ML,
considering papers published between 2017 to 2021, while there is a decrease in the number of
works that present a model-based approach for failure prediction.
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Figure 22: Use of techniques over the years

Nixon et al. (2018) evaluates the possibility of using previously collected monitoring data
consumed by the physical model to predict component degradation. The authors use LDA-
Naïve Bayes, Random Forest, and Support Vector Machine to classify degradation clusters and
their distances to failure moment. The authors’ approach combines a classification model that
uses Linear Discriminant Analysis (LDA) for subspace creation and dimensionality reduction
with a Naïve Bayes classifier trained using the transformed data. LDA maximizes the separation
between classes in an optimized subspace in this combination. Naïve Bayes then learns where
each degradation class is most likely to be found in that subspace. New observations are first
transformed into the subspace learned by the LDA model, and then the probability of associa-
tion with each class is calculated based on the estimated distributions. The results showed that
the combined LDA-naïve Bayes classifier performed better than RF classifier and a SVM clas-
sifiers. Behera et al. (2019) use RF to estimate the remaining useful life of a turbofan engine.
The authors compare the results with GBT, showing that RF is robust compared to GBT and
performs well for RUL estimation. The authors added six new features related to the operating
condition to the ML models to improve the classification performance.
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Table 4: ML algorithms by paper

Ref. Title Year ML algorithms

Le et al.
Condition monitoring of engine
lubrication oil of military vehicles: a
machine learning approach

2017 NN, DT

Banghart
Identification of Reverse Engineering
Candidates utilizing Machine Learning
and Aircraft Cannibalization Data

2017 BN

Nixon et al.
A machine learning approach to diesel
engine health prognostics using engine
controller data

2018
RF, SVM,
LDA-Naïve
Bayes

Cipollini et al.
Condition-Based Maintenance of Naval
Propulsion Systems with supervised Data
Analysis

2018
NN, KM, EM,
BM, LM

Ducoffe et al.
Anomaly detection on time series with
wasserstein GAN applied to PHM 2019 GAN

Pal et al.

Condition based maintenance of turbine
and compressor of a codlag naval
propulsion system using deep neural
network

2019 DNN

Iannace et al.
Fault diagnosis for UAV blades using
artificial neural network 2019 NN

Chan e Chin
Health stages diagnostics of underwater
thruster using sound features with
imbalanced dataset

2019 ELM

Behera et al.
Ensemble trees learning based improved
predictive maintenance using iiot for
turbofan engines

2019 RF, GBT

Huang, Liu e Tao
Mechanical fault diagnosis and prediction
in IoT based on multi-source sensing
data fusion

2020
RBFNN, ENN,
BPNN, PNN,
FNN, WNN

Peschiera et al
A novel solution approach with ML-based
pseudo-cuts for the Flight and
Maintenance Planning problem

2020
GBRT, SVR,
MLPR, QR,
LR, DTR

Novoa Paradela et al.
Predictive Maintenance of Naval Assets
Using Machine Learning Techniques 2021 LSTM, LR

Shah et al.

Comparative Study on Estimation of
Remaining Useful Life of Turbofan
Engines Using Machine Learning
Algorithms

2022
DT, RF,
XGBoost,
LSTM, CNN

Cho, Carrasco e Ruz
A RUL Estimation System from
Clustered Run-to-Failure
Degradation Signals

2022
LSTM, GRU
ESNs

Akrim et al.
Self-Supervised Learning for data
scarcity in a fatigue damage prognostic
problem

2023 SSL
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As a part of a solution to improve the maintenance planning, Peschiera et al. (2020) applied
a set of supervised learning methods, such as Linear Regression (LR), Decision Tree Regression
(DTR), Multi-layer Perceptron Regression (MLPR), Support Vector Regression (SVR), Quan-
tile Regression (QR), and Gradient Boosted Regression Trees (GBRT), to predict characteristics
in optimal or near-optimal solutions before actually solving the problem with a mathematical
programming model. A set of supervised learning methods is also applied by Shah et al. (2022)
to predict the lifetime of a turbofan engine, comparing the results with a CNN-LSTM ensemble
model.

Banghart (2017) explore the use of Bayesian Network (BN), whether to predict the risks
of cannibalizing airplane parts using real-world maintenance data or as part of a generic PdM
model using Dynamic Bayesian Networks (DBN). The authors discuss the types of knowledge
needed to build this model since a DBN needs a wide variety of data and knowledge to create
the model. To classify the integrity stage of a propellant, Chan e Chin (2019) proposed a multi-
level ridge regression Extreme Learning Machine (ELM). ELM is known for being quick to
train and for its level of accuracy. Because it is a supervised learning algorithm, it needs labeled
data. However, there are scenarios where the data obtained are unbalanced, with many noisy
samples and few useful samples. The multi-level ridge regression ELM method is employed to
avoid problems with imbalanced data.

Ducoffe et al. (2019) employed Generative Adversarial Networks (GAN) to detect time se-
ries anomalies. The authors present a modification in the GAN to circumvent the mode collapse
problem, where the generator is rewarded if it produces good realistic samples, not being en-
couraged to produce other samples that may be as good for the discriminator as those already
found. In this way, the generator learns only to reproduce a small fraction of the dataset vari-
ability. To solve this problem, Ducoffe et al. (2019) propose to use the 1-Wasserstein distance to
learn the distribution of the dataset directly. The Wasserstein distance is a tool based on the the-
ory of optimal transport to compare data distributions, applied in image processing, computer
vision, and ML. The method proved capable of detecting anomalies but required improvement
to detect anomalies that are not in the training phase.

Iannace, Ciaburro e Trematerra (2019) applied a Neural Networks (NN) classification model
to detect unbalanced blades in a UAV propeller through the sound emitted by blades. The
authors chose NN because of their ability to generalize and respond to unexpected inputs. If
the network identifies a pattern not associated with a label, then the label least different from
the input is selected, exercising the ability to generalize. The NN with only one hidden layer
obtained high accuracy, above 97%. Le et al. (2017) chose NN for monitoring engine lubrication
oil. The authors compare neural network results with a Decision Tree through a proposal for
classifying oil degradation in the Normal, Unsuitable, and Degraded categories.

Huang, Liu e Tao (2020) proposed a simulation model to predict mechanical failure diag-
nosis. A set of fusion algorithms based on neural networks were evaluated: Back-Propagation
Neural Network (BPNN), Radial Basis Function Neural Network (RBFNN), Elman Neural Net-
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work (ENN), Probabilistic Neural Network (PNN), Fuzzy Neural Network (FNN), and Wavelet
Neural Network (WNN). The authors present the basic concepts, a comparison between the
application characteristics of each algorithm, in addition to applying it to a previously existing
dataset. The best accuracy results were obtained by the BPNN, while the ENN achieved the
lowest accuracy in the tests performed by the authors.

Figure 23 presents each model-based and data-driven technique and each technique’s ob-
jective within the research. The model-based approach mainly performs the prognostic task,
given the characteristic of representing equipment through creating a physical model. From this
physical model, it is possible to simulate wear according to the equipment used, such as the
environment to which it is exposed, hours of use, or cycles of use.

A data-driven approach encompasses the use given by the model-based, eventually losing
some precision and demanding a large amount of data. However, data-driven approaches can
play other roles within a predictive maintenance policy, such as classifying and identifying
reverse engineering candidates utilizing ML (BANGHART, 2017). As no single approach can
solve all problems, the increase in interest seen in figure 22 shows the machine learning ability to
solve several problems encountered in applying predictive maintenance policies in the military
domain.
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Diagnosis

Prognostics

Classification
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Figure 23: Use of techniques by approach

3.6 PFM in time series forecasting

It is observable that the use of FM has gained substantial attention in recent years. With
LLMs, tasks involving NLP, such as text generation, are evolving rapidly. In addition to tasks
involving NLP, we have witnessed the rapid evolution of FM for CV and graph learning (GL)
(ZHOU et al., 2023a) tasks. However, tasks that involve Time series forecasting are critical.
In this sense, we have seen the emergence of the first works that explore the use of pretrained
models trained for prediction in this context in the last year.

As the prediction of equipment health degradation using a Data-driven approach involves
the ability to predict time series, we searched the literature to see how PFM or FM are being
used to predict time series and how this applies to the failure prediction context and predictive
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maintenance. We used Google Scholar6 as a search database for papers, initially applying
the search string ("foundation model" + "time series" + "predictive maintenance"). As the
search results returned a small number of papers, we conducted a new search, removing the
term "predictive maintenance" from the search string. The final search string was as follows:
("foundation model" + "time series").

This subsection presents a short review of the literature on time series prediction resulting
from the search. We separate it into a PFM subsection from NLP and CV and a subsection for
PFM for time series. We also add a section with PFM for time series forecasting.

3.6.1 NLP and CV PFM for time series forecast

Applying PFM for NLP and CV in time series prediction tasks is part of the model proposed
by (ZHOU et al., 2023b). The model uses frozen pre-trained language mode and, to increase
performance, adapters for specific tasks such as anomaly detection. Adapters offer superior
performance to state-of-the-art methods.

Time-LLM (JIN et al., 2023b) appears as a framework that adapts the use of LLM for
time series forecasting while keeping the backbone model intact. This work presents the new
concept of LLM reprogramming for time series, with declarative prompts as input context to
guide LLM reasoning. Using a Prompt-as-Prefix (PaP) to enrich the input context and direct the
transformation of reprogrammed input patches is presented as a new idea. TIME-LLM proved
capable in both few-trial and zero-trial learning scenarios. The results surpass state-of-the-art
forecasting methods in both long-term and short-term forecasting. The tests use the Electricity
Transformer Temperature (ETT) as a testing basis.

With an approach to training a PFM for Time Series Data with self-supervised learning using
the UCR Archive as a training base, the TimeCLR method (YEH et al., 2023a) is proposed. The
TimeCLR method is based on SimCLR, a self-supervised pre-training method for computer
vision using contrastive learning, which was later extended to a time series of human activities.

TimeCLR adds improvements by augmenting time series data through jittering, smoothing,
and magnitude warping techniques. TimeCLR also uses the single augmentation function to
generate positive pairs instead of all augmentation functions. The authors compare the results of
TimeCLR with alternative methods, such as LSTM and Gated Recurrent Unit Network (GRU),
across 128 datasets in the UCR Archive. The results show that TimeCLR outperforms other
methods.

LLM4ST (CHANG; PENG; CHEN, 2023) is a framework for time-series forecasting inte-
grated with LLM. The LLM4TS architecture follows a two-stage fine-tuning process that aligns
LLMs with time-series data characteristics and then concentrates on time-series forecasting
tasks. The model incorporates two Parameter-Efficient Fine-Tuning (PEFT) techniques to in-
crease robustness and versatility: Layer Normalization Tuning and LoRA. PEFT improves the

6https://scholar.google.com/
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adaptability of pretrained LLMs to time series data without distorting the inherent features.

LLM4TS framework uses GPT-2 as the backbone model, and its evaluation uses seven mul-
tivariate time-series datasets: Weather, Traffic, Electricity, and four ETT sets (ETTh1, ETTh2,
ETTm1, ETTm2). LLM4TS sets new benchmarks in long-term forecasting and representation
learning in the authors’ assessment. It also excels in few-shot learning, making it the best choice
for real-world scenarios with limited data availability.

3.6.2 PFM for Time Series Forecasting

Following the trend of using PFM from NLP and CV in the time series prediction task,
using PFM with a time series database has recently been gaining attention. We have seen the
use of PFM to predict time series built for specific domains, such as health (ORTEGA CARO
et al., 2023; ZHANG et al., 2023), network security (GUTHULA et al., 2023), whether (CHEN
et al., 2023), time series classification (YEH et al., 2023b), and forecasting pixel-level surface
reluctance (SMITH; FLEMING; GEACH, 2023).

PFM for general purposes is also being developed, as the PatchTST (NIE et al., 2022) and
TSMixer (EKAMBARAM et al., 2023). PatchTST is a model based on transformers designed
to predict long-term time series. To address the limitations of other models in capturing local se-
mantic information, PatchTST introduces a patching mechanism, which extracts local semantic
information. The model also features a channel-independent design, which enables each series
to learn its attention map to improve forecasting accuracy. In a channel-independence, each
input token only contains information from a single channel, which works well with CNN and
linear models and is now being applied to Transformer-based models.

The advantages of PatchTST are a reduction in time and space complexity, the capability
of learning from the longer look-back window, and the capability of representation learning. A
use case on a traffic dataset with 862-time series presents the results obtained with PatchTST,
achieving state-of-the-art forecasting accuracy.

TSMixer is a model designed for multivariate time series forecasting. It is lightweight and
uses the MLP-Mixer architecture. TSMixer has two online reconciliation heads that can im-
prove forecasts by considering the hierarchical patch-aggregation’s time series properties and
cross-channel correlation. Unlike transformer-based models, TSMixer enhances the learning
capability of simple multi-layer perceptron structures.

TimeGPT (GARZA; MERGENTHALER-CANSECO, 2023) is a time series model built on
the Transformer architecture, incorporating self-attention mechanisms that utilize a historical
value window, enhancing the input by introducing local positional encoding. The model adopts
an encoder-decoder structure with multiple layers, incorporating residual connections and layer
normalization at each level. A linear layer maps the decoder’s output to the forecasting window
dimension. The underlying rationale is that attention-based mechanisms capture past events’
nuances, allowing for accurate extrapolating potential future distributions.
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TimeGPT uses a training dataset of 100 billion data points from weather, finance, eco-
nomics, health care, demographics, energy, web traffic, sales, transportation, banking, and IoT
sensor data. As far as we know, TimeGPT is the first PFM model developed for the time series
forecasting context, being able to predict across a diverse array of domains and applications
without additional training.

Lag-Llama (RASUL et al., 2023) model is designed for direct probabilistic forecasting,
unlike TimeGPT, which built the model using conformal prediction to quantify uncertainty after
point-forecasting emissions.

In the Lag-Llama approach, the authors train only a single model with a large corpus of
time series. The proposal focuses on univariate probabilistic forecasts, which are simpler than
the multivariate case. As the model uses Transformer-based architectures and each dataset has
specific frequencies, a general method for vectorizing time series is presented, considering the
specific frequency of the data sets that are part of the corpus.

The Lag-Llama formation process is done from all public datasets from the Monash Time
Series Repository (GODAHEWA et al., 2021) and additional datasets used in other research.
The datasets have different frequencies and are from different domains. Lag-Llama’s zero-
shot performance surpasses or compares favorably to supervised baselines. As the model size
increases, its performance stabilizes and improves across hyperparameter specifications.

Having a model that uses as a base on pretraining a patched-decoder style attention model on
a large time-series corpus, (DAS et al., 2023) presents the Pretrained Decoder for Time-series
(PreDcT), a time-series foundation model for forecasting. When applied to previously unseen
forecasting datasets with different temporal granularities, the Zero-Shot model, also known as
PreDcT (ZS), can obtain accuracy close to state-of-the-art zero-shot.

The proposed model has as key elements a time series corpus built using Google Trends
and a corrected decoder style attention architecture that can be efficiently pre-trained on this
time series corpus. Smaller in parameter size and pre-trained data size than the latest LLM,
the model can serve predictions whose zero-shot performance approaches the accuracy of fully
supervised approaches on a diverse set of time series data.

The model evaluation uses seven public databases (ETTh1, ETTh2, ETTm1, ETTm2, Wiki,
ILI, and TourismL). The results demonstrate that a single pre-trained model can come close to or
surpass the performance of baselines on the benchmarks even when the baselines are specially
trained or tuned for each specific task.

In all models, preliminary results point to superior performance compared to traditional
SOTA algorithms. Furthermore, it demonstrates that the prediction of time series using PFM is
a field of research that still needs to be explored. As far as we know, no experiments use PFM
in a predictive maintenance context, and our work differs in using a new approach to PdM.
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3.7 Related work comparison

This SLR investigated the current state of predictive maintenance use in the military context
through a systematic literature review. This investigation focused on the papers in which the
authors mention that applying the PdM in the military area is possible. We seek to bring to
light the challenges faced in implementing the solutions proposed by the authors in the selected
papers and identify the specific application scenarios and techniques or algorithms used by the
implementations presented.

We identified an increasing scientific community’s attention in the use of PdM in the military
context, primarily through machine learning models, but still getting less attention than areas
such as the industry (DALZOCHIO et al., 2020). In addition, we see that there are a variety of
operating environments and assets employed in the military environment that can employ PdM.
So, we have a range of challenges for each scenario and asset monitored, which can be limited
to specific scenarios or common to a wide range of other situations. Some of these general
challenges are related to data, including data acquisition and feature extraction. However, there
are challenges specific to contexts, such as operating environment, latency, and level of fleet
availability.

The use of machine learning to predict failures in the military domain has gained greater
attention from the scientific community, especially in the past five years. We have identified
proposals of techniques and models that aim to predict failures. However, there is no single
solution capable of solving all the challenges of all contexts, especially when we consider the
complexity of the military ecosystem, the variety of environments, and existing assets that we
can monitor in a PdM policy. Therefore, there are some gaps in the maintenance management
in the military domain and possibilities to improve the time of failure prediction in the com-
plex maintenance military projects and operations. Because of that, there are possibilities for
new proposals in the PdM field of study, either by new learning models that can learn more
quickly and with more accuracy, by optimizing existing learning models, or by selecting and
customizing learning models for specific pieces of equipment.

Based on the growing interest from the scientific community in applying machine learning
techniques in the military PdM context brings a range of new challenges, whether they are re-
lated to data capture and treatment or the creation and training of machine learning models.
These challenges can be seen as open research fields that may receive attention from the com-
munity in the future to improve maintenance management planning, life cycle management of
military employment systems and materials, reduce the supply chain, and serve as a basis for
the conceptual formulation of future complex projects in the military context. This literature re-
view contributes to the literature in understanding the perspective of the predictive maintenance
system, specifically in the military domain. Thus, exploring the challenges in the area, the types
of techniques used to deliver a PdM system, and the equipment and vehicles that are likely to
receive a monitoring system to perform fault prediction.
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Based on the results obtained by SRL, we selected the articles with have more similarity
with the proposed work. Table 5 presents characteristics of the proposed approaches, where
in the first column the author of the work is presented, and in the nest column if the proposal
presents any framework or architecture. The column called generic aims to identify whether in
the proposed works the authors consider the proposed solution applicable only to the specific
scenario presented or if is possible to be applied in other scenarios. In the communication col-
umn we describe what each author proposes in the sense of transmitting the collected data for
posterior analysis, such as cybersecurity and quality of service issues. The RUL column clas-
sifies whether the proposed work is capable of estimating the remain useful life of equipment.
The column of approaches identifies those workers who chose for a model-drive, data-drive, or
using both approaches in the proposed solution with a hybrid approach. Finally, we classify the
works that are presented with a real-time solution, that is, they use data collected in real time to
monitor the equipment.

Nixon et al. (2018) presents a hybrid proposal for the implementation of engine failure
predictions using multiple techniques with sensor data already existing in the equipment. The
data is captured periodically, with low-bandwidth (sample rate) data, and is stored locally to be
sent constantly to a separate database. The authors propose the use of a data-drive approach
that classifies the failure in one of multiple failure modes, as each mode has a training dataset
to estimate the RUL, after determining the type of failure, a classifier is used to determine the
fault type and then estimate the RUL.

As a secondary objective, the authors propose a software framework that orchestrates sensor
data, preparing and processing it for a variety of machine learning techniques. The proposed
framework is described as a group of Python scripts that automate the training and evaluation
process of machine learning algorithms.

Woldman et al. (2015) proposes, through a use case in a sprockets of a military vehicle, the
implementation of PdM concepts in a sandy conditions environment. The authors use a model-
base approach, building a physical model to predict the amount of abrasive wear. This model is
part of a framework used in a test on a Combat Vehicle 90 infantry fighting vehicle.

The results obtained in the use case demonstrate an ability to predict the magnitude of
the useful life, but uncertainty in the model inputs, such as amount of area and contact area
brings uncertainty to the RUL prediction. However, the authors point out that the main benefit
of the proposed method is that changes in vehicle operation, such as sand variety and terrain
irregularity, can be directly translated into changes in sprocket life in a quantitative sense.

Tinga et al. (2014) also uses a model-base approach for PdM in a scenario where military
systems operate in dynamic ways, with varying uncertainties. In the proposed approach, a phys-
ical model, in combination with monitoring the use of systems, helps to reduce uncertainties.
Figure 24 shows the framework for the proposed model, where the relationship between the use
of the system associated with a physical model to estimate the RUL is presented.

In the use case presented, the framework is applied in 4 different scenarios. The first scenario
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uses a CV90 infantry vehicle and the abrasion suffered on the sprocket wheel when operating
in a sandy environment. In the second scenario, an NH-90 helicopter is utilized, as a focus on
the leakage in the landing gear shock absorbers. The third scenario uses frigates, where the
usage of the gas turbines is monitored to predict failure. The fourth scenario seeks to monitor
the corrosion degradation process by monitoring its condition, not load or usage monitoring. In
all scenarios the authors claim to have increased the predictability of failures.

Pal et al. (2019) propose the use of deep neural networks with Principle Component Analysis
(PCA-ANN) to predict turbine and compressor failures in a Combined Diesel-Electric and Gas
used in naval vessels. The experiments carried out use data from a repository previously made
available to the community. The data were applied in the training of neural networks constructed
using a variety of architectures as a test to find the ideal architecture for the neural network.

The authors compare the results obtained using the proposed ANN with Principle Compo-
nent Analysis with an ANN. In all simulated scenarios, with different architectures, the ANN
obtained minor errors, demonstrating that ANN outperforms PCA-ANN.

Tagliente, Ludwig e Marston (2019) describes how Diagnostics And System Health (DASH),
integrated with M109A7/M992A3 Family of Vehicles, processes locally collected data for send-
ing over low bandwidth networks. Such a tool is important for the data collected to be made
available offload, allowing the implementation of CBM systems.

In addition, the authors point to the need to consider cybersecurity aspects when designing
the offload strategy, since commercial data networks are not a reality in the military domain,
which imposes restrictions on connection availability. These connections are usually made
using satellites, through an intermittent and low bandwidth connection. Moving this data to
other nodes requires cybersecurity measures to avoid intercepting the data or injecting false
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CBM data. Currently the authors are in the early stages, as data become available, predictive
models can be developed and such systems can anticipate failures.

Behera et al. (2019) proposed an Ensemble Trees Learning Based approach using data-
driven prognostic method for predicting failure in Turbofan Engines. As a use case, a dataset
called C-MAPSS was used, a dataset widely used by the academic community for PHM. The
use of this dataset allows a comparison of the results obtained with previous benchmarks for
RUL estimation, where the authors claim that their approach achieved significantly better re-
sults.

The algorithms used are Random Forest and Gradient Boosted Trees, where both obtained
competitive results, however, in scenarios where there is a need for high real-time performance,
it is preferable to use Random Forest. As an indication for future work, the authors suggest
the use of neural networks and deep learning, in addition to relating the operation operations to
optimize the RUL prediction.

Balakrishnan et al. (2021) propose a solution to monitor the health of an aircraft engine using
Whale Optimization Algorithm based Artificial Neural Network (WOANN), which according
to the authors, has not yet been used to predict aircraft engine failures. Data from 47 flights
were used, containing eight different engines, and data were collected from both healthy and
defective engines. The method can be used in squares for day-to-day monitoring of engine
health, in near real-time.

The authors compare the proposed solution with other commonly used algorithms such as
k-nearest neighbors algorithm and artificial neural network based on back propagation. As a
result, the authors point to a lower error of the proposed WOANN method when compared to
existing algorithms.

Fernández-Barrero et al. (2021) present a distributed architecture to handle with the wide
variety and complexity of pieces of military equipment, validating the architecture using war-
ships use case. For this, the SOPRENE program was created, which aims to allow the use
of the prediction solution in large range of naval equipment, in a horizontally and vertically
scalable way. The proposed solution must be able to detect and diagnose failures never before
experienced by any ship in the fleet. Such tasks must be integrated within the logistical and
operational decision process. The data used by the program is available in a data supervision
and analysis center and gathers operational information from each vessel and part. CBM data
such as vibration and laboratory oil analysis are also used.

Figure 25 shows a modular architecture, where each piece can be removed without compro-
mising its flow. The architecture is divided into three main parts, the data preparation module
being responsible for processing the input data, which involves activities such as structuring the
data, cleaning, filtering and storing the data. This data is then sent to the two other parts of the
architecture, the operation and the training.

Both operation and training are divided between predicting the future state of the engine,
detecting anomalies in that future state, and diagnosing faults. As the architecture is flexible
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in the prediction technique, the end user can use regression techniques, neural networks, define
training data, window size of historical data. This is done because each piece of equipment
requires a different approach.

The architecture was tested in two scenarios, Diesel Engine for Propulsion and Diesel En-
gine for Power Generation where linear models and LSTM were used for failure prediction,
obtaining generally good results. However, some open issues are the lack of a real-time opera-
tion, being dependent on complex processing being done offline in a centralized datacenter.
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Figure 25: SOPRENE architectural overview, adapted from Fernández-Barrero et al. (2021)

Ranasinghe et al. (2020) presents an architecture for health and usage monitoring system
(HUMS) along with diagnostic and prognostic algorithms that use data gathered from a sensor
network embedded in a ground-based tracked armored personnel carrier (APC) to assess the
health of its power train system. The authors also present a virtual dynamometer that is used
to estimate the engine torque output, which is considered to be the primary indicator of engine
health, and when used in conjunction with other sensed variables, virtual dynamometers are
applied to determine the maximum torque output from the engine.

Figure 26 shows three steps, the Sensor network step is responsible for collecting data from
the various sensors installed at the component level, giving this data a sense of location in
space and time through the use of the global navigation satellite system. The next part is pre-
processing the data, filtering, fusing, and analyzing the data. The data are then used by the
next step, to identify speeches and make predictions, allowing the prediction of RUL of the
components.

The results obtained by the authors show how the use of several sensors, and data fusion to
construct a model-based to the virtual sensor to measure the force, torque, or power generated
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Figure 26: HUMS overview, adapted from Ranasinghe et al. (2020)

by the engine of a vehicle helped in the development of diagnostic and prognostic algorithms
for the power train. The next step is the use of digital twins of vehicle systems, with this real-
time measurements from sensors as inputs and produce predictions or estimations of the system
responses to various inputs and external conditions.

Akrim et al. (2023) presents, to the best of our knowledge, one of the first works that use
Self-Supervised Learning in the RUL estimation process. The authors’ objective in the work
presented is to overcome the challenge of lack of data, and to this end, they propose using
Self-Supervised Learning. As mentioned by the authors of the work, the use of Self-Supervised
Learning has shown promise in several areas but still presents a limited number of proposals for
the task of prognosis. The authors develop the research using aluminum alloy panels subject
to fatigue cracks as a use case. The model is trained with a large amount of unannotated run-
to-failure time series data, and then fine-tuning is performed with a small amount of annotated
data.

Figure 27 presents the scheme for training and fine-tuning the model. The authors selected
the Deep Gated Recurrent Unit, which comprises a stack of GRU layers, as the fundamental
model for deep prediction. The choice was made due to the sequential properties and positive
regressive performance.
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The results showed that self-supervised learning is efficient in prognosis and can improve
the performance of RUL estimation when only a limited amount of labeled data is available.
The pre-trained models outperformed the non-pre-trained models in the RUL prediction task,
reducing the computational costs of training.

Based on the related work described and highlighting the characteristics of each work, it is
clear that, despite being one of the critical steps in a domain of use such as the military, the
challenges related to new environments were not addressed. Suppose the issue of simulating
the degradation of a vehicle in a new scenario needs to be addressed. In that case, the prediction
capacity is compromised, with only one of the related works employing PFM for training in
new scenarios similar to existing ones, as shown in the table 5. The approach we propose stands
out in tackling the problem of predicting failures with a data-driven approach considering asset
performance scenarios, where there may be a need to estimate the RUL of an asset in new
environments, where only data from similar environments are available.

Table 5: Comparison with related work

Reference Framework Generic RUL Approach PFM
Model-
drive

Data-
drive

Nixon et al. (2018) Yes No Yes No Yes No
Woldman et al. (2015) Yes Yes Yes Yes No No
Tinga et al. (2014) Yes Yes Yes Yes No No
Pal et al. (2019) No No No No Yes No
Behera et al. (2019) No No Yes No Yes No
Balakrishnan et al.
(2021)

No No Yes No Yes No

Fernández-Barrero
et al. (2021)

Yes Yes Yes No Yes No

Ranasinghe et al.
(2020)

Yes No Yes Yes Yes No

Akrim et al. (2023) No Yes Yes No Yes Yes
Proposed approach Yes Yes Yes No Yes Yes
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4 MILPDM ARCHITECTURE

This chapter will present the MILPdM, an architecture model for PdM. The first section
presents the proposed architecture, detailing the functioning of each layer and its sub-processes.
In the second section, we show a case study of time-series predictions through the use of con-
solidated learning algorithms in the literature. The obtained results demonstrate the feasibility
of the proposed prediction of models, making the failure prediction possible.

Figure 28 presents a high-level visual description of the proposed architecture. This ar-
chitecture is divided into six interconnected layers, the Private cloud layer, the Communication

layer, the Data collection layer, the Processing layer, Simulation layer, and the Decision-making

layer.

The objective of the architecture is to cover all stages of the failure prediction process, with
each of the five proposed layers having distinct, interconnected, and dependent functions on
each other. However, our primary focus will be on the private and processing layers for the
approach presented here. In these two layers, the difference lies in relation to architectures
proposed in the literature, through the prediction of RUL with traditional learning models and
the ability to use foundation models in prediction in new scenarios.

Furthermore, the presented architecture covers the entire failure prediction process, so the
following subsections detail how each layer works and interacts with each other, enabling a
failure prediction system.

4.1 Data collection

The first layer, called data collection, is responsible for maintaining direct contact with the
physical world, collecting data that the other layers will use. Sensors connected to military
equipment such as vehicles, planes, or ships perform data collection. Monitoring takes place
constantly, and data is sent to the real-time prediction system.

The sensors used to monitor an asset are varied, depending on the monitored parameter. The
monitoring of a vehicle’s engine health uses data from sensors, such as oil viscosity or vibration,
either independently or jointly, by using data from more than one sensor simultaneously. As in
an operating scenario, assets move dynamically, the number of monitoring assets can change
frequently, and the number of sensors collecting real-time information can abruptly scale, so a
WSN is used to control this dynamic and heterogeneous environment.

Activities such as filtering, treatments, and data preprocessing can be performed even at the
time of data collection. This preprocess allows the use of resources available at the collection
site to reduce the dimensionality of the data and its volume. These actions are helpful to mitigate
problems that can occur when transmitting a large volume of data, given that an asset operating
in the military context can operate in places where access to a data network is limited.

The data sent by the data collection layer, with the information that gives context to the
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Figure 28: Architecture overview

data, must be stored in a database. It is this context, of knowing which sensors a given data was
collected and which asset or component the sensor is monitoring, that allows the construction
of more robust failure prediction models, and as a consequence, with greater accuracy in the
task of predicting the health degradation of the monitored assets.

This data is then sent to a private cloud database. Given an environment with possible
infrastructure limitations, like no cable connections, the sending of data can be made by a
wireless network through the use of a broker that ensures access to a heterogeneous wireless
network with quality of service (QoS) (KUNST et al., 2016). All the data stored in the cloud is
made available for use in the remaining layers of the architecture.
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4.2 Processing

In the Processing layer, the monitoring data captured by the data collection layer and stored
in the private cloud is processed and then used as a dataset input for the failure prediction
models. The prediction model does not use the original data that comes from the data collection
layer, but the previously processed data. This task is essential when dealing with a large volume
of data, creating new features from a dataset, or reducing its dimensionality. However, we do
not rule out the use of the original data, being always necessary to understand the context in
which the system is operating to create the prediction model.

There is a wide range of algorithms proposed in the literature that have the objective of
predicting failures. We can mention recurrent neural network algorithms, such as the long
short-term memory (LSTM), and decision tree algorithms like random forest (RF). The LSTM
algorithms have as a characteristic the ability to handle time series, which is due to the ability
to consider the weight of each input for a longer time within the neural network through the use
of so-called gates.

Unlike LSTM, which is a sub-type of a neural network, RF is an algorithm that uses decision
trees to solve classification tasks, and in the case under study, to solve regression tasks. Both
LSTM and RF are widely used in the literature for the task of time series prediction (DALZO-
CHIO et al., 2020).

The training of LSTM and RF algorithms allows informing a series of parameters, and the
training of each algorithm uses a range of values and combinations of different parameters.
The application of the hyperparameter process to training allows training the LSTM and RF in
a variety of models to find the model capable of predicting with the less possible error. The
decision-making layer receives the prediction results of the best model and, if necessary, the
decision-making layer can also receive the dataset, where the maintenance team can follow the
evolution of asset degradation.

4.3 Decision-making

The decision-making layer involves analyzing machine learning-based failure prediction.
One of the goals of this layer is to be user-friendly, making data processing and predictive model
results available visually, for example, using dashboards that allow monitoring equipment health
status. The monitoring process typically involves the definition of normal operation thresholds,
which is supported by MILPdM architecture. Another important aspect of the proposed ar-
chitecture is offering insights for the maintenance team. Towards that, MILPdM allows the
implementation of warning systems triggered whenever a failure is imminent. In this way, the
responsible teams are notified in advance, enabling decision-making to avoid, when possible, a
failure to occur. When it is impossible to prevent, it seeks to mitigate the consequences.

In the feedback process, the prediction information of the models used to carry out the
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maintenance is confirmed or not by the maintenance team, and the private cloud stores this
information. This task helps in the learning process, informing the assertiveness of the models
in case of confirmation of the need for maintenance or case of a false alert, retraining the models
with new data. As the operating environment is dynamic, the feedback step is also essential to
ensure that the learning models cover as many situations as possible. This process allows the
reuse of models already trained in the future, applying in scenarios and assets similar to those
previously monitored.

In the military domain, the anticipation of failure can prevent an asset from entering a mis-
sion if a failure creates a risk to the troops and planning fleet maintenance and maintaining a
minimum operational state. A decision-making system can give valuable information in these
situations, making the decision-making layer crucial in a failure prediction system.

4.4 Communication

The communication layer is represented the most varied forms of existing mobile network
operators for data transmission. However, a variety of kinds of resources are present as the pro-
posed architecture is intended for military use. In addition to 4G and 5G LTE-based networks
or IEEE 802.11 and IEEE 802.22 base stations, military frequencies availability are required.
The licensed shared access pool of military frequencies is a network resource to be allocated
whenever necessary (KUNST et al., 2016).

All data transfers between layers need the communication layer, and to access the communi-
cation layer, it is necessary to go through a multilevel resource broker. The broker is the result
of research previously developed by the authors of this paper, and its application is aimed at
ensuring the quality of service in data transmission in heterogeneous network scenarios, taking
into account the needs of the network for military purposes (KUNST et al., 2016). An evolution
of the broker, designed for real-time video surveillance applications for smart cities and military
use in border control, already exists (KUNST et al., 2018).

Figure 29 shows the broker architecture with three levels : (I) Update Level, (II) Resources
Level, and (III) Decision Level. The Update Level is responsible for collecting parameters
from network operators, allowing the broker to make appropriate decisions on sharing network
resources. The broker applies a usage profile concept, where the network usage profile is defined
through the network usage history, minimizing the possible effect of abnormal traffic behavior.

Resource Level divides all network users into two distinct classes. The first class is the
primary user, composed of users who have a license determined by a regulatory agency to use
a frequency spectrum. The second class is the secondary users, who make use of the available
network opportunistically. The broker also must know that there are three types of possible
frequencies in the same geographic area, those of exclusive use, those of shared use, and those
of exclusively shared use that serve as the basis for the Licensed Shared Access (LSA). LSA
is an approach that grants to a limited number of devices individual licenses to access network
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resources that are already allocated to one or more incumbent users.

Three databases store the data provided by the Update Level, a database containing primary
user information, a database containing secondary users, and the LSA pool database which
stores information about exclusively shared access frequencies. The LSA pool database in-
formation is accessed, for example, when primary users need to complement their network
resources. The data from the three databases are then made available to the Decision Layer.

It is at the Decision Level that requests for network resources are processed. This level has
four components. The resource request component is responsible for deciding which network
resources will be designated for sharing, taking into account the QoS needs in addition to defin-
ing the priority of the request. In the resource pricing component, the use of a favorite model
is proposed, enabling network sharing, considering that the available networks will coexist for
a long period. This model allows reciprocity and payment control is not necessary, simplifying
the LSA process.

The resources assessment model, the third component of the Decision Level, evaluates
through simulations the number of resources controlled by each mobile network operator, ap-
plying models consolidated in the literature. Finally, we have the Resource Provisioning and
Resource Controller algorithms. The Resource Controller component, which is responsible for
receiving the resource request, uses the information stored in the databases of the Resource
Level to define which are the resources that serve the requested demand through the execution
of the Resources Controller Algorithm. The result of the algorithm is an array of candidates.
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This array is the input to the Resources Provisioning Algorithm, which will define the most
suitable one according to demands such as QoS and transmission cost.

In a dynamic environment like the military domain, that data can be collected in real-time,
stored in a private cloud, and then consumed by a command and control center safely, and with
a QoS, we use the broker. In this way, all information that travels through the network passes
through a layer that aims to guarantee the delivery of information.

4.5 Private Cloud

Considering the critical nature of data within the military domain, adopting a private cloud
infrastructure emerges as a strategy to ensure the security and privacy of information access.
The control supports this strategic decision by governing data technologies and protocols to
create a more robust cloud architecture. However, it is important to note that this heightened se-
curity posture comes at a higher cost of deployment when compared to commercially available
cloud alternatives (ĎULÍK; JUNIOR, 2016).

All communication between the private cloud and other layers of the MILPdM architecture
takes place through the broker. As it is a private cloud, there is a need to guarantee access
for data storage and data access. Thus, redundancy in communication is necessary, using both
wired and wireless networks, such as satellites. Each network type has different capabilities.

As each network has a different capacity, the broker is responsible for defining, within the
needs of each request, which available network will be used. Training learning models require
a large amount of data, while storing the results requires less network capacity. The broker’s
responsibility is to define which network will meet the needs of each request.

All the data needed to train machine learning models is stored in the private cloud. This
includes raw data collected from the physical environment. The processing layer uses the pri-
vate cloud to access this data to predict failures. Finally, the decision-making layer stores the
prediction results and feedback from the maintenance team in the private cloud.

4.6 Simulation

The simulation layer is responsible for predicting the remaining useful life of equipment in
unknown operational scenarios. It is necessary to fine-tune the PFM using previously stored
data from assets already monitored in different contexts to achieve this capacity of predicting
remaining useful life. Three steps compose the simulation process.

The first step uses actual data stored in Private Cloud to create new scenarios. Creating new
scenarios works using a large amount of data from different contexts, such as a vehicle oper-
ating in high-temperature scenarios in a desert, in rugged terrain, or with variations in altitude.
Meanwhile, the vehicle has little data available in scenarios such as a tropical environment of
high temperature and high humidity. This step prepares the data available for fine-tuning the
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foundation model.
In the foundation model step, we use artificial intelligence (YOON; JARRETT; SCHAAR,

2019) to simulate behavior in unknown operational scenarios, as in our example, in a tropical
environment. This layer does not generate new data in contexts without data available. How-
ever, it helps prevent equipment or vehicles from being used in situations that might not perform
well, allowing for more accurate mission planning.

The purpose of the PFM in this layer is to generate data and predict the behavior in unknown
operational scenarios. According to section 3, PFM has been used in tasks that generate text
and images, demonstrating promising results. The expansion of the use of PFM in the last
year resulted in the launch of the first models rated for temporary series. In this work, we will
evaluate the feasibility of using TimeGPT PFM to predict data in different scenarios for which
the model was trained. To validate this capacity, we compare results from LSTM neural network
models in this work.
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5 RESULTS

This section presents the obtained partial results by the PdM architecture. As presented
above, the proposed architecture is composed of five layers. However, the focus of the executed
experiments is in the processing layer and simulation layer.

Therefore, we divided it into two sections, the first presenting the results obtained on the
processing layer and the second on the private cloud layer.

5.1 Processing Layer Results

At this stage, the goal is to assess the feasibility of the processing layer of the architec-
ture. This layer performs a series of tasks to predict a failure, including data processing, data
preparation, the training of learning models, and finally, failure prediction.

All the algorithms used in this work for data processing, graphics generation, and the LSTM
and RF learning algorithms are built using Python programming language. Specifically for data
manipulation and dataset processing, the Python Data Analysis Library is used. For tests with
the LSTM Keras library was used, and for the RF test, the scikit-learnig library was chosen.

We evaluate the architecture through two cases, the first use case uses data previously col-
lected and made available in the IMS bearing dataset. The IMS dataset contains the health
degradation data of an asset from its normal state until the moment of its failure and is a widely
used database in the literature for diagnosis and prognostic tasks. The second use case we
created by collecting data from a path model.

5.1.1 Case study 1: Bearing dataset

In more detail, the IMS dataset has run-to-failure data of rolling in an AC motor and was
made by the University of Cincinnati and released in 2014 (LEE et al., 2007). Figure 30 show
the AC motor.

Bearing 1 Bearing 2 Bearing 3 Bearing 4

Radial Load

Accelerometers
Thermocouples

Figure 30: The bearing test of IMS dataset (QIU et al., 2006)
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The dataset divides into three other smaller datasets, where each of these smaller datasets
has a set of files representing a data collection for one second. In the results presented in this
work, only the data from dataset one was used, which is composed of data collected from eight
vibration sensors installed in four bearings, thus having two sensors per bearing. The sensor
collection frequency is 20Khz, and each collection happens at intervals of five or ten minutes.

The dataset has 2156 files, resulting in more than 44 million data stored, where each data
has eight records, one for each sensor. Due to the large amount of data and the computational
limitation for training learning algorithms with the complete dataset, it is necessary to carry out
a set of actions to reduce the dataset and simultaneously guarantee the prediction capacity of the
learning algorithms. Figure 31 shows the process of reducing the dataset until the final choice
of the learning model.
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Figure 31: Failure prediction flowchart

As the first step of the process, we studied the original dataset to perform the reduction. The
dataset has sensing information from 8 accelerometers that, in pairs, monitor four bearings. The
first step is to identify the sensors that have fault data. Analyzing the dataset, we identified that
one of the defects occurs specifically in bearing 3. This way, we remove all data from sensors
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not attached to bearing 3. Thus, the second task of preprocessing the data was eliminating
records from the other sensors and working with only one sensor from bearing 3, reducing the
dataset by 75%. Figure 32a presents the original dataset with more than 44 million data from
one of the bearing number 3 sensors that we use in the experiments of this work.

With the dataset ready, containing the data from a bearing 3 sensor, the next step is the
data size reduction through the collection of data sampling. The data size reduction allows the
models to be computationally viable to perform the training and viable to perform predictions.
We perform several tests empirically to generate a database with a smaller volume of data,
allowing the creation of models in a viable time. Figure 32b shows the final result of the tests,
where a total of 646,800 points compose the final dataset.
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Figure 32: Dataset

As can be seen, the figure 32b presents a shape close to the original dataset (32a). This
visual inspection is carried out to determine whether the data reduction process was able to
generate a dataset smaller than the original and with the same behavior. If the dataset resulting
from the reduction process is the same as the original dataset, the dataset reduction process must
be repeated.

The last step before using the data for training is the dataset balancing. As can be seen from
the shape of the graph shown in Figure 32b, from the beginning of the collection to the data
point around 400 thousand, it has a behavior with few changes. To make the training process
less costly, we chose data from the 400 thousand record to the end of the dataset as training
data. This decision maintains the dataset with coverage in the behavior considered normal and,
from the 500,000 records to the end of the dataset, the behavior is considered to be a failure.
We use the data resulting from the processing to train the LSTM and RF ML algorithms.

The algorithm training stage generally involves defining parameters, training, collecting,
and evaluating results. The process is repeated to minimize errors. At the end of the training,
the results are evaluated. If the ability to estimate the RUL is not achieved, the process returns
to the dataset generation stage until models capable of estimating the RUL are reached.

The first step in LSTM training is to use a hyperparameter technique to find the best pa-
rameters combination. There are several parameters to train an LSTM network, such as the
number of epochs or batch size. Thus, we define the structure of the network, such as how
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many layers and how many neurons should each layer have. In this process, each parameter of
the learning model receives a set of possible values to be trained, always aiming to reduce the
error generated by the network.

Figure 33 presents the architecture used in this work, with two LSTM layers, with one with
50 neurons. After preliminary tests did not identify a decrease in error with a more significant
number of layers of neurons, we define the number of neurons as 50. There is also a dropout
layer after the LSTM layer to avoid overfitting. After defining the network layers, to achieve
the lowest possible root mean square error (RMSE), it is necessary to define the best parameter-
ization of the model. RMSE is the metric adopted to determine the best model, where the goal
is to get as close as possible to the value of zero.

lstm_input: InputLayer

input: [(500, 1, 100)]

output: [(500, 1, 100)]

lstm: LSTM

input: (500, 1, 100)

output: (500, 1, 50)

dropout: Dropout

input: (500, 1, 50)

output: (500, 1, 50)

lstm: LSTM

input: (500, 1, 50)

output: (500, 1, 50)

dropout: Dropout

input: (500, 1, 50)

output: (500, 1, 50)

dense: Dense

input: (500, 1, 50)

output: (500, 1, 1)

Figure 33: LSTM neural network architecture

Using a lag of 1 shows the worst choice for the lag parameter. The best results were mostly
with the trained models with a value of 100 for the lag, with a small difference to the error
obtained with lag 10. Figure 36 presents more clearly the error difference.

The model created with parameters of 100 for lag, 100 for epochs, 500 for batch size
achieves the lowest RMSE value, as shown in the input layer in figure 33, and 50 for the value of
the neurons in the LSTM layer, reaching a value of 0.15015 for the RMSE. The slightest error
is slightly below the overall average of lag 100. Figure 34 shows that the loss stabilizes near the
middle of the values zero and 200, which confirms the fact that models with 100 epochs have,
in general, the smallest errors.

Figure 35a presents the result of the prediction performed by the model with the lowest
RMSE, constructed according to the architecture shown in the Figure 33. The original test
values are shown in the red line, with more remarkable aptitude, and predicted values in blue
with lesser amplitude. In the figure, it is possible to observe that the predicted value generally
follows the original dataset, and its use in architecture is promising.

As observed in the experiments performed with the LSTM, the RF presented the best results
when the lag value used is equal to or greater than 10, reaching an RMSE of 0.1675. In addition
to lag 10, the model that obtained the lowest RMSE value is trained with the values of 0.1 for
the Min samples split parameter, Max features as "auto" and the parameter Max depth as 10.
Figure 35b presets the result of the prediction generated by the model with the lowest RMSE,
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Figure 34: LSTM Loss vs epoch

where we have the predicted data in the blue line and the data from the original dataset in the
red line.
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Figure 35: Test vs Predict data point by model

Figure 36 presents the obtained RMSE values for all tested models, grouped by the lag value
of 1, 10, and 100. As can be seen, the models had slight RMSE variation in the hyperparameter
process. That is, the parameters of the models had less influence on the RMSE of the models
than the lag value. This fact is even more evident in the results obtained by the predictions of
the RF models, where the variation within each lag value happens only after the fourth decimal
place of the RMSE. In addition, when training models with lag parameters as 100, there is an
increase in the computational cost for training the models, which is not justified. Given that, on
average, the RMSE obtained with a value of 10 for the lag has a similar RMSE.
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Figure 36: Mean and standard deviation of LSTM and RF models

5.1.2 Case study 2: Truck model

To create the truck use case, we used a Raspberry Pi model 3 with a Sense Hat (PI, 2015)
for data collection, using a power bank to supply energy. Figure 37 shows the sensor positioned
on a military truck model with a ratio of 1:12 to a real truck, and how we store the data through
a Message Queuing Telemetry Transport protocol (MQTT) Broker. With the sensor attached to
the truck model, we simulate scenarios of uses.

Asset

Publish 
Sensor Data

MQQT 
Broker

Subscribe

Stores
Sensor Data

Receive 
Sensor Data

Figure 37: Truck with sensors
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Figure 38 presents the flow between collecting data from the truck, processing the data,
performing the training process, and collecting the results.

An MQTT broker sends the data collected by the sensors attached to the truck to the edge
device. The data is preprocessed at this stage and then sent to cloud storage. We simulated use
cases and collected data with the truck displaying different behaviors, such as an empty truck, a
loaded truck operating on uneven terrain, and a tire failure simulation. For data collection with
tire failure, we simulated a bubble in the tire, where the defect gradually gets more significant
for each collection performed until a failure point.

Truck data collection

Collect sensor data Storage dataSimulate truck
behavior

Data processing

Group use cases in a
database

Vibration data
extraction

Transform data to
positive value

Grouping by one
second, and extract

mean values 

Extract trend data
using seasonal

decompose

Machine learning model training

Definition of model
parameters

Train the model with
different combination

of parameters

Generate the
prediction

Colect results

MinMaxScaler
standardization 

Figure 38: Flow between obtaining data and collecting results

We train the learning models with a dataset of several collections with different behaviors,
intending to create a dataset representing different behaviors. Figure 39a presents the complete
dataset, with 280679 points. Each second of the collection has between 20 and 30 points.

(a) Training dataset (b) Final dataset (c) Tire failure dataset

Figure 39: Datasets
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The training process occurs in two stages. In the first phase, we process the dataset and
extract features. At the end of this process, a new dataset is generated for use in the next model
training phase. We detail these two phases in the following two subsections.

5.1.2.1 Data processing Phase

The data processing phase starts with the feature extraction process, in which we group the
use cases into a single dataset and extract the vibration data from that dataset. Next, we reduce
the dimensionality of the dataset so that each data point represents one second of collection. We
perform two steps for dimensionality reduction. First, we obtain the absolute value of each data
point, changing the negative values to positive values. In the second step, we obtain the mean
values of a second data collection, apply the seasonal decompose strategy, and obtain the trend
value. Ultimately, we normalize the dataset. Figure 39b presents the dataset after processing
the data, with 12188 points, each corresponding to one second of collection. This dataset is the
model training dataset.

To evaluate the response of our model to failures, we collected data from the truck in a
normal state until reaching the moment when the wheel was no longer able to turn correctly,
making it impossible to use the truck. Figure 39c presents the vibration data of the vehicle with
the defect after going through the same data processing performed on the test database. The
defect was increased at each collection, which the tendency for increased vibration can observe.

5.1.2.2 Training Phase

The training process’s first step is defining the failure prediction strategy. We execute two
distinct strategies. In the first strategy, the learning model is trained to predict the next value
of the time series, and then the predicted value is used as input for predicting the next value,
and so on. However, after the first few seconds, the model tends to generate an incorrect value,
mainly when the model input contains only previously predicted values without actual values.
Figure 40 shows the result of this first strategy.

However, when we predict only one value at a future point far from the current point, the
result is more accurate, so we adopt the second strategy for failure prediction. Figure 41a
presents the test results described in this section. We performed the tests seeking to predict 1
second in the future, 10 seconds in the future, 120 seconds in the future, and 240 seconds in the
future.

The smallest root mean square error (RMSE) is obtained when predicting one second into
the future, and the most significant error occurs when predicting a point 240 seconds into the
future. That is, the further into the future the point to be predicted, the greater the error. Thus,
according to experts, we use the value of 120 seconds in the future, which allows prediction in
advance concerning the current moment.
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Figure 40: Result of first predictions strategy

After defining the prediction strategy, the next step in LSTM training is to define the network
structure, such as how many layers and neurons each layer should have. Furthermore, several
parameters can be used to train an LSTM network, such as the number of epochs or batch size.
Thus, a hyperparameter technique was used to find the best parameters combination. In this
process, each parameter (Table 6) of the learning model receives a set of possible values to be
trained, always aiming to reduce the error generated by the network.

(a) By Lag (b) Best Model

Figure 41: Test vs Predict data point by LSTM model

Experiments to define the number of layers of the LSTM with the smallest error are per-
formed with a fraction of the possible parameters. When defining the number of LSTM layers,
we train the model with the parameters mentioned in the table 6.

The lowest obtained RMSE value was achieved by the model created with parameters of
100 for lag, 32 for epochs, 15 for batch size, and 50 for the value of the neurons in the LSTM
layer, reaching a value of 0.0707 for the RMSE.
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Table 6: Training parameters

Model Parameters Interval

LSTM

Window [10, 20, 100, 240]
Cross-Validation [10-folds]
Epochs [15, 25]
Batch Size [32, 100]
Neurons [25, 50]

RF

Window [10, 20, 100, 240]
Cross-Validation [10-folds]
Estimators [10, 25, 100]
Min Samples Split [2, 5]
Max Depth [None, 10]
Max Features [sqrt, log2]

Figure 42 shows that the loss stabilizes near the middle of the values 1 and 10, which
confirms the fact that models with more than 15 epochs have, in general, a higher RMSE value.
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Figure 42: LSTM Loss vs epoch

Figure 41b presents the result of the prediction performed by the model with the lowest
RMSE. The original test values are shown in the blue line, and the predicted values are in
orange. In the figure, it is possible to observe that the predicted value generally follows the
original dataset, and its use in architecture is promising. The RMSE applying the trained model
to the tire failure use case is 0.0707.

To compare the result of the LSTM model, we used the RF implementation for the regression
task, using the hyperparameters strategy to find the model with the lowest RMSE. Moreover,
we tested with different lag values for each set of parameters, following the same strategy used
in the LSTM training. Figure 43a presents the best model for the different lag values (10, 20,
100, 240).

RF best results are achieved when the lag value is 240, reaching an RMSE of 0.08639. In
addition to lag 240, the model that obtained the lowest RMSE value is trained with the values
of 2 for the Min samples split parameter, Max features as "sqrt" and the parameter Max depth
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(a) By Lag (b) Best Model

Figure 43: Test vs Predict data point by RF model

as 10. Figure 43b presents the result of the prediction generated by the model with the lowest
RMSE applied to the tire problem use case, where we have the predicted data in the orange line
and the data from the original dataset in the blue line. The RMSE applying the trained model to
the tire failure use case is 0.05951.

The RF model presented a lower RMSE when compared to the LSTM, but both RF and
LSTM showed satisfactory results in terms of failure anticipation capability. As seen in the
graphs presented, the prediction line follows the trends of the actual value.

5.2 Simulation Layer Results

Obtaining data on the degradation behavior of an asset from the normal state of health until
the moment of failure is a challenging task. Furthermore, IoT devices tend to generate a large
volume of data, requiring data reduction processing. This section presents the dataset used in
each use case and how it was processed and used to train the learning models.

5.2.1 Case study 1: Turbofan engine

In the first use case, we use the New Commercial Modular Aero-Propulsion System Simula-
tion (N-CMAPSS) prognostics dataset (ARIAS CHAO et al., 2021). N-CMAPSS simulates the
actual degradation of a turbofan engine. The dataset was recently released and has been used
in several previous works (NEMANI et al., 2023; PATER; MITICI, 2023; TIAN; YANG; JU,
2023). Figure 44 shows a diagram of a turbofan engine unit.

The dataset comprises eight sub-datasets; each has a set of variables divided into five types:
scenario descriptor, measurements, virtual sensors, model health parameters, and auxiliary data.
Each sub-dataset has a distinct set of units with different failures, affecting the flow (F) and
efficiency (E). The failures involve five rotating subcomponents: fan, low-pressure compressor
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Figure 44: Turbofan engine unit, from Arias Chao et al. (2021)

(LPC), high-pressure compressor (HPC), low-pressure turbine (LPT), and high-pressure turbine
(HPT). Table 7 presents an overview of the data.

Table 7: N-CMAPSS Dataset Overview

Name
Fan LPC HPC HPT LPT

Size
E F E F E F E F E F

DS01 X 4.6M
DS02 X X X 6.5M
DS03 X X X 9.8M
DS04 X X 10.0M
DS05 6.9M
DS06 X X 6.8M
DS07 X X X X X X 7.2M
DS08 X X X X X X X X X X 35.6M

5.2.1.1 Feature engineering and modeling

As the N-CMAPSS comprises sub-datasets, since each sub-dataset comprises millions of
data, it is necessary to reduce its size. To reduce dimensionality, we perform a set of tasks on
the data so that, in the end, a set of data that is computationally viable to be used is generated.

Figure 45 shows the dimensionality reduction process performed. All sub-datasets are
merged into a new dataset as part of this process.

After dimensionality reduction, we used random forest regression to determine the impor-
tance of each feature and select those that to be used as inputs to the machine learning models.
Figure 46 presents the 15 most essential attributes obtained with the DS08 sub-dataset, where
closer to 1, the greater the importance of the attribute for estimating the remaining life cycles.
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Figure 45: Flow between obtaining data and collecting results

The figure presents data from the DS08 sub-dataset as all possible failure behaviors exist in
the N-CMAPSS dataset.
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Figure 46: Dataset DS08 feature importance

Table 8 presents the selected features. The selected features fall within the unobservable
model health parameters θ. These parameters fall into the class known as quality parameters
and are used to simulate the deteriorated behavior of the system.

In conjunction with the features in the table 8, we use auxiliary information such as flight
class in training the models. The dataset has three flight classes: fight class 1 to short flights at
low altitudes and speed, flight class 2 to longer flights at higher altitudes, and flight class 3 with
the longest and highest flights.

Figure 47 shows the final result of the dataset pre processing. In the figure, one can observe
the different cycles of each unit das 61 existentes in the dataset and which feature is most
important for measuring health degradation. The lower the value of each feature, the fewer
usage cycles remain for the monitored unit.

Figure 48 shows the remaining cycles of just the first turbofan of the 61 turbofan engine
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Table 8: Selected features

Type Symbol Description

Model health

fan_eff_mod Fan efficiency modifier

parameters

fan_flow_mod Fan flow modifier
LPC_eff_mod LPC efficiency modifier

LPC_flow_mod LPC flow modifier
HPC_eff_mod HPC efficiency modifier

HPC_flow_mod HPC flow modifier
HPT_eff_mod HPT efficiency modifier

HPT_flow_mod HPT flow modifier
LPT_eff_mod LPT efficiency modifier

LPT_flow_mod HPT flow modifier

units that make up the complete dataset. It is possible to see how the value of the HTP_eff_mod

feature drops as the number of cycles remaining in the unit decreases. The drops in the value
demonstrate the high correlation between remaining cycles and the health degradation features
presented in the table 8.
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Figure 47: Final N-CMAPSS Dataset

5.2.1.2 Model training

To train the learning models, we separated the dataset into two parts. The training part used
only data relating to class 1 and class 2 flights. Therefore, the generated model does not know
the behavior of the data on class 3 flights.

As data input, we have the variables in the table 8 together with the flight class. The model’s
output is the new feature remaining_cycles. We train the LSTM models using the hyper param-
eterization process with the parameters shown in table 9.
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Figure 48: Remaining cycles from one unit of N-CMAPSS DataSet

Algorithm 1 presents the process of training and collecting the result, where X represents
the attributes, and Y represents the value to be predicted. Use case 2 uses the same algorithm
and parameters in the model training process.

Table 9: LSTM parameters

Parameter Values
Neurons 25, 50
Epochs 10, 25, 50
Batch 16, 32, 50
Lag 1, 5, 10, 25

We only use the class 1 and 2 flight data when training the machine learning models. The
model resulting in the lowest RMSE predicts the remaining cycles of class 3 flights. This way,
the learning model predicts the remaining flight cycles in a scenario not in the training data.

The TimeGPT model uses the same data set, with class 1 and class 2 flights for training.
Furthermore, we use the fine-tuning process to customize the model to our context. After this
process, a small data set with class 3 was made available for the model to predict the time series.

One of the characteristics of the TimeGPT model is the need for a timestamp feature, so
we created a feature with fake data to meet this demand. However, as in this use case, the
useful lifetime is calculated by the number of cycles remaining. After obtaining the TimeGPT
prediction values, we again convert the values of type timestamp to the remaining number of
cycles until failure.

5.2.2 Case study 2: Bearing dataset

In this use case, we use the same dataset presented in section 5.1.1. The dataset comprises
three sub-datasets. Dataset 1 has two accelerometers allocated for each bearing (x- and y-axes)
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Algorithm 1 LSTM manual parameterization

splits← TimeSeriesSplit(n_splits = 3)
neurons← [25, 50]
epochs← [10, 25, 50]
batch_size← [16, 32, 50]
lags← [1, 5, 10, 25]
for n in neurons do

for e in epochs do
for b in batch_size do

for l in lags do
for train, test in kfold.splits(X, Y ) do

model← Train(n, e, b, l, train, test)
rmse← Evaluation(model)
results.append(rmse)

and one accelerometer per bearing for data sets 2 and 3. All failures occurred after surpassing
the designated lifespan of the bearings, which exceeds 100 million revolutions.

Upon concluding the testing in dataset 1, an inner race defect manifested in bearing 3, along
with a roller element defect in bearing 4. In dataset 2, an outer race failure was observed in
bearing 1, while dataset 3 documented an outer race failure in bearing 3.

5.2.2.1 Feature engineering and modeling

Working only with raw data is computationally challenging, requiring a long time to train
the models, so dimensionality reduction and feature extraction are necessary. Figure 49 shows
the feature extraction process.
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Figure 49: Flow between obtaining data and collecting results
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As the first processing step, we extract the absolute value for each value collected from the
dataset. This way, we only work with positive values. In the second step, we extract the mean
value from each sensor from each file. Each file is transformed into a single value in the new
dataset.

Next, we merge all sub-datasets into just one. As dataset 1 has two sensors in each bearing,
we use the value of one of the sensors. Thus, our dataset has four features corresponding to
one sensor per bearing. Ultimately, we generate a new feature, representing the number of
collections remaining until the moment of failure. This new feature cycle performs the same
role as in use case 1 (5.2.1). Our objective is for the models to be able to predict the number
of cycles remaining until the moment of failure. As each collection occurs every ten minutes,
each cycle represents ten minutes.

Figure 50 shows the final result of the database. We name each sensor according to the
bearing in which the sensor is placed. It is possible to observe each of the three datasets and,
through the sensor’s increased vibration amplitude, identify which bearing has a fault.
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Figure 50: Final Bearing Dataset

5.2.2.2 Model training

The training parameters of TimeGPT and LSTM models follow the same values as those
used for Use Case 1 (5.2.3.1). As the bearing dataset comprises three sub-datasets, the model
training uses data from Dataset 1 and Dataset 2, excluding data from Dataset 3. The objective is
to verify the prediction capacity of LSTM and TimeGPT using the values from the dataset that
were not used in training.
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5.2.3 Simulation Results

All tests with the dataset and algorithms were performed in the Visual Studio Code envi-
ronment, using Python version 3.9.18. For the LSTM we used the Keras library end for the
TimeGPT we used the nixtlats library.

For the LSTM model, we define the number of layers through empirical tests, where we use
a fraction of the parameters of the hyperparameterization process for each new layer added to
the model. Once we identified the stabilization of the reduction in the RMSE value, the number
of layers of the architecture was defined. This process occurs in both use cases.

5.2.3.1 Case study 1: Turbofan engine

After generating a training dataset containing only flights from class 1 and class 2, we added
a class 3 unit to the dataset so that the TimeGPT model can estimate the following 24 remaining
cycles. To do this, we use the features presented in the table 8 with exogenous variables in
conjunction with the flight class.

In the TimeGPT model, it is possible to determine how many fine-tuned cycles can be used.
In this scenario, we gradually increased the fine-tuning steps, starting with 0 and going through
1, 5, 10, 20, 30, 40, and 50. As we did not detect a decrease in the error, and the increase in
the number of fine-tuning steps tune generates a higher computational cost, we chose not to
increase the fine-tuning steps. Figure 51a shows the remaining cycles and the lines predicted
by each model with different fine-tuned values. It is possible to observe no significant change
in the prediction when using different fine-tuned values. The model with the lowest RMSE was
obtained using a fine tune of 40 steps, reaching a value of 0.02140.
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Figure 51: Prediction of remaining cycles

To compare the results obtained with TimeGPT, we used the LSTM model. We use class 1
flight data and class 2 flight data to train the model, keeping class 3 flight data out of the training
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process. After selecting the data, we train the model with the hyperparameterization process.
The model with parameters 25 for Neurons, 25 for Epochs, 32 for Batch, and 1 for Lag achieves
the lowest RMSE. This model is now unaware of the behavior of the class 3 scenario. For all
training, we use a time series cross-validator with value 3. Figure 52 shows the structure of the
LSTM model used to achieve the lowest RMSE value.
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Figure 52: LSTM model structure

We use the selected model to predict the remaining cycles of a unit of a class 3 flight. In this
scenario, the RMSE value obtained by the model trained with the following parameters: 25 for
neurons, 25 for epoch, 32 for batch size, and 1 for lag is 0.07371. Figure 51b shows the models
with the lowest RMSE values.

In this use case, it is possible to identify how the TimeGPT prediction values are closer to
the actual values until the end of the test dataset. At the same time, the LSTM model tends to
move away from the actual values as time progresses. In this case, it is essential to highlight the
existence of the number of features in the dataset, providing more information to the models.
In actual application scenarios, the use of functional models becomes a viable option in the
context of predictive maintenance. More accurately anticipating the remaining useful life of the
equipment.

5.2.3.2 Case study : Bearing dataset

In the second use case, the LSTM and TimeGPT models are trained with two of the three
subdatasets. This approach ensures that the models are not aware of the failure behavior of the
third dataset, allowing us to test their ability to predict remaining cycles.

Figure 53a shows the results obtained for each fine-tune value. The use of this parameter did
not have a significant impact on the final result. The model with fine-tune value Zero received
an RMSE of 0.1978, significantly higher than the 0.02140 of use case 1. This result can be
attributed to the dataset comprising only vibration data and lacking contextual information.

Using the parameter values of 25 for Neurons, 10 for Epoch, 50 for Batch Size, and 1 for
Lag, we achieved the RMSE value of 0.2340, the lowest among all the trained models. Figure
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Figure 53: Bearing dataset results

54 shows the structure of the LSTM model used to achieve the lowest RMSE value.
Figure 53b presents the four models with the lowest RMSE values, with all models having

the same number of layers. As can be seen, following the behavior of TimeGPT, the result of
the LSTM model is significantly higher than the result of Use Case 1.

lstm_input: InputLayer

[(None, 1, 4)]input:

[(None, 1, 4)]output:

lstm: LSTM

(None, 1, 4)input:

(None, 1, 25)output:

dropout: Dropout

(None, 1, 25)input:

(None, 1, 25)output:

dropout: Dropout

(None, 25)input:

(None, 25)output:

lstm: LSTM

(None, 1, 25)input:

(None, 25)output:

dense: Dense

(None, 25)input:

(None, 1)output:

Figure 54: LSTM model structure

Unlike the turbofan use case, here, even the TimeGPT model did not present a result that
was as close to the actual value but proved superior to the LSTM model. It is essential to
highlight that in this use case, there is a smaller number of features in the dataset, which results
in a smaller amount of context information for the models. However, in actual application
scenarios, using foundation models using only sensor data becomes a viable option in predictive
maintenance. We can monitor possible future failures and assist in planning the use of the
equipment.

When evaluating the results obtained in the two use cases, we see that context information
helps the models generate more accurate results than in the one with just sensor data. The use
of datasets with only sensor data proved to be viable but with lower accuracy. In these cases,
using a foundation model proved to be more accurate. Therefore, when exposing assets in new
contexts or scenarios, using TimeGPT with its pre-trained model on a large set of time series
data proved superior in its ability to generalize past data from other contexts for prediction in
future scenarios..
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Figure 55 shows the standard deviation of the RMSE obtained in the training of each LSTM
and TimeGPT model. The standard deviation indicates a more significant impact of the param-
eters on the LSMT models. At the same time, the fine-tuning does not significantly impact the
results obtained by TimeGPT. It is also possible to observe that the TimeGPT models obtained
a lower RMSE value than the LSTM model, indicating the potential of using FM in the context
of failure prediction.
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Figure 55: RMSE standard deviation of LSTM and TimeGPT models
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6 CONCLUSION

This thesis presents a predictive maintenance architecture for the military domain called
MILPdM. The architecture aims to anticipate failures of military equipment through the use
of artificial intelligence algorithms. The architecture presented aims to mitigate problems of
lack of data, considering the adverse environment in which military equipment operates and
the challenges in simulating the vehicle’s behavior in each scenario. In this sense, MILPdM
incorporates FM into its failure prediction process, thus presenting an architecture capable of
generalizing existing data and applying a new context, generating the ability to anticipate equip-
ment degradation in new scenarios.

6.1 Contributions

The most significant contribution of the MILPdM is in its design, which considers the ap-
plication of architecture for failure prediction considering the challenges of the military domain
in its design. In this architecture we consider the use of FM in the failure prediction process and
we use the broker proposed by Kunst et al. (2018) to guarantee QoS, considering the dynamics
of a network operating in environments with the presence of enemies, such as on a battlefield.

MILPdM store the results of prediction models together with feedback from the mainte-
nance team, which makes it possible to monitor the performance of the models, and, if nec-
essary, retrain the models according to each scenario. This history makes it possible to reuse
already trained models in cases where assets operate in environments already experienced in
the past. That is if there is a model that has already received feedback from the maintenance
team, reuse in a similar scenario is possible, and if necessary, the models can be optimized with
the new data.

The architecture presents promising results for using FM in the failure prediction process
using data in contexts not previously used in model training. The use of TimeGPT surpassed the
results of traditional models in predicting time series, obtaining lower RMSE values. The results
show potential in including FM in time series prediction tasks to achieve failure prediction
capacity.

In a complementary way, the architecture allows estimate the useful life of an asset on the
battlefield in run-time by sensing the assets and sending the data through the broker to a private
cloud. The availability of data in the private cloud allows the command and control center to
have access to data in run-time, performing monitoring and making the necessary decisions
according to the current state of the health of the asset in operation.

Among other contributions, we can mention the systematic review of the literature, which
helps the academic community to identify the challenges related to the application of PdM in the
military domain, in addition to the approaches to achieve the ability to predict the degradation
of assets, and in which assets PdM is tested and with which machine learning techniques. In
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addition to the systematic review, in this work, we present the use case of the truck model. This
use case allowed the construction of a new dataset.

6.2 Future Work

Future directions involve establishing a threshold value for failure notifications, exploring
alternative machine learning models for comparison, and using new FM (RASUL et al., 2023)
for time series prediction. As the architecture proposes to operate in run-time, the training time
is a pivotal metric for determining optimal models. Evaluating the broker’s ability to determine
the best network for data transmission must also be considered so that it is possible to deliver a
run-time architecture.

With the evolution of the architecture and the development of new use cases, MILPdM will
be able to predict the behavior of different assets in different scenarios. This capability enables
new possibilities for using MILPdM, such as the inherent capabilities in this architecture lay the
groundwork for developing learning models capable of offering alternative mission scenarios
based on fleet availability and mission types. In other words, if we can determine how each
asset behaves in different environments, the architecture can receive mission parameters, such
as operating scenario and type of terrain, among other needs, and suggest the available asset that
best fits the parameters of each mission. This developed capability can increase the chances of
mission success and mitigate losses.

Finally, a prospective stage in the processing layer involves the classification of failure types
and the identification of maintenance actions necessary to restore the health condition of the
asset.

6.3 Accepted articles

This section highlights previously published articles relevant to the thesis topic and their
contribution to the field of study.

6.3.1 Predictive maintenance in the military domain: a systematic review of the literature

In the (DALZOCHIO et al., 2023a) study, we seek to highlight the challenges, principles,
scenarios, techniques, and open questions of PdM in the military domain. To achieve this
objective, we conducted a systematic literature review. We organize the findings of the literature
into challenges for applying PdM and scenarios where its use is crucial. These contributions
will help the research community to understand the applications of PdM in the military domain.
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6.3.2 MILPdM: A Predictive Maintenance Architecture for the Military Domain

In the (DALZOCHIO et al., 2023b) work, we present the MILPdM architecture, demon-
strating its viability through use cases describing the vehicle’s health degradation. This result
obtained in the experiments demonstrates that MILPdM can anticipate failures with high as-
sertiveness.
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