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ABSTRACT

Com o surgimento da patologia computadorizada, muitos datasets e competições foram pu-
blicados para incentivar pesquisadores a desenvolverem soluções que auxiliem nas tarefas da
área da patologia. A análise de segmentos histopatológicos, conduzida por patologistas para
detectar células cancerígenas ou metástases em imagens de tecido, é uma dessas tarefas, para a
qual, visão computacional foi aplicada com sucesso e até superou o desempenho de especialis-
tas. Apesar dos excelentes resultados na literatura, a maioria das abordagens é dependente do
dataset usado e carecem de generalização, fazendo com que até os melhores modelos desem-
penhem mal quando apresentados a tecidos diferentes. Neste trabalho, nós desenvolvemos um
novo método de aprendizagem contínua, que alavanca a generalização do modelo nos datasets
usando uma destilação melhorada de conhecimento. Verificamos, através de profundos e exten-
sos experimentos em 19 datasets, uma melhoria geral de 15,66% em comparação dos métodos
comuns da literatura, e métricas superiores em relação a modelos com total disponibilidade de
datasets. Além disso, nosso método foi o único a atingir índices positivos de transferência de
conhecimento para frente (FWT) e para trás (BWT), mitigando consideravelmente o efeito de
esquecimento catastrófico.

Keywords: Aprendizagem Contínua. Segmentação. Câncer. Histopatologia. Patologia.





ABSTRACT

With the emergence of computational pathology, many datasets were made public and chal-
lenges were published to encourage researches into developing assistant frameworks for pathol-
ogy tasks. The analysis of histopathological slides, made by pathologists to detect tumorous
cells or metastasis in tissue images, is one of such tasks, for which, computer vision had been
successfully applied and even outperformed human expert levels. Despite the excellent results
in the literature, the majority of approaches are dataset-dependent and lack generalization, mak-
ing even the best documented models perform poorly when presented with different tissues. In
this work, we designed a novel continuous learning method, that leverages the model general-
ization across datasets using enhanced knowledge distillation. We verified, through deep and
extensive experimentation on 19 datasets, an overall improvement of 15,66% in comparison to
common literature methods, and superior metrics in relation to models with full dataset avail-
ability. Also, our method was the only one to achieve positive forward (FWT) and backward
(BWT) knowledge transfer indexes, considerably mitigating the catastrophic forgetting effect.

Keywords: Continual Learning. Segmentation. Cancer. Histopathology. Pathology.
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1 INTRODUCTION

1.1 Context

Since the feasibility of Whole-Slide-Image (WSI) scanners, many medical image datasets
were made public and challenges were published to encourage researches into developing to-
ols that integrate Artificial Intelligence (AI) into medical imaging tasks (KUMAR; GUPTA;
GUPTA, 2020). Since then, the literature evolved focusing on the development of frameworks
that achieve expert level performance at medical tasks, with the main goal of assisting medical
time-consuming tasks, prognostics, analysis, and mitigating human error (BáNDI et al., 2023).
In this context, computer vision has been successfully applied to many medical image analysis
problems, sometimes even outperforming expert level metrics. One of these many successful
cases is the analysis of histopathological slides, conducted by pathologists to segment tumorous
cells, detect tumor metastasis in tissue images, and other image related tasks (MUSUMECI,
2014).

The documented works vary on their approach, but its noticeable that they share the same so-
lution methodology: Deep Learning models trained or fine-tuned to specific tasks over specific
types of tissues (ZHOU et al., 2021; JANOWCZYK; MADABHUSHI, 2016; XING et al., 2017;
LAAK; LITJENS; CIOMPI, 2021). Despite the excellent results documented in the literature,
these approaches are very site-dependent, meaning that the models were trained specifically
for a single task over a specific dataset tissue considering a specific staining/enhancing method
(KOTHARI et al., 2013; ZHOU et al., 2021; XING et al., 2017; LAAK; LITJENS; CIOMPI,
2021; BáNDI et al., 2023). This means that even the best documented models would perform
poorly when presented with different data, like tissues from different body sites (JAHANIFAR
et al., 2023a; BáNDI et al., 2023). This non-generalization characteristic transforms the present
literature into a vast ocean of very specific high-performance models of the same task trained
for different body tissues.

In a real-world scenario, there is a plethora of protocols, machines, microscopes and staining
techniques, that cause a huge heterogeneity in the available datasets, making difficult even the
generalization of models within the same task domain (JAHANIFAR et al., 2023a; LAAK;
LITJENS; CIOMPI, 2021). Ultimately, the literature endorses that to really make Artificial
Intelligent solutions available to pathologists effectively, a system with a strong generalization
capacity is necessary (KOTHARI et al., 2013; ZHOU et al., 2021; LAAK; LITJENS; CIOMPI,
2021; JAHANIFAR et al., 2023b), and also proposes that a generic deep model trained with
very distinctive image types is of urgent need to deal with the wide variations in pathology
imaging (KOTHARI et al., 2013; ZHOU et al., 2021; XING et al., 2017; BáNDI et al., 2023).

The non-generalization problem of deep neural networks is called Catastrophic Forgetting
and it roots from the very nature of neural networks training process (FRENCH, 1999). Sear-
ching in the literature, one may find many works attacking catastrophic forgetting with different
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strategies, but recent surveys and their results suggest that Continual Learning (CL), also known
as Lifelong Learning, methods are more suitable and perform better at generalization (BáNDI
et al., 2023; AL-THELAYA et al., 2023; GONZALEZ; SAKAS; MUKHOPADHYAY, 2020a).
Continual Learning implementations are vastly documented in the literature, with multiple va-
riations of similar algorithms, therefore, many works prefer to group the implementations into
classes based in their solution methodology, such as Gradient, Architecture or Meta-learning
solutions (HADSELL et al., 2020). Even so, at the time of this present work, no solution could
be found to satisfactorily ease the effects of catastrophic forgetting and promote proper ge-
neralization, this is mainly due to limitations of each technique, such as heuristic efficiency,
and intrinsic complications of the problem, such as data availability (GONZALEZ; SAKAS;
MUKHOPADHYAY, 2020b; BáNDI et al., 2023; HADSELL et al., 2020).

In this work we proposed an enhanced method, we improved the Learning without Forget-
ting (LwF) method, specifically its Knowledge Distillation (KD) strategy, to resolve a histo-
pathology segmentation problem considering multiple datasets. We investigated and documen-
ted our problem in details, revised the modern literature and highlighted its present limitations,
then, we designed our method with these foundings in mind. Later, we numerically and seman-
tically evaluated our method performance, documenting an overall improvement of 15,66% in
comparison to common state-of-the-art baselines, positive transfer indexes and superior metrics
in relation to models with full dataset availability.

1.2 Problem

In order to produce a generalist system, able to be integrated into pathologists day-to-day
work (KOTHARI et al., 2013; ZHOU et al., 2021), a solution to ease catastrophic forgetting
should be developed.

Catastrophic forgetting is an inherit effect when training neural networks, the training algo-
rithms update the model to perform better at the most recent data seen by the model, and by
doing so, forgetting the knowledge acquired from older data. Which means that, when a model
is learning a new task (different tumors, different tissues, different staining technique), it is also
forgetting the older one (FRENCH, 1999; HADSELL et al., 2020).

So, in this work, the problem that we tackled is catastrophic forgetting on histopathology
segmentation models. To better illustrate the effects of forgetting on the histopathology area,
we trained a tumor segmentation model considering just two datasets, both representing the
same problem, tumorous cells segmentation, but from different tissue samples, adrenal glands
tissue and colon tissue. The model was trained on both datasets sequentially, first in the adrenal
glands one, then in the colon tissues one. The model used here is described in Section 4.2, it is
the same we later used for our full approach.

Figures 1 and 2 present the result of the predictions made on samples of both datasets after
the training, its possible to notice how the model completely forgets how to segment tumors in
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adrenal glands after being trained in colon tissues, and how precise are the predictions for this
last one.
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Figure 1: Model predictions after being trained on the adrenal glands dataset. The first column presents
the ground truths, the second one the predictions, and the third one presents the overlap of predictions
over the ground truth.
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Figure 2: Model predictions after being trained on the colon tissue dataset. The first column presents
the ground truths, the second one the predictions, and the third one presents the overlap of predictions
over the ground truth.
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The forgetting effect poses a hard barricade on the adoption of computer vision solutions for
histopathology teams, this domain works with data with a highly variability and low availability,
renting most solutions useless in a practical way (JAHANIFAR et al., 2023a; BáNDI et al.,
2023).

Although there are plenty of works in the literature addressing the catastrophic forgetting
problem, unfortunately, they address it only partially, while there are important nuances to the
method that should be considered in order fulfill pathology related requirements:

• New tasks: the method should allow the model to incorporate new knowledge and achi-
eve a good performance in new tasks (forward transfer) (BáNDI et al., 2023; KOTHARI
et al., 2013; ZHOU et al., 2021; HADSELL et al., 2020).

• Old tasks: the method should not only preserve the learned knowledge, but also increase
the performance of older tasks (backward transfer) (GONZALEZ; SAKAS; MUKHO-
PADHYAY, 2020b; HADSELL et al., 2020).

• Old data: there are strong regulations and limitations to the access of patient data, and
also limitations about memory usage in some environments, so the method should not
take for granted the access to data from previous tasks (BáNDI et al., 2023; GONZA-
LEZ; SAKAS; MUKHOPADHYAY, 2020a; KAUSTABAN et al., 2022; GONZALEZ;
SAKAS; MUKHOPADHYAY, 2020b; HADSELL et al., 2020).

• New data: given the sheer variety of the data acquisition processes, the method should
also generalize the knowledge to different distributions of new data for the same old task
(Domain Shift) (BáNDI et al., 2023; JAHANIFAR et al., 2023a; GONZALEZ; SAKAS;
MUKHOPADHYAY, 2020a).

Summarizing, there are not major works in the histopathology literature considering the
generalization problem, and there are not complete solutions in the catastrophic forgetting li-
terature that could perform the generalization with the specific requirements of the pathology
area.

1.3 Research Question

Given the presented context and the related problematics, this work proposes to answer to
the following question:

How can we leverage the generalization of deep learning histopathology segmentation mo-

dels considering the data variability and the requirements for real-world clinic applications?

From this question, we seek to investigate the catastrophic forgetting problem in digital
pathology models, and propose a method to deal with this effect considering the intrinsic pro-
blematics of the pathology area. We raise the hypothesis of improving an existing method to
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alleviate forgetting in segmentation models considering the problematics in Section 1.2, if such
improvement could provide enough leverage for the segmentation model to be suitable in a
real-world clinic application.

1.4 Objective

The main objective of this work is to study a heuristic method capable of preserving and
enhancing knowledge that is common to multiple tasks learned over sequential training steps.
This method should grant neural models the ability to accumulate knowledge over the time
without relying on previous data replay, and generalize the learned representations to new data,
improving performance on already learned tasks while learning new ones. So, we can leverage
the learning abilities of deep neural models, improving their performance over time and accu-
mulating domain knowledge. Models with this ability could be trained to generalize knowledge
over multiple instances of the same problem or different problems, also it could be used as
pre-trained feature extractors to more robust models (knowledge transfer).

As complementary goals of our work, we aim to study the catastrophic forgetting problem
itself, its solutions and details, review the modern literature for approaches of dealing with the
forgetting problem in the pathology area, design our method using insights form the literature
and experimentation, validate and evaluate our approach, given multiple metrics and datasets,
and document our findings and comparisons with state-of-the-art baselines.

1.5 Contributions

For the sake of simplicity, we listed bellow all the contributions of this work, together with
our main numerical and qualitative results in comparison to the present literature.

• As far as we know, our work is the first one to perform a literature review on generaliza-
tion methods for computational pathology.

• Our work presents an enhanced version of the LwF approach, with an additional regula-
rization term to improve generalization.

• Our method, unlike most regularization techniques, does not rely of any hyperparameter
optimization.

• Our work uses more datasets that the previously documented works.

• Our work is the first to perform a deep dive comparative analysis of the catastrophic
forgetting effects on multiple CL methods.

• Our results outperformed established literature baselines in 15,66%, surpassing the re-
sults of a joint-training approach, and even overcoming the metrics of a multiple-models
scenario.
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• Our method is the only approach able to produce positive knowledge transfers in both
cases: forward (0.02) and backward (0.03).

• Our method produced more semantically accurate segmentation masks than the baselines.
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2 THEORETICAL FOUNDATION

This chapter presents the fundamental concepts that are important do fully understand the
method we implemented in this work, the next sections aim to cover each topic related to our
work with a detailed overview of the area. Section 2.1 dissects the Histopathology field, its
techniques, limitations, and improvements in the recent years. Section 2.2 exposes the AI arti-
facts that are pertinent to our method, along with their explanations and motivations in a more
general way. The Sub-section 2.2.3 describes the problem of Continual Learning in computa-
tion and the documented methodologies that attack the catastrophic forgetting problem. Finally,
Section 2.3 discusses the learning achievements of this chapter, its contribution to the problem
understanding, and to our method design.

2.1 Histopathology

Histopathology is the clinical study of tissues and cells with their characteristics and ab-
normalities that could be the causes or the results of diseases, it consists of the microscopical
analysis of surgical samples taken from patients for the diagnosis and screening of various
tumors. It is the main clinical examination technique done by pathologists to detect cancer
(biopsy). (MUSUMECI, 2014)

Histological techniques are very important in this context, they are employed by histologists
or histopathologists as a pre-processing stage before the histopathological examination of a
tissue. There are a series of preparations that have to be applied to the tissue, depending on the
kind of tissue, the kind of structures on it, and the available laboratory chemicals, thus creating a
high variability of non-standardized processes and protocols that are employed. This variability
can produce bad samples with artifacts (contaminants) that could led to misinterpretations in
the tissue (CHATTERJEE, 2014; SALVI et al., 2021).

Generally, there is a consensus about some preparations techniques: the tissue must be fixed
to prevent cellular death, dehydrated and cleared using chemicals, then, frozen and sliced into
thin histological slices, these slices would then be stained in order to make the sample ready
for observation with a microscope or digitalization (MESCHER, 2018; SALVI et al., 2021).
Figure 3 presents an example of protocol used to handle a sample. The common histology
staining technique is the H&E stain (Hematoxylin and Eosin), Hematoxylin stains the nuclei
within cells in blue and Eosin stains the cytoplasm of cells in pink. The H&E stain became
so common because its suitable for light microscope examination, and light microscopes are
preeminent in cytological and histological diagnosis on a daily basis, thus making H&E the
gold standard for diagnosis (MUSUMECI, 2014).

At the year 1999, Whole-Slide-Image (WSI) scanners were introduced to provide the oppor-
tunity of digitally converting an entire tissue on glass slide into a high-resolution virtual slide.
With the hardware limitation of the epoch, it was not possible to convert or store thousands of
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Figure 3: Example of a preparation protocol applied to a biological sample to produce the corresponding
histological slide.

Source: (SALVI et al., 2021)

high-resolution images (KUMAR; GUPTA; GUPTA, 2020). Since then, there was an exponen-
tial growth of technology, and now, datasets of WSI images are available publicly, with recent
trends on Computational Pathology (CPATH) evolving towards a more digital science. Digital
pathology is promised to be of great help for mitigating human error in diagnosis and auto-
mating time-consuming pathology tasks, this, of course, is dependent of the solution of some
computational challenges (KUMAR; GUPTA; GUPTA, 2020; KOTHARI et al., 2013; ZHOU
et al., 2021; LAAK; LITJENS; CIOMPI, 2021).

Among these challenges, the capability of domain generalization is one of the most impor-
tant, given it solves major problems in the pathology domain. From a operational perspective,
the generalization decreases the need for strict protocols for sample preparations and slide stai-
ning. From a regulatory perspective, the performance of a single model model is more easily
evaluated and explained. From an ethical perspective, generalizing the model to different popu-
lations removes a possible bias toward certain ethnicities. Finally, from a cultural perspective,
the clinical society tends to trust more in a consistent and generalist solution to help clini-
cal decision making (ZHOU et al., 2021; GONZALEZ; SAKAS; MUKHOPADHYAY, 2020a;
LAAK; LITJENS; CIOMPI, 2021; JAHANIFAR et al., 2023b).
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2.2 Artificial Intelligence

Artificial intelligence is a multidisciplinar research area that comprehends the human efforts
of building intelligent entities, given that “intelligence is concerned mainly with rational action”
and so “an intelligent agent takes the best possible action in a situation” (RUSSELL; NORVIG,
2016). Also, folks can understand AI as a form of knowledge refinement, where “a reliability
and competence of codification can be produced which far surpasses the highest level that the
unaided human expert has ever, perhaps even could ever, attain.”. (CRAWFORD, 2021)

Even though there are many definitions, the core idea of automatically learning a task re-
mains the same. Initially, the AI field focused on learning problems that were intellectually
difficult for human beings but relatively straightforward for computers, like learning a formal
mathematical ruleset. Nowadays, the true challenge to AI is on learning the tasks that are easy
for people to perform but hard for people to describe formally, like recognizing spoken words
or faces in images, and for these problems, we rely on modern machine learning techniques to
improve the learning capabilities of AI. (GOODFELLOW; BENGIO; COURVILLE, 2016)

2.2.1 Machine Learning

Machine learning is the research field dedicated to study algorithms with the ability of
learning a function through iterative data exposition, the function is, usually, an optimization
of a certain objective over the given data. The learning process, called training, iteratively
observes the function performance on the data and adjust the function parameters according
to the deviation from the objective, the repetition of observations and adjustments end up op-
timizing the function parameters, and by so, the algorithm learned an optimized function for
that certain objective. So, essentially, machine learning algorithms are a form of applied statis-
tics, where computers are used to statistically estimate complicated functions and a decreased
emphasis on proving confidence intervals around these functions. (GOODFELLOW; BENGIO;
COURVILLE, 2016)

Although exist deviations from this general form of learning, there are three main classes
of machine learning algorithms, that differ on the way that the learning process perceives the
feedback from its adjustments: supervised learning, unsupervised learning and reinforcement
learning.

Supervised learning algorithms use the data in pairs input – output, learning function pa-
rameters that could best match the input to the output using the objective function as the per-
formance indicator. The name supervised comes from the idea that the learning algorithm has
a teacher, that is, the correct output is available, this is not always the case given that, for some
problems, the correct output for a certain input must be manually annotated, thus turning the
data gathering an expensive process. For example, most histopathology datasets were manually
annotated by specialists with the Region of Interest (ROI) for each image. (BROWNLEE, 2016)
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Unsupervised learning algorithms use only the input data, learning function parameters
that best model the data underlying structures to the objective function. The name unsupervised
so denotes that there is no correct answer, the algorithms should discover structures in the
data by themselves. The main example of this class is clustering algorithms, they are used to
segregate and group data into clusters by their structural similarities. (BROWNLEE, 2016)

Reinforcement learning algorithms use context limited data, learning function parameters
that best model a behavior policy into the context, using the objective function as a policy per-
formance indicator. The name comes from the nature of the learning, the algorithm iteratively
interacts with an environment and receives feedback for this interaction, the interactions are
optimized as a behavior function, so the most rewardable interaction policy is learned. (GOOD-
FELLOW; BENGIO; COURVILLE, 2016)

Machine learning algorithms make possible to machines to grasp statistical representations
from data an learn a function to a certain task, but sometimes, the task complexity requires a
more sophisticated function, that uses more powerful representations to understand the problem,
in this scenario deep learning emerges.

2.2.2 Deep Learning

Deep learning techniques allows machines to learn more complex and sophisticated con-
cepts by stacking learnable parameters on top of each other, and by so, learning representations
of representations, this depth allows the algorithms to draw complex concepts out of the inputs
and learn compound functions. Deep learning is specially useful for highly complex problems
where the patterns are not easy to identity like, for example, our case study, the segmentation
of tumorous cells may depend on the cell color, shape, structure or other characteristics that we
may even do not notice. (GOODFELLOW; BENGIO; COURVILLE, 2016)

Deep learning takes a huge step from machine learning by implementing multi-layer models
that allow the composition of representations, each layer is connected to the next, and the layers
are composed of perceptrons, a computational abstraction of the learning method of a biolo-
gical neuron (ROSENBLATT, 1958). This architecture creates a network of neurons divided
into layers, hence the name neural networks, and, since each layer learns from the previous
one, the composition of layers allows the composition of representations. (GOODFELLOW;
BENGIO; COURVILLE, 2016) Equation 2.1 presents the notation of the processing of a per-
ceptron, here, w and b are the learnable parameters weights and bias respectively, and x is the
input. (HAYKIN, 2009)

y =
∑

wx+ b (2.1)

Unfortunately, the simple composition of layers of perceptrons is not enough to learn com-
plex concepts, this is due to the fact that perceptrons are only able to learn linear represen-
tations, as one can notice by looking at the perceptron linear Equation 2.1, and so does hap-
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pens that complex problems have many nonlinear relationships between its representations.
To implement this nonlinear characteristic were developed activation functions, these functi-
ons are attached between the perceptron layers and map the perceptron outputs into a nonli-
near distribution. The most famous example of activation is the rectified linear unit (ReLU)
(KRIZHEVSKY; SUTSKEVER; HINTON, 2012), this activation function introduces nonli-
nearity by simply clipping the values bellow zero, Equation 2.2 presents the ReLU function.
(GOODFELLOW; BENGIO; COURVILLE, 2016)

a = max(0, y) (2.2)

Usually, the perceptrons and activations are implemented together into the same layer called
Dense layer, for simplicity, also, this layer abstracts the logic behind the connections between
layers, dense layers use a fully connected architecture, to all neurons from the previous layer
are connected to all neurons of the current layer.

Deep learning made possible that we could construct models to learn complex functions
made of compound representations of a problem, this allows us to tackle really complex pro-
blems, but even so, considering in our study case, image analysis, we would need hundreds
or thousands of parameters per layer to learn representations of each pixel, thankfully, when it
comes about deep learning for image analysis, there are more specific solutions.

2.2.2.1 Convolutional Neural Network

Convolutional neural networks (CNN) are deep learning networks that use a special type
of perceptron, the convolutional kernel, to process grid-like inputs, such as images. Convoluti-
onal kernels can extract spatial knowledge of the inputs, in the case of images, the relationships
that adjacent pixels have, using shared trainable parameters that are convoluted over the input,
as a sliding window grid filtering a bigger grid. The idea behind convolutions is based on neu-
roscientific discoveries about how the mammalian brain perceives images on different layers,
and that, at earlier layers, the neurons are more focused on identifying simple spatial patterns,
like lines, edges and curves, and at later layers, the neurons react more to complex patterns.
(GOODFELLOW; BENGIO; COURVILLE, 2016)

The Equation 2.3 describes how the convolution is applied, here, I and K are respectively
the image and kernel (trainable parameters), i and j are coordinates in the image, and m and
n are the dimensions of the kernel. Through this equation one can notice how the same kernel
parameters are applied to different regions of the image, given by the coordinates, that when
iterated over the image, produce a mapping the kernel pattern over the whole image. Supposing,
for instance, that the kernel parameters identify vertical bars, this convolution will produce as
output a feature mapping of the same dimensions of the image, highlighting all vertical bars on
it. (GOODFELLOW; BENGIO; COURVILLE, 2016)
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s(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j +m)K(m,n) (2.3)

By analyzing Equation 2.3 we can also notice that i, j, m and n are parameters of the con-
volution, and so happens that they actually are hyperparameters of convolutional layers. The
pair i and j are the coordinates of the region to be convoluted in the image, the iteration over
these parameters convolutes the kernel over the whole image, the hyperparameter stride defines
the step size at each iteration, controlling how much overlapping should the convolutions have.
And the pair m and n are defined by the hyperparameter kernel size, that defines the dimen-
sions of the kernel, usually, the kernels are squared, so m = n. (GOODFELLOW; BENGIO;
COURVILLE, 2016)

The convolutional operation has the ability of learning patterns in grid-like inputs, but we
must also consider that the angle of these patterns are not going to be the same for all inputs, that
in some inputs it may be spatially translated, this problem makes training way more difficult,
since some kernels will learn the normal input, and others the translated input, and later both
will compete to detect the same pattern with slightly variations. (GOODFELLOW; BENGIO;
COURVILLE, 2016)

Pooling layers help us aid this problem, a pooling operation consists in creating an output
where every region represents some summary statistic of that same region over all the kernel
outputs, this way, it alleviates the effects of some specific kernels by summarizing all kernel
outputs. This produces an output that is a robust representation of the whole convolutional
layer, being approximately invariant the spatial translations of the input. The common example
is the max pooling operation, that produces an output with the maximum value at all regions
over all the kernels. (GOODFELLOW; BENGIO; COURVILLE, 2016)

Pooling layers also have the same stride and kernel size hyperpermaters, but here we have
an interesting feature with the stride. Since the pooling operation summarizes the kernels over
a statistic, if some use a stride s > 1 with less pooling units than convolutional kernels, than
the pooling operation actually produces an output that is roughly s times smaller than the input.
This feature is called downsampling and is commonly used to reduce the dimension of the
representations, this behavior consumes less memory and usually improves the overall perfor-
mance. (GOODFELLOW; BENGIO; COURVILLE, 2016)

With pooling we can learn representations that are robust when dealing with different spatial
translations of the inputs, but for the context of our work, we still we have to consider more
representation deviations over the inputs, we must produce an approach that is robust to a whole
new distribution of data, a whole new dataset.

2.2.3 Continual Learning

Continual learning, or lifelong learning, is the class of methods that enhance models with
the ability of knowledge generalization when facing not one, but a collection of tasks over
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its lifetime, using the knowledge acquired in the previous n − 1 tasks to bias the learning of
the task n (THRUN, 1998). In performance terms, the generalization of previous knowledge
should allow the model to perform better at each subsequent task n (forward transfer) and also
to perform better on the previous n− 1 learned tasks (backward transfer), when revisited, given
the accumulation of knowledge from the most recent task (HADSELL et al., 2020).

In the specific context of neural networks, CL is a family of techniques suited to solve the
catastrophic forgetting problem, but ultimately, these techniques are only capable of smoothing
the forgetting effect, and since this effect is so deeply rooted in the mechanics of the training
process of neural networks, getting completely rid of the forgetting effect has become a very
complex problem (HADSELL et al., 2020).

Essentially, catastrophic forgetting is an inherit effect of training neural networks using
stochastic gradient descent (SGD) on sequential data, the SGD algorithm makes small updates
on the weights of the network to minimize the error in a given input data, meaning that, the
algorithm is prone to fit the model better to the last batches of data inputted, so when an already
trained network is retrained in a new dataset, it tends to learn the new patters while it forgets
the older ones (BOTTOU, 1998; FRENCH, 1999; HADSELL et al., 2020). Since catastrophic
forgetting is a well known problem of neural networks, during the decades, the number of works
implementing solutions of this problem grew a lot, fortunately, the recent literature prefers to
classify the works into groups based on the scenarios of task relations and the methodology of
the solution.

We can divide the CL problem into three common task scenarios depending on how the tasks
relate to each other: Task-incremental learning (Task-IL), the model has to incrementally le-
arn a sequence of distinct tasks (different problems); Class-incremental learning (Class-IL),
the model has to incrementally learn to discriminate between a growing number classes (same
problem, different classes); and Domain-incremental learning (Domain-IL), the model has to
incrementally learn a sequence of distinct domains of the task (same problem, different distri-
butions) (VEN; TUYTELAARS; TOLIAS, 2022). Given our problem context, generalization
of histopathology segmentation across multiple datasets, we are actually dealing with a domain-
incremental CL problem.

For the solutions, we can divide them by the paradigm adopted to deal with the problem,
Gradient Based solutions aims to alleviate the forgetting effect focusing on the root of the
problem, the gradients, by controlling the gradients, one can control the updates and prevent the
weights from drifting away of present distributions, thus limiting the plasticity of the network
on important parameters of previous tasks. One weakness of these methods is that they are
based in approximations, so in challenging settings or complex domains they fail to achieve
satisfactory performance (HADSELL et al., 2020; WANG et al., 2022). Examples of these
methods are Elastic Weight Consolidation (EWC) (KIRKPATRICK et al., 2017) and Memory
Aware Synapses (MAS) (ALJUNDI et al., 2018), both use heuristics to approximate of the
importance of each weight of the network and penalize in the loss function when the optimizer
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updates the important weights, while LwF (LI; HOIEM, 2017a) and KD (HINTON; VINYALS;
DEAN, 2015a), update the loss function to optimize the outputs of one model to approximate
the outputs of another.

Figure 4 illustrates the pipeline of training a generalized model over multiple tasks using a
gradient-based method to perform the generalization. Notice how it only uses one model, and
updates it with a new task style, while maintaining some of the old tasks style.

T1 T2T0

Model Model Model

L = λ L = λ + α + αL = λ + α

Gradient
Based

Figure 4: Illustration of the generalization process in a model using a gradient-based method. Tasks
are T0, T1 and T2, while L is the total loss function, λ is the model loss function, and the as are the
regularization terms.

While Architecture Based solutions use modularity to prevent forgetting, these methods
are focused on having disjoint network components for each task, by dividing the network into
modules, with generalist reusable modules and task-specific modules, weights of some parts of
the network (task-specific) can be updated without affecting the others modules. Since task-
specific components are identified by expanding the network, the learned weights of previous
tasks are separated in their own modules, non-affected by updates in the current task, thus
preventing the forgetting. The downside of this paradigm is that, since new parameters are
being added to the network as new tasks are encountered, the computational requirements of
these methods is a constraint, and additional mechanics are required to manage the growing
capacity of the network (HADSELL et al., 2020; WANG et al., 2022). Important examples of
this paradigm are the LwF (LI; HOIEM, 2017b), that uses a KD sub-routine to ease the sparsity
of the model, and DEN (YOON et al., 2017), that uses a heuristic with a threshold to control
the expansion of the network.

Figure 5 illustrates the pipeline of training a generalized model over multiple tasks using a
architecture-based method to perform the generalization. Notice how it expands the model size,
adding a new layer on top of the older ones for each new task.

Memory Based solutions preserve old tasks knowledge by replaying samples (memory) of
the these tasks along with the current task, these methods keep a buffer of old tasks data and,
during the training of the current task, sample old examples to replay along the current task data.
The main problem related to this paradigm is the buffer of old data, it is not scalable for scena-
rios with many tasks, and constraining the buffer buffer size deteriorates the performance, also,
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Figure 5: Illustration of the generalization process in a model using a architecture-based method. The
tasks are T0, T1 and T2.

these methods are not applicable to scenarios where data from old tasks is not available (HAD-
SELL et al., 2020; WANG et al., 2022). Three main examples of methods in this paradigm are
rehearsal (ROBINS, 1995), episodic memory (CHAUDHRY et al., 2019) and ICarl (REBUFFI
et al., 2017), all make use of replay to strengthen memory retention, but episodic memory and
ICarl use heuristics to choose representative samples to store in the buffer, rather than saving all
the old data. To deal with the buffer size problem there are also generative methods, that train
generative models to produce rehearsal data as needed (SHIN et al., 2017).

Figure 6 illustrates the pipeline of training a generalized model over multiple tasks using a
memory-based method to perform the generalization. Notice how it expands the training dataset
every time a new task appears, adding a sample of the older tasks together with the new task
data.
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Figure 6: Illustration of the generalization process in a model using a memory-based method. The tasks
are T0, T1 and T2.

And Meta-Learning solutions enable CL through optimizing the learning process itself, the
optimization is data-driven, thus getting rid of the hand-engineered mechanisms of the previous
solutions that creates an inductive bias towards trade-off solutions instead of a more automatic
learning approach. Solutions in this paradigm usually focus in two loops, an inner-loop that per-
forms a fine-grained training in the meta-learning problems, and an outer-loop that integrates
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the coarse-grained knowledge at each iteration to optimize the future inner-loops. One charac-
teristic of the methods in this paradigm is the fast adaption and recovery, meaning that the focus
of this solutions is not to produce a model with good performance in all tasks, but instead a mo-
del with the capability of fast recovering the good performance (remembering) everytime an old
task is forgotten. Given this aspect, meta-learning solutions are not suitable for scenarios where
a task can never be forgotten (lose performance), besides this, meta-learning solutions are also
very computationally demanding and require careful design of the task distribution (HADSELL
et al., 2020). Implementations of meta-learning can vary a lot on the algorithms used in the
inner and outer loops, but usually the goals are the same, the inner-loop focus on learning the
task, while the outer-loop focus on speeding up the learning of the inner-loop, it could be imple-
mented using gradient descent in both loops (ANDRYCHOWICZ et al., 2016), or probabilistic
inference in the inner-loop (FINN; XU; LEVINE, 2018), or any mixture of methods.

Figure 7 illustrates the pipeline of training a generalized model over multiple tasks using a
meta learning method to perform the generalization. Notice that the key operation is the model
integration, an heuristic that produces a model by fusing the characteristics of other models.
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Figure 7: Illustration of the generalization process in a model using a meta learning method. The tasks
are T0, T1 and T2, while the Integration steps are the model-fuse operations.

With regard of the histopathology problem, the literature suggests that gradient-based solu-
tions are more suitable, since they cons of the other approaches are too heavy on the real-world
scenario of this problem, such as no data availability of old tasks, limited computational resour-
ces available in clinics, and the huge variability of data. Recently, reviewing works are confir-
ming the capability of the gradient-based approaches to enforce generalization along multiple
histopathological instances, suggesting that these methods are promising candidates for real-
world implementations of CL in histopathology (BáNDI et al., 2023; AL-THELAYA et al.,
2023; GONZALEZ; SAKAS; MUKHOPADHYAY, 2020a).
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2.3 Discussion

In this chapter we researched the theoretical foundation of the fields involved in this work,
we quickly reviewed the histopathology analysis process, the requirements and limitations for
the future of this area, we also highlighted the importance of our drive in this work, the genera-
lization of CPATH solutions.

we also made an in-depth review of the topics regarding AI that are relevant to our work, we
covered the general techniques and architecture details about deep learning models, specificities
of the applications involving image processing and finally the state-of-the-art methods known
to deal with our object of study: model generalization.

With all that being said, we can better recognize the importance of all these aspects when
building our approach, the analysis of histopathological images is a complex task containing
many spatial variances between the images and non clear relationships between the elements of
these images. Hence the need of our approach to use deep learning to find complex represen-
tations in the images, convolutions and poolings to efficiently draw these representations based
on the spatial properties of the inputs. On top of that, we are dealing with a domain-incremental
CL problem, so we also need an optimized CL method to generalize the learned representations
across the tasks, and grant robustness to our model when it deals with new datasets.

The conclusions we can draw from this chapter are that Digital Histopathology using AI
is far from a clinical application due to AI limitations, AI approaches mainly lack the genera-
lization ability necessary to implement AI systems to augment the performance of clinicians.
The analysis of this chapter draws a clear frontier of the current state of model generalization
and where our efforts can be put into action to expand this frontier, the generalization is a long
known problem in the core of the learning process of AI models, and, despite many efforts, this
problem was not yet been solved.

In the next chapter we aim to study the application of generalization techniques in different
domains of CPATH, analyzing the pros and cons of each implementation to grasp insights for
our method.
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3 LITERATURE REVIEW

In this chapter we performed a literature review in the area of pathology model generaliza-
tion, we are going to use the highlights of this review to better understand the state-of-the art
of the catastrophic forgetting solutions for digital pathology, we aim to gather insights and kno-
wledge of modern methods to guide the design of our solution. In Section 3.1 we established
our review methodology and criterias to select the works, then, in Section 3.2, we discussed the
findings and interesting aspects of every work reviewed, and finally, in Section 3.3 we summa-
rized the review, discussing our insights and the major decisions drawn.

3.1 Methodology

The goal of this review is to search on the literature for modern works that address the
catastrophic forgetting problem in digital pathology, highlighting works that stand out by its
contributions. The methodology used in this review is Snowballing, that consists of searching
for relevant works in the references and citations of a list of works. Defined as snowballing
backward, the analysis of the references cited by the selected works, and snowballing forward,
the analysis of citations of the selected works (WOHLIN, 2014).

The first step is to select the list of works that would be used to perform the Snowballing, this
is a very important step since the lack of relevant works may lead the review to miss important
works (WOHLIN, 2014). We performed this initial search on Google Scholar. To increase
our range of search, we collected surveys that cover the topics of current digital pathology
challenges, we analyzed and filtered the surveys using the Survey Criterias list bellow, then
selected the remaining works based on their novelty and relevance, the initial list of works and
were documented in Table 1.

Survey Criterias

1. Should match on the query string: deep learning AND digital pathology AND survey

trends challenges.

2. Should address or cite the problem of lack of generalization in the present methods.

3. Should be a relevant work (number of citations or novelty).

4. Should not be older than 2016.
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Table 1: Initial Works
Work Year Citations
(GONZALEZ; SAKAS; MUKHOPADHYAY, 2020a) 2020 15

(KAUSTABAN et al., 2022) 2022 29
(LAAK; LITJENS; CIOMPI, 2021) 2021 395
(BAWEJA; GLOCKER; KAMNITSAS, 2018a) 2018 53
(BáNDI et al., 2023) 2023 5

Defined the initial set of works, Snowballing also requires a stopping criteria, in our case, we
considered the state-of-the-art reached when no more works could be found given our Article
Criterias list bellow, this way we can ensure that the recent literature was completely conside-
red for reviewing. With these definitions we performed the Snowballing process over the initial
set of works and used the new found works as the new initial set to perform the next iteration,
going on until we reached the stopping criteria. Table 2 summarizes the article selection and
filtering process, it took us 3 iterations to reach the stopping criteria.

Article Criterias

C1. Should match on the query string: continual learning OR generalization.

C2. Should not have been already reviewed in previous iterations.

C3. Should have a title or abstract focusing on generalization solutions for digital pathology.

C4. Should address the catastrophic forgetting problem.

C5. Should have at least one solution that does not take into account availability of old data,
since this is a major constraint in the histopathology domain.

C6. Should be a relevant work (not surveys comparing off-the-shelf methods).

Table 2: Snowballing process
Iteration Initial Snowballing C1 C2+C3+C4 C5+C6
Iteration 1 5 786 158 32 9
Iteration 2 9 511 195 16 1
Iteration 3 1 84 23 5 0

Totals: 1381 376 10

Defined the state-of-the-art we can finally perform a in-depth analysis of the final 10 works
and a overall discussion of the whole process, the next section dissects the results of our litera-
ture analysis.



37

3.2 Results

The first aspect we would like to highlight is the disparity of works that use relevant and
suitable methods for the pathology domain, we located 1381 recent works in the pathology
area, from which, 376 papers approach the generalization problem, revising these papers, only
10 did not fail our criterias. So roughly 2.65% of the works in the area approach the problem
in a realistic way, by considering the old data unavailable, this scenario evidences the lack
of concrete and robust works in the area, a major reason for the development of our method.
With that been said, we now review each selected works according to its characteristics and
implementations, for a overview of the findings we produced the Table 3 with some summary
information of the works.

Continuous pathology classification in X-Ray chest images was done by (LENGA; SCHULZ;
SAALBACH, 2020) using a DenseNet121 model, the pathologies such as: Cardiomegaly,
Edema, Pneumonia and Pneumothorax were classifiend in two datasets: ChestX-ray14 and
MIMIC-CXR. The model was trained in the first and fine-tuned in the second one, the gene-
ralization was performed by EWC and LWF, and the main metric was AUC. The experiments
indicated that regularization techniques allow the model generalization while preserving perfor-
mance on the original domain. Unfortunately, this method have the drawbacks of using EWC,
such as fine-tuning the hyper-parameter and limited generalization in some contexts.

Another pathology classification approach was implemented in (YANG et al., 2023) work,
the model used was a ResNet18, and the task was to perform pathology classification in the me-
dical images of a famous medical dataset, the MedMNIST. MedMNIST MNIST-like 18 groups
of 2D and 3D biomedical images of different pathologies. The generalization was performed
using a domain constrained distillation-like loss, the main idea is to use pseudo-task data to-
gether with the actual first task to force optimize using separated domain spaces, then, incre-
mentally replace the pseudo-tasks by real tasks. The main metrics are accuracy and performance
dropping rate, the experiments concluded that this method can outperform related methods in
the literature. Unfortunately, this method requires a explicit task enumeration before model
training and a fine-tuned adjusting of the tasks used for the first training.

Glioma segmentation in brain MR images was performed by (GARDEREN et al., 2019)
with a 3D Unet model, two datasets were used: 2018 BraTS and an in-house dataset, and the
main metric was mean dice score. The generalization was performed with EWC and the expe-
riments concluded that EWC alleviated catastrophic forgetting but also the restrained ability to
the model to adapt to the a new domain. Also, training the model on a similar dataset and then
generalizing it turns to be very effective, but in some cases the performance is not optimal as
the same as two separated models.

Another 3D model was implemented by (BAWEJA; GLOCKER; KAMNITSAS, 2018b) to
also perform a continuous segmentation of brain MR images, but this time it was not for glioma,
but a semantic segmentation. The model used was the 3D DeepMedic and it was trained in two
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datasets that were extracted from the UK Biobank. The generalization was performed by EWC
and the main metric was dice score. The experiments concluded that EWC is a promising
method for alleviating catastrophic forgetting. Unfortunately, this method have the drawbacks
of using EWC, such as fine-tuning the hyper-parameter and limited generalization in some
contexts.

Brain segmentation is a common topic given the availability of MR images, (ÖZGÜN et al.,
2020) used a QuickNAT model to also perform a continuous MRI brain segmentation, three
datasets were used: Child and Adolescent NeuroDevelopment Initiative, Multi-Atlas Labelling
Challenge, and Alzheimer’s Disease Neuroimaging Initiative. The generalization was perfor-
med using MAS and two MAS variations developed by this work, one controlling the learning
rate based in the importances and one freezing some parameters based on their importance, the
main metrics used are dice score, FWT (Forward Transfer) and BWT (Backward Transfer). The
experiments concluded that both MAS variation methods performed better than MAS, specially
the learning rate one, since it restrained changes to important network parameters in a more
smooth manner. Also, this work noticed that normalizing outliers in the importance matrix
leads to a more stable training and higher performance.

A more complicated approach was implemented by (MCCLURE et al., 2018) using a Mesh-
Net to perform a continuous semantic segmentation, again in brain MR images, five data-
sets were used: Human Connectomme Project, Nathan Kline Institute, Buckner Laboratory,
Washington University (WU120), and ABIDE Project. This work differs from the usual litera-
ture, it implemented a Variational Bayesyan Inference neural network, in which the weights are
not fixed but actually distributions. This implementation allowed this work to create its method:
Distributed Weight Consolidation (DWC), which turn the generalization problem into a distri-
buted learning problem, and used Bayesian Inference to consolidate multiple networks into one.
The main metric used was dice score, and the experiments concluded that this implementation
can achieve a similar performance on all tasks that the separated models. Unfortunately, this
method is very complex to implement, and since it uses Variational Bayesyan Inference, some
problems can not have an optimal performance in this kind of model.

The adversarial paradigm was explored in the work of (MEMMEL; GONZALEZ; MUKHO-
PADHYAY, 2021), using a Image2Image Generative Adversarial Networks (GAN) and an Unet
model to perform hippocampal segmentation on brain MR images, in this work, three datasets
were used: 2018 Medical Segmentation Decathlon, Scientific Data and Alzheimer’s Disease
Neuroimaging Initiative. The generalization was performed by its own method called The Ad-
versarial Continual Segmenter (ACS), that uses a GAN to regularize and encode the inputs into
a variational space, making the Unet apply the segmentation over a generalized representation
of the problem, the Unet output is then re-encoded by the GAN. The main metrics are Inter-
section Over Union (IoU) and dice score, the experiments documented drastic improvements in
the performance compared to the state-of-the-art. Unfortunately, this method is very complex
to implement.
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Still in the adversarial approaches, but deviating from the brain focused works, a GAN and
an Unet model were used in (CHEN et al., 2023) to perform two tasks: segmentation of optic
discs to detect glaucoma, three datasets were used: Retinal Fundus Glaucoma Challenge, Indian
Diabetic Retinopathy Image Dataset and Retinal Image database for Optic Nerve Evaluation for
Deep Learning; and cardiac segmentation of MRI, with the multi-vendor multi-disease dataset
from Cardiac Segmentation (M&Ms) challenge. The method used to perform the generalization
was implemented din this work, Generative Appearance Replay for continual Domain Adapta-
tion (GarDA), basically trains the GAN to output images similar to the ones from previous tasks
and inserts these generated images into the training batches (replay), also KD was used in the
GAN and Unet to prevent catastrophic forgetting. The main metric used was dice score, and the
experiments concluded that the GAN can produce images of the old tasks with enough repre-
sentability to avoid forgetting them. Unfortunately, this method has a complex implementation
and can take additionally many hours to train the GAN.

Given the great potential of adversarial approaches, but also great complexity of imple-
mentation, (THANDIACKAL et al., 2023) implemented a relatively more simple strategy. The
models were a GAN and ResNet, the task was to perform continual classification of colorectal
biopsies with WSI, using three datasets: K-16, K-19 and CRC-TP, the images were cut into
patches. The generalization was performed using multi-scale feature aggregation in the GAN
and KD in the ResNet. The main metric is F1-Score, and the experiments concluded classifica-
tions of patches of histopathological images is feasible, and that the implemented method can
outperforms other existing methods. Besides the more simple implementation of this method
compared to other GAN-based approaches, unfortunately, it still requires a fine-tuning of the
model capacity of the components of the GAN (feature extractor and domain discriminator).

Lastly, we have a transformer-based approach, the work of (RANEM; GONZÁLEZ; MUKHO-
PADHYAY, 2022) used a ViT (Visual Transformer) UNet to perform hippocampus segmenta-
tion, three datasets were used: Harmonized Hippocampal Protocol dataset, Dryad, e Medical
Decathlon Challenge. The generalization was performed using EWC and RWalk, and the main
metrics are dice score, FWT and BWT. The experiments concluded that transformers can be
used together with regularization-based CL methods to preserve knowledge. Unfortunately,
this method has limitations: the regularization could interfere in the self-attention mechanism
over the training of more and more tasks, thus allowing it to forget the previous knowledge.

3.3 Opportunities

From this review we can notice the coverage of the generalization problem over the patho-
logy literature, there are works considering classification (LENGA; SCHULZ; SAALBACH,
2020; THANDIACKAL et al., 2023; YANG et al., 2023) and segmentation (GARDEREN
et al., 2019; BAWEJA; GLOCKER; KAMNITSAS, 2018b; ÖZGÜN et al., 2020; MCCLURE
et al., 2018; MEMMEL; GONZALEZ; MUKHOPADHYAY, 2021; RANEM; GONZÁLEZ;
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Table 3: Literature Review
Work Model Domain Problem Datasets Generalization Metric
(LENGA; SCHULZ; SAALBACH,
2020) DenseNet Chest

Pathology
classification 2 EWC+LWF AUC

(GARDEREN et al., 2019) 3D Unet Brain
Glioma

segmentation 2 EWC Dice

(BAWEJA; GLOCKER; KAMNIT-
SAS, 2018b) 3D DeepMedic Brain

Semantic
segmentation 2 EWC Dice

(ÖZGÜN et al., 2020) QuickNAT Brain
Semantic

segmentation 3 MAS Dice

(MCCLURE et al., 2018) MeshNet Brain
Semantic

segmentation 5 DWC Dice

(MEMMEL; GONZALEZ;
MUKHOPADHYAY, 2021) I2I GAN+Unet Brain

Hippocampus
segmentation 3 ACS IoU

(RANEM; GONZÁLEZ;
MUKHOPADHYAY, 2022)

ViT Unet Brain
Hippocampus
segmentation 3 EWC+RWalk Dice

(CHEN et al., 2023) GAN+Unet Eye
Glaucoma
detection 9 GarDA Dice

(THANDIACKAL et al., 2023) GAN+ResNet Colorectal
Biopsy

classification 3 Custom+KD F1-Score

(YANG et al., 2023) ResNet Multiple
Pathology

classification 18 KD Accuracy

MUKHOPADHYAY, 2022; CHEN et al., 2023), with domains ranging from optic discs (CHEN
et al., 2023) to almost full-body (LENGA; SCHULZ; SAALBACH, 2020), and approaches
as simple as off-the-shelf methods (LENGA; SCHULZ; SAALBACH, 2020; GARDEREN
et al., 2019; BAWEJA; GLOCKER; KAMNITSAS, 2018b; ÖZGÜN et al., 2020) or com-
plex domain-specific implementations (MCCLURE et al., 2018; MEMMEL; GONZALEZ;
MUKHOPADHYAY, 2021).

We can also draw major decisions made by the literature, that can help us to develop our
own solution, for instance, the Unet architecture is a common model to implement patho-
logy segmentation (GARDEREN et al., 2019; MEMMEL; GONZALEZ; MUKHOPADHYAY,
2021; CHEN et al., 2023), regularization-based methods are a promising line of study to deal
with forgetting (LENGA; SCHULZ; SAALBACH, 2020; GARDEREN et al., 2019; BAWEJA;
GLOCKER; KAMNITSAS, 2018b; ÖZGÜN et al., 2020; RANEM; GONZÁLEZ; MUKHO-
PADHYAY, 2022) and, considering that KD is a regularization-like method, because it operates
in the loss function, we can also see the importance of the loss-based mechanics and heuristics,
even outside of the common regularization approaches (CHEN et al., 2023; THANDIACKAL
et al., 2023; YANG et al., 2023). Also, in the matter of metrics we can see common metrics for
classification works, but for segmentation, we noticed a preference for the metrics that measure
of the intersection area, Dice score and IoU.

There are clear gaps in the modern literature works, such as high complexity, either done
by specific methods (MCCLURE et al., 2018; MEMMEL; GONZALEZ; MUKHOPADHYAY,
2021; CHEN et al., 2023) or the customization of off-the-shelf methods (ÖZGÜN et al., 2020;
RANEM; GONZÁLEZ; MUKHOPADHYAY, 2022), the lack of generalization capacity (LENGA;
SCHULZ; SAALBACH, 2020; GARDEREN et al., 2019; BAWEJA; GLOCKER; KAMNIT-
SAS, 2018b; ÖZGÜN et al., 2020; RANEM; GONZÁLEZ; MUKHOPADHYAY, 2022; THAN-
DIACKAL et al., 2023), that is a reflex of limitations of the generalization methods, and a small
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dataset list (LENGA; SCHULZ; SAALBACH, 2020; GARDEREN et al., 2019; BAWEJA;
GLOCKER; KAMNITSAS, 2018b; ÖZGÜN et al., 2020; MEMMEL; GONZALEZ; MUKHO-
PADHYAY, 2021; RANEM; GONZÁLEZ; MUKHOPADHYAY, 2022), which does not really
stress the generalization capability of the network.

These limitations work against our Research Question in Section 1.3, specifically when
we consider the requirements of a real-world scenario that we enforced through this work. For
instance, the high computational complexity of some methods prevent them from being used in
common clinical hardware, also, the methods that lack generalization capacity or were validated
in small datasets do not present strong indications that they could handle a higher variability of
data or a greater dataset number.

With these insights we can better understand the complications of the CL problem in the
histopathology settings, and evolve the literature on top of what was already discovered. In our
work, we built against these limitations, countering these gaps with a novel approach based on
the findings of this review.
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4 METHOD

This chapter presents the algorithms and ideas used to implement our generalization method
for histopathology models, in the next sections are going to discuss the aspects and details of
the each mechanism within our method.

First, we briefly introduce our framework with an Overview (Section 4.1), where we pre-
sent a general resume of the approach along with the connections between the functionalities
that would be expanded in further details later. While in Model (Section 4.2), we presented
the segmentation model that is going to be generalized over the datasets. Then we introduce
our base Learning without Forgetting (Section 4.3) approach, used to shape the generalization
methodology of our framework. And finally, we present our enhanced version of the base LwF
and the core idea behind its design (Section 4.4).

In the final section of this chapter (Section 4.5), we digress over our implementation, with
its theoretical strengths and weaknesses, bringing the necessity of practical experimentation to
attest its validity.

4.1 Overview

In this work we implemented an enhanced method, based on the LwF approach, to deal with
catastrophic forgetting in histopathology models. The specific family of catastrophic forgetting
effect we are dealing with is the domain-incremental problem, where the task have multiple
representational datasets that are significantly different from each other, thus, even though being
the same task, one dataset induces the forgetting of the other. On top of that, these datasets
should be learned sequentially since the arrival of a new dataset excludes the access of data
from the previous datasets seen.

Our enhanced method improves the KD function of the off-the-shelf LwF approach, fo-
cusing on preserving the common knowledge between tasks through a specific regularization
term, rather than simply regularizing the whole old task knowledge. In Figure 8 we illustrated
the our method architecture, from the old model we derived two regularization terms, the direct
old task knowledge term, and the common knowledge term.

This framework encapsulates an UNet segmentation model, initially, the model is trained
on the first task using only its loss function, in the next tasks, this function is turn into a com-
pound KD function, to add the regularization terms during the subsequent training loops. As a
result, the final model produced after applying this framework across all tasks, summarizes the
common knowledge of the multiple tasks and is generalist enough to perform the segmentation
on any given patch of any dataset.
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T1 T2T0

Model Model Model

L = λ L = λ + λ' + (λ × λ')L = λ + λ' + (λ × λ')

E-LwF

Old Model Old Model

Figure 8: Illustration of our method generalization process, the model knowledge is generalized using
the regularization terms extracted from the previous version of this same model. The tasks are T0, T1
and T2.

4.2 Model

To perform the segmentation of the tissues from multiple datasets we implemented a single
UNet CNN, that is trained considering inputs x as image tissue patches of fixed size 256x256px,
and y as the 256x256px annotated segmentation masks for that patches, the model will then
output a segmentation mask ŷ of the same size 256x256px. Since the generalization is done by
routines outside the model, we have to make sure that the model can be trained in any dataset,
for any dimension size, and with the fixed patch size we do not need to consider the original
resolution of the image, and by so, train the model on any kind of dataset.

Our segmentation model follows an Unet architecture, this choice was made based in the
strong Unet literature documenting remarkable results on medical problems, specially for seg-
mentation problems (GARDEREN et al., 2019; MEMMEL; GONZALEZ; MUKHOPADHYAY,
2021; CHEN et al., 2023). Essentially, an Unet is an encoder-decoder architecture shaped like
the letter "U", that disposes the network into two towers of multiple levels, with skip connec-
tions linking layers in the same level from both sides of the network. The performance of the
Unet is explained by its design, the encoder extracts local features from the image through max
pooling, and downsamples the image until bottom layer of the encoder, while the decoder up-
samples the image from the bottom to the his top layer, while propagating the local features
from the encoder half in its layers (OLAF; PHILIPP; THOMAS, 2015).

Figure 9 presents the architecture of our segmentation model. The encoder levels are com-
posed by 2 blocks of layers Conv+ReLU+BatchNorm and a final MaxPool, while the deco-
der levels are composed by a ConvTranspose, a concatenation with the skip-connection, and 2
blocks of layers Conv+ReLU+BatchNorm. Conv layers in the same level have the same number
of kernels and the kernel size is top-bottom duplicated at each new level. All Conv layers use
a kernel size of 3 and stride of 1, all MaxPooling use a pool size of 2 and a stride of 2, and all
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ConvTranspose use a kernel size of 2 and a stride of 2. All Conv weights were initialized using
Uniform Xavier initialization. Finally, the last encoder block does not have the final MaxPool
layer, since information should flow upwards in the decoder, and the final decoder block is a
Conv layer that outputs the segmentation mask, with a kernel size of 1, stride 1 and activation
sigmoid.
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Figure 9: Architecture of our UNet segmentation model. The red layers are Convolutional layers, the
blue layers are activations (Relu or Sigmoid), the green layers are Batch Normalizations, the yellow
layers are dimension reduction (MaxPool) or expansion (ConvTranspose), and the gray layers are the
concatenations.

To train our model we used the common Adam optimizer, with a learning rate of 0.0001,
that will optimize our weights to the cost function Dice loss. The Dice loss is a variation form
of the Dice metric, simply by subtracting the metric from one, 1 − Dice, both the metric and
the loss function are commonly used in the segmentation literature, further details of the Dice
metric are discussed in Section 5.1.3. Equation 4.1 presents the formula of our loss function,
where X represents the model predicted output and Y the actual ground truth.

Dice_Loss = 1− 2× |X ∩ Y |
|X ∪ Y |

(4.1)

4.3 Learning without Forgetting

To generalize the segmentation model knowledge we development an enhanced version of
the common Learning without Forgetting (LI; HOIEM, 2017a) approach. The LwF method is
a regularization-based CL technique that uses the predictions made by an older version of the
model, previous to the current training task, to preserve the knowledge of the old tasks (LI;
HOIEM, 2017a).

Instead of directly preventing the model weights from deviating of their current distributi-
ons, like most regularization-based approaches does, LwF focus in preserving the old model
outputs during the new task training, thus allowing the weights to change freely. This stra-
tegy is inspired on the modus operandis of the Knowledge Distillation (HINTON; VINYALS;
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DEAN, 2015b) method, where the outputs of a pre-trained teacher model are distilled, through
loss function composition, into the the predictions of a student model, improving its learning
capacity and, usually, outperforming a model trained independently.

For simplicity, LwF could be understood as a weighted hybrid of KD and fine-tuning (LI;
HOIEM, 2017a). In Figure 10 we illustrated the pipeline of training a generalized model over
multiple tasks using the LwF method, notice how, before training in the new task, the model
is copied and its predictions over the new task data are used to regularize the training of the
original model.

T1 T2T0

Model Model Model

L = λ L = λ + αλ'L = λ + αλ'

LwF

Old Model Old Model

Figure 10: Illustration of the generalization process in a model using the Learning without Forgetting.
The tasks are T0, T1 and T2, and α is the regularization weight.

Using the distillation of the output, LwF permits the learning of parameters that are discri-
minative for the new task while preserving outputs for the original tasks on the training data,
converging for different parameter spaces that produce similar outputs to the ones produced be-
fore the new task arrival. Even though this approach is very different from most regularization
techniques, it is still a form of regularization, since the distillation is performed by composing
the loss function. So the LwF also has a common limitation of regularization methods, the
vanishing representations of older tasks (HADSELL et al., 2020; WANG et al., 2022).

This effect is a result of the knowledge retaining mechanics of the regularization methods,
the representations of the older tasks knowledge tend to fade away from the current training
loops. In a sense, LwF alleviates the effects of catastrophic forgetting, but it can not completely
avoid it, so as more and more tasks arrive, the accumulation of small catastrophic forgetting
effects from the endless tug-of-war dynamics between stability and plasticity causes a gradually
knowledge fading effect, that could be worsened by the lack of similarity between tasks (FENG
et al., 2022).
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4.4 Enhancement

The improvement we made on the LwF method was designed after many experiments and
investigations on its KD function, to understand the weight that the regularization has on the
general performance, and also the impact of each dataset arrival on it.

The original distillation function has a hyperparameter λ on the regularization term, which
is a fixed value scaling the importance of the old task knowledge on the new training loop.
According to the original KD paper, this hyperparameter should preferably not be a small va-
lue, supported by performance experiments with some variations of λ (HINTON; VINYALS;
DEAN, 2015b). Likewise, the LwF original work, as of implementations of it, follow the same
rule, using bigger λ values (LI; HOIEM, 2017a). To attest this effect, we performed manual ex-
periments with multiple λ values. In summary, we noticed the same effect for our problem, the
overall model performance peaks around λ = 2, hardly improves after this threshold and even-
tually decreases with greater values. Also, we experienced a surprisingly good performance on
some individual experiments when λ = 1, with results that did not appear in a lower or greater
λ values, but they were sporadic and the overall performance considering multiple runs was not
superior to λ = 2.

We and concluded that the key logic behind an efficient knowledge retention is to shift the
trade-off, between old and new knowledge, slightly into the direction of the old knowledge.
Unfortunately, this means that we are sacrificing the convergence of new tasks, a proper gene-
ralization of the problem, and condemning the model to get stuck into the old representations
learned, which, given the random nature of the weight initialization of neural networks, may
not always be the most flexible representation to generalize. Also, in the topic of randomness,
the sporadic good performances then λ = 1 seem to be explained by the random weights ini-
tialization and/or the first task training. We concluded that, if a model has learned very good
representations already, whether is by good initialization, and/or by the first training loop, the
stochastic gradient optimization algorithm can solve the generalization trade-off by its own with
good results and without any hyperparamter.

Considering this findings, we designed a dynamic distillation function, in which, the scale
factor λ, was replaced by a secondary regularization term. We did not simply turned λ into a
calculated value because the multiplication of the scale factor is a weighting operation that is
too harsh to by dynamically approximated, it would have to be fine-tuned with careful precision
given that small changes on it produce big effects on the model knowledge. The secondary term
is an addition to the regularization part of the loss, which is more robust to mistakes because
it distributes better the regularization importance between two terms. Comparing the Figure 10
and Figure 9 in contrast, one can notice the similarities the differences between the base LwF
and our enhanced version.
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Continual_Loss = Dice(gt, pred)

+Dice(old_pred, pred)

+Dice(gt ∩ old_pred, gt ∩ old_pred ∩ pred)

(4.2)

Consequently, our approach has a compound loss function (Equation 4.2) with three terms:
convergence term, retention term (first regularization) and generalization term (secondary re-
gularization). The convergence term is the default loss function, it compares the predictions
against the new task ground truth, its purpose is to fit the weights considering the new task
knowledge.

While the retention term is the default LwF loss regularization, it compares the predictions
against the old task predictions (soft ground truth), its purpose is to force the weights optimiza-
tion to also consider how the model used to respond to the new task data, before being trained
on it. This term then creates the trade-off between convergence and knowledge retention.

Finally, the generalization term is introduced by our approach, it compares the intersec-
tion between the predictions, the ground truth and the soft ground truth, against the intersection
between the ground truth and the soft ground truth. Its purpose is to leverage the common kno-
wledge between the old and new task knowledge, and also use their similarity as a strengthening
regularization factor, like the λ hyperparameter.

The Algorithm 1 presents the method implementation used in our approach, the green part of
the code represents our main contribution in this work, the generalization term of the compound
loss function.

Algorithm 1 Enhanced-LwF
1: Given τ tasks, L loss, α learning rate
2: θ ← segmentaion_model()
3: for i in τ do
4: if i = 1 then
5: for x, y in τi do
6: y

′ ← θ(x)
7: θ ← θ − α∇θL(y, y

′
)

8: end for
9: else

10: ϕ← θ
11: for x, y in τi do
12: y

′ ← θ(x)
13: y

′′ ← ϕ(x)
14: θ ← θ − α∇θ(L(y, y

′
) + L(y′′

, y
′
)+L(y × y

′′
, y × y

′′ × y
′
))

15: end for
16: end if
17: end for=0

The leverage of common knowledge in the generalization term happens because the extra
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loss value from these common areas between tasks forces the gradient optimization to seek
representations that are common to both tasks, thus producing more generalist representations
at each new task.

And the strengthening factor happens because the generalization term is controlling the
trade-off between the old and new knowledge, its value is directly proportional to the tasks
similarity and inversely proportional to the prediction intersection. That is, when the tasks are
completely different (no intersecting areas), the term value is zero, so the optimizer solves the
trade-off by himself. Whereas if the tasks are similar (have intersecting areas), the term value
can be high, if the predictions do not fit into the areas, or low, if otherwise, so the optimizer tends
to focus on the loss on the common areas, which is usually more easy to fit than the whole trade-
off. Also, having two regularization terms tends to increase the overall regularization factor
(old knowledge importance), which produce better final results, supported by the literature (LI;
HOIEM, 2017a; HINTON; VINYALS; DEAN, 2015b).

In summary, the key idea behind our strategy is to force the model to learn the shared
representations first, when the generalization term has a high value, because they are easier to
optimize than the whole trade-off. Later, when the term value is lower, the optimization has
more freedom the wander between the knowledge trade-off, but now, having learned the shared
knowledge first, there is a better chance that these shared representations have smoothed the
trade-off problem. Usually, the optimization would have an overall regularization loss greater
than the convergence loss, and, in the worst case scenario, where tasks are completely different,
the optimization would have to deal with the whole trade-off.

To better illustrate the loss computation we mounted the Figure 11, that contains the seg-
mentation masks retrieved when a new task arrived during a CL experiment, the three figures
at the bottom represent the masks, in order, for each term in our compound loss function, with
their dice score bellow. Notice how the tasks have high similarity, since the ground truth and
old predictions are very similar, and the dice score for the first term (convergence) image is way
bigger than the others, which allows the optimizer to focus more on the new task knowledge.
Also, notice how the third term (retention) image represents a middle ground between both
tasks, which is easier to train into than each task independently.

4.5 Discussion

In this chapter we presented in details the implementation and modeling of our approach,
that, in resume, consists of an enhanced version of LwF method applied over an UNet segmen-
tation model trained across multiple tasks sequentially.

Through literature investigation and manual experimentation we designed a new regulariza-
tion term for the KD function of the LwF approach, this term is responsible for leveraging the
common knowledge between tasks, improving knowledge retention, and dynamically strengthe-
ning the regularization factor, improving task convergence, both effects having a positive impact



50

Pred Ground Truth Old_Pred

Dice: 0.299

GT x Pred

Dice: 0.099

Old_Pred x Pred

Dice: 0.02

(y  Old_Pred) x (y  Old_Pred  Pred)

Continual Loss Example

Figure 11: Illustration of the continual loss masks and values mid training. The last three images
represent each, in order, the compound loss function terms, the titles on top of the images are referring
to their term form. Since these terms are functions (Dice) comparing the truth with a value, the dark red
areas represent the truth, and the green areas represent the values.

on the generalization capacity of the model.

Since our method works as an improved loss regularization to distill knowledge, we are
relying on the stochastic optimizer to pickup our loss "hints" and behave the way we intended.
Despite preliminary experiments of method design showing promising results, the stochastic
nature of the approach also comprehends the possibility of the optimizer behave differently. For
instance, if the present representations learned would be way more easily drifted to a new task,
than to keep aligned with the previous ones, that is, the changes in the first term reduce the
total loss way lower than the regularization terms, the optimizer would obviously induce the
forgetting. Moreover, depending of the difficulty of the tasks, the model could also fail to reach
a balance between two tasks, causing lack of convergence in one, and catastrophic forgetting
in the other. Additionally, the order of the tasks also influences on the generalization process,
if too many tasks with low similarity arrive consecutively, it is probable that each tug-of-war
would then take a bite off the generalized knowledge, eventually corrupting the already learned
representations.

In summary, since our method depends on the imbalance between the convergence and
regularization terms, if they, somehow, tend to balance each other without a good knowledge
representation learned yet, our new regularization term would be ignored and the optimizer
would then try to tackle the whole trade-off problem, probably inducing catastrophic forgetting.

In this chapter we presented our approach with mathematical notations and detailed mode-
ling explanations, justified our improvements in comparison to the literature, highlighted our
insights and derived the limitations of our design. Although theoretically efficient, we barely
validated our approach in this chapter, performing only preliminary experiments. In the next
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chapter we are going to numerically validate our assumptions and evaluate our method perfor-
mance with real-world histopathology datasets.
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5 EXPERIMENTAL EVALUATION

This chapter presents the experiments performed to evaluate our approach, here, we com-
pare our results with the results obtained from other similar methods present in the literature.
Therefore, our experiments not only aim to document and explore our method numerically,
but also semantically, by analyzing our outputs considering in the histopathology problem. Fi-
nally, we seek to prove the feasibility of our approach given our specific histopathology domain
constraints, answer our research question and evolve the present state-of-the-art.

The Section 5.1 defines the methodology of our experiments, our datasets, baselines and
metrics, together with the computational resources employed into the experiments.

The experiments we performed were divided into four sections, in Section 5.2.1 we validated
our model and gathered insights about the datasets, while in Section 5.2.2 we validated our
CL method and compared the results with our baselines, in the Subsection 5.2.2.1 we made
an in-depth analysis of the results we obtained in the previous experiment. Additionally, in
Section 5.2.3 we performed a semantic analysis of the outputs produced by the methods.

Finally, in Section 5.3 we revisited our method design, linking it with the results we ob-
tained, and answered our Research Question. Also, we raised concerns and limitations found
through our experimentation.

5.1 Methodology

The purpose of our experiments is to evaluate the capacity of our approach to actually ge-
neralize the knowledge of multiple instances of the same task over one single model. The
generalization will be measured according to our metrics, and compared against the same me-
trics achieved by our baselines, also the outputs of our method should resemble, in a semantic
meaning, to the histopathology ground truths.

To evaluate the generalization capacity over our datasets of N tasks, we designed the expe-
riments to be independent iterations of training sessions with 10 epochs each tasks, we are using
only 10 epochs because the focus of our analysis is the continual metrics, and the comparison
of methods over the same configurations, we do not intend to reach the best metrics possible
for the problem. Our general procedure for one experiment iteration is documented in the list
bellow.

In order to produce more trustworthy experiments we performed 30 independent iterations,
so the statistical results documented in our work were integrated over these iterations. The only
exception to our training methodology is the full dataset baseline, being just a joint training
of all datasets, it does not implement any kind of generalization technique other than what the
model itself could learn during the training.
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Iteration Steps

1. Randomly initialize the model M .

2. Train the model M for 10 epochs over the task Ti with regard of the generalization
algorithm.

3. Evaluate the model M metrics over the task Ti.

4. Repeat Step 2 and 3 for the next task Ti+1, for all tasks T .

5. Evaluate the model M metrics over all tasks T .

All experiments were conducted on a dedicated machine with a 3.0GHz CPU, a 16GB GPU
and 64GB of RAM. For the sake of clearness, all of our experiment parameters were documen-
ted in Table 4.

Table 4: Experiment parameters
Parameter Value
Iterations 30

Datasets 19
Optimizer Adam

Learning Rate 0.0001
Loss Dice
Metrics IoU, Dice

BWT, FWT
Batch size 32
Epochs 10

5.1.1 Datasets

For our experiments, we made use of the Pannuke (GAMPER et al., 2020) dataset, it is a
semi automatically generated histopathology dataset for cell nuclei segmentation and classifica-
tion. Pannuke has more than 200,000 labeled nucleis in more than 7,000 patches (256x256px)
distributed between 19 different tissue types, sampled from more than 20,000 WSI of different
magnifications and from multiple data sources. This dataset is exhaustively annotated with 6
masks for clinically important classes: neoplastic cells (tumor), inflammatory tissue, connec-
tive/soft tissue cells, dead cells, epithelial cells and background area.

The Pannuke dataset was chosen given the high variability it has on its data, while main-
taining a separability by tissue types, this is exactly the scenario we need for performance
evaluation. Also, this dataset has the images in patches, not huge WSI files, so there is no need
to pre-process the images beforehand.
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To create the multiple tasks for our training routine we collected some samples separated
the dataset by tissue type, creating 19 datasets, Table 5 summarizes the datasets and their ins-
tance sizes for training and testing. For our ground truth we used only the neoplastic cells
mask, although Pannuke had 6 annotation masks, we are going to focus on one task: tumor
segmentation, so the only annotation mask been used is neoplastic cells.

Table 5: Datasets
Tissue Train size Test size Total
Adrenal gland 305 132 437
Bile duct 294 126 420
Bladder 102 44 146
Breast 1645 706 2351
Cervix 205 88 293
Colon 1007 433 1440
Esophagus 296 128 424
Head & Neck 268 116 384
Kidney 93 41 134
Liver 156 68 224
Lung 128 56 184
Ovarian 102 44 146
Pancreatic 136 59 195
Prostate 127 55 182
Skin 130 57 187
Stomach 102 44 146
Testis 137 59 196
Thyroid 158 68 226
Uterus 130 56 186
Totals: 5521 2380 7901
Averages: 290 125 415

To quickly highlight the data variations that our dataset has, we plotted some samples that
exemplify different characteristics of the labeled tissues. In Figure 12 we presented two samples
of the same tissue type and their annotations, notice how, even in the same tissue type, the
characteristics of tumor cells differ a lot, this brings even more complexity to the generalization
methods deal with. And in Figure 13 we presented three samples from different tissues types,
notice now that not only the characteristics of the labels have changed but also the texture of
the background, again, these variations increase even more the difficulty to perform knowledge
generalization across tissues.

5.1.2 Baselines

To evaluate our method we constructed 4 comparative baselines: full dataset, EWC, MAS
and LwF, all of them were constructed on top of the same model used in our approach.

The full dataset baseline was created by training the model in one single training loop using
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Figure 12: Breast gland tissue samples (on the left) and their respective annotations (on the right) from
the Pannuke dataset. The annotations colors are red for tumors, pink for inflammatory tissue and green
for connective/soft tissue.

all the datasets at once (joint training), intercalating the batches of each dataset. This baseline
represent the results that the model could achieve if we had all the data available during training,
which, as discussed before in Section 1.2, is not possible in the normal histopathology setting.
Considering that this baseline uses all of our datasets at once, we had to keep this baseline model
training for more epochs to avoid underfitting, after manual evaluation, we used 100 epochs for
this baseline. This change in the training methodology was only done for this baseline, given
the special case of using all of the available data in one training session.

The EWC and MAS baselines are different than our full dataset one, they follow the same
training methodology of our approach, described in Section 5.1. For both of them, the re-
gularization value was λ = 100, that is the only hyperparameter specific for these methods,
controlling how much weight does the regularization term have. These two baselines were se-
lected because they are the most documented methods in the literature, so their performance
here represents the state-of-the art results that the model could achieve with off-the-shelf com-
mon methods.

The LwF baseline also follows our default training methodology, with the regularization
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Figure 13: From top to bottom: breast, liver and head, tissue samples (on the left) and their respective
annotations (on the right) from the Pannuke dataset. The annotations colors are red for tumors, pink for
inflammatory tissue and green for connective/soft tissue.

term being λ = 2. Although not so common in the literature, this baseline offers a direct
comparison with our method, since, in this work, we implemented an enhanced version of LwF.



58

5.1.3 Metrics

To measure the performance of our approach and compare it to the baselines, based on our
Literature Review in Section 3, we elected four metrics into two groups: segmentation metrics
and continual metrics. Given that our proposed model in this work is a binary segmentation
model, we elected Dice Score and Intersection-over-Union (IoU) as our segmentation metrics
to measure the model performance. Also, since our proposed method is a CL approach, we
used Forward and Backward Transfer as our continual metrics, to numerically evaluate the
model performance over the time.

5.1.3.1 Segmentation Metrics

The IoU index, also known as Jaccard index, is a widely used metric in 2D or 3D problems
involving segmentation, object detection or tracking, the recurrence in the literature is due to the
simplicity and low computational cost associated of its implementation. This metric calculates
the similarity between two arbitrary shapes, and can be described as the normalized measure
of the intersection of two areas or volumes. For our specific use case, we consider one of the
shapes as the segmentation mask outputted by the model, while the other is the ground truth
mask. Equation 5.1 presents the equation of the IoU metric.

IoU =
|X ∩ Y |
|X ∪ Y |

(5.1)

The Dice metric, or Dice-Sørensen coefficient, is very similar to the IoU metric, with the
only difference being a fixed 2 weight on the intersection, this weight tends to alleviate the
output value of this metric for shapes with very low similarity. This is done because the dice
score can also be used as a loss function to train segmentation models, like in our case, and,
in this sense, the fixed weight alleviates the effects of really bad predictions during training.
Equation 5.2 presents the equation of the Dice metric.

Dice =
2× |X ∩ Y |
|X ∪ Y |

(5.2)

5.1.3.2 Continual Learning Metrics

The Forward and Backward Transfer (LOPEZ-PAZ; RANZATO, 2017) are metrics designed
to evaluate, respectively, the forgetting effect and the intransigence capacity of a network over a
series of continually learned tasks. These metrics are widely common in the CL literature since
they provide numerical results to measure the generalization ability of a method based on its
retention (forgetting) and convergence (intransigence) trade-off. It is important to understand
that both of these metrics are not actually metric functions per se, they are common equations
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based on a training methodology to evaluate CL methods. So, in this work, we are computing
based on the IoU metric.

Forward Transfer (FWT) measures the model intransigence, its inability to learn a new task,
we used this metric to evaluate how well the model can generalize its present knowledge when
confronted with a new task. If a task have positive FWT, it means that, after learning this
task, the model performed better on the next tasks, negative FWT is otherwise (LOPEZ-PAZ;
RANZATO, 2017). The Equation 5.3 is used to calculate FWT, here, t is the number of tasks, b
is the baseline metric from a model with all the data available (our FULL baseline), and Ri,j is
the metric obtained from a model trained in task i and evaluated in task j. This equation can be
basically understood as the average difference between the metric of task i before training on it
and its baseline metric.

FWT =
1

t− 1

t∑
i=2

Ri−1,i − bi (5.3)

While Backward Transfer (BWT), measures the model forgetting, its incapacity to retain
the knowledge of older tasks, we used this metric to evaluate the effect that a new task have
over the performance of previous learned tasks. If a task have a positive BWT, it means that,
after learning this task, the model performed better on the previous tasks, on the other hand, ne-

gative BWT is otherwise, a large negative BWT can be understood as catastrophic forgetting
(LOPEZ-PAZ; RANZATO, 2017). The Equation 5.4 describes the calculation of BWT fol-
lowing the same mathematical notation of FWT. It can be understood as the average difference
between the final metric of task i and its metric when the model was fit to it.

BWT =
1

t− 1

t−1∑
i=1

Rt,i −Ri,i (5.4)

5.2 Results

In these sections we are going to present the partial and final results and analysis obtained
from our experiments. First, we validated the model without any generalization technique, to
establish the base performance of our segmentation model in each task. Later, we conducted
the experiments for CL evaluation, measuring the capacity of the baseline algorithms against
our method, in generalizing the models knowledge abroad the different tasks. Finally, we do-
cumented the outputs produced by each generalized algorithm, analyzing and comparing them
considering the consistency and semantic meaning of the predicted masks.
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5.2.1 Model

Our first experiment focus on our model performance assessment, as a way to measure
how well does our model learns the segmentation of the different datasets. Considering that
the model was trained in each dataset independently for 10 epochs, Figure 14 displays, for
each separated task, the training and validation loss progression during the training epochs.
Analyzing this figure, we can draw the conclusion that the model weights are converging with
only 10 epochs, without overfitting, for all datasets. By looking at those curves we can also
visualize problematics involving the performance of some tasks, it requires a more in-depth
analysis of these cases. But, in the context of this initial analysis, we successfully validated our
model, proving that it is suitable to perform the cell segmentation in any of our histopathology
datasets.
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Figure 14: Training and validation model loss across the epochs for all tasks independently trained.

Now, about the found problems in the datasets, its noticeable that some validation loss
curves are unstable, not smooth, and less steeper than their respective training loss curves, me-
aning that, for these datasets, the model is underfitted, and we may not have a good knowledge
representation learned in those cases. As a result of this turbulence, not all datasets could achi-
eve higher metrics with the same 10 epochs. Table 6 presents our segmentation metrics for
each task, to better understand the performance of the tasks we established some poor perfor-
mance thresholds based on the average metrics to classify the tasks. We highlighted in light
red the datasets with a poor performance, where metrics ≤ (Average − Std). And we high-
lighted in light blue the datasets with a performance that is close to poor performance, where
metrics ≤ (Average− 0.6 ∗ Std).

All the highlighted task wold be considered as hard segmentation datasets of our problem,
their complexity will pose hardships to the generalization algorithms, we would keep track of
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these datasets, so we could investigate effects on their performance during the CL experiments.

Table 6: Model Segmentation Metrics
Task IoU ±Std Dice ±Std

Adrenal 0.20 0.02 0.33 0.03
Bile 0.39 0.02 0.55 0.02

Bladder 0.59 0.05 0.74 0.04
Breast 0.28 0.05 0.43 0.07
Cervix 0.53 0.01 0.69 0.01
Colon 0.22 0.03 0.36 0.04

Esophagus 0.51 0.03 0.68 0.03
HeadNeck 0.39 0.03 0.55 0.03

Kidney 0.13 0.06 0.22 0.09
Liver 0.39 0.01 0.56 0.01
Lung 0.44 0.04 0.61 0.04

Ovarian 0.60 0.01 0.75 0.01
Pancreatic 0.25 0.02 0.40 0.02
Prostate 0.35 0.04 0.52 0.04

Skin 0.23 0.02 0.37 0.03
Stomach 0.16 0.07 0.28 0.11

Testis 0.42 0.02 0.59 0.02
Thyroid 0.25 0.01 0.40 0.01
Uterus 0.61 0.01 0.76 0.01

Average 0.37±0.15 0.52±0.16

To better illustrate this complexity discrepancy between the datasets we elaborated the Fi-
gure 15, notice the difference for each task metric from each average metric value. Also, the
same three hard datasets highlighted before: Adrenal, Kidney and Stomach, are clearly bellow
the average metric values. We can also pinpoint other potentially hard datasets, that are very
close, slightly under or slightly over, the average lines, and when considering the complications
of the CL setting, these datasets could have a even worst performance afterall. On the flip side,
the presence of these hard datasets among the other ones will stress the generalization methods,
really testing their performance on a difficult benchmark.

With this first experiment we validated the model suitability in performing the segmentation
of histopathology images, independent of the tissue type. Also, we found differences on the
difficulty of each tissue learning task, this new complexity characteristic places a new stress
vector over the generalization algorithms, and must be considered during the continual learning
experiments analysis.

5.2.2 Continual Learning

The goal of the next experiments is to validate our CL method and evaluate its generalization
capacity against the baseline algorithms. For simplicity, we are going to document only the IoU
metric of the models, avoiding long analysis in multiple metrics. Also, in these following
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Figure 15: Segmentation metrics of all tasks independently trained. The horizontal lines represent the
average metric values.

experiments we are carrying over the complexity information of the tasks, discovered in the
previous experiment, on the form of a color encoding.

In the following experiment, the model was trained using the generalization algorithm con-
secutively in all datasets. The final model results, after training in the last dataset of the list,
are documented in the Table 7. For each CL method, we documented the average of the final
model metrics per task. Again, we highlighted in light red the datasets with a poor performance,
where IoU ≤ (AvgIoU − StdIoU), and in light blue the datasets with a performance that is
close to poor performance, where IoU ≤ (AvgIoU − 0.6 ∗ StdIoU). The highlights in co-
lumn Dataset were directly mapped from the assumptions of dataset complexity in our previous
segmentation-only experiment, in Table 6. The last column FULL was drifted to the far right
because this baseline has no generalization method, so it does not serve us for comparison in the
matter of generalization algorithms, it serves more as an endline performance indicator. Finally,
we highlighted in bold the algorithm with the best performance for each task.

First, we may start our analysis with the complexity/poor performance highlights. Notice
how some of the datasets that had assumptions of their high complexity (colors of the Datasets
column) achieved actually good metrics, for instance the Adrenal, Kidney and Stomach datasets.
This is an indicator that the CL algorithms were able to improve their performance using the
knowledge obtained from the other datasets. The same thing happened to Breast and HeadNeck

when we compare the CL methods performance to the jointly-trained baseline (FULL).

On the other hand, there are datasets that we assumed were difficult to learn, and they proved
us right, for instance Colon and Thyroid had poor performances in all baselines. There is also
the case of the Testis dataset, that proved to be more difficult than we expected, having a worst
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Table 7: Continual Learning: IoU Results
IoU ±Std

Dataset EWC MAS LWF Ours FULL
Adrenal 0.38 0.02 0.31 0.03 0.29 0.02 0.36 0.02 0.26 0.02

Bile 0.28 0.02 0.36 0.02 0.27 0.02 0.34 0.01 0.30 0.02
Bladder 0.46 0.03 0.56 0.01 0.48 0.03 0.52 0.02 0.42 0.03
Breast 0.26 0.02 0.26 0.03 0.33 0.02 0.37 0.01 0.18 0.02
Cervix 0.38 0.02 0.43 0.01 0.41 0.03 0.54 0.02 0.47 0.02
Colon 0.04 0.00 0.06 0.02 0.15 0.01 0.17 0.01 0.16 0.02

Esophagus 0.31 0.04 0.38 0.05 0.50 0.02 0.51 0.02 0.44 0.02
HeadNeck 0.20 0.03 0.26 0.02 0.31 0.02 0.35 0.01 0.14 0.01

Kidney 0.36 0.02 0.32 0.04 0.40 0.01 0.50 0.02 0.39 0.03
Liver 0.35 0.02 0.39 0.02 0.32 0.03 0.38 0.02 0.38 0.01
Lung 0.36 0.01 0.38 0.02 0.36 0.01 0.45 0.01 0.30 0.03

Ovarian 0.32 0.03 0.45 0.01 0.42 0.02 0.54 0.01 0.53 0.02
Pancreatic 0.16 0.02 0.25 0.02 0.23 0.01 0.15 0.01 0.18 0.02
Prostate 0.40 0.02 0.40 0.03 0.49 0.02 0.52 0.02 0.39 0.02

Skin 0.32 0.02 0.35 0.02 0.27 0.02 0.40 0.02 0.22 0.02
Stomach 0.29 0.02 0.28 0.05 0.46 0.01 0.41 0.01 0.27 0.05
Testis 0.22 0.02 0.25 0.02 0.27 0.01 0.27 0.01 0.36 0.02

Thyroid 0.15 0.01 0.15 0.01 0.18 0.01 0.16 0.01 0.18 0.01
Uterus 0.35 0.03 0.44 0.01 0.44 0.02 0.52 0.01 0.52 0.02

Average 0.29±0.10 0.33±0.11 0.35±0.10 0.39±0.13 0.32±0.12

performance with the CL methods, rather than without them. These are indicators that these
datasets are still posing an issue to the generalization capability of the CL methods, and maybe
even degrading the overall performance in all tasks (catastrophic forgetting), we need further
experiments to access this hypothesis.

Also, we would like to highlight the cases of datasets Adrenal, Bile, Breast, HeadhNeck

and Skin, where our model integrated these datasets successfully, while other CL methods had
some difficulty dealing with them.

Now, numerically analyzing these results, we can highlight that the average performance of
the CL methods is, in majority, higher than the FULL baseline metric, with the exception of
EWC, the CL methods could leverage more of the knowledge obtained over the training of the
multiple tasks.

In this sense, our approach performed, on average, 15,66% better than all others CL methods,
being our final average metric an IoU 0.39, that surpasses even the overall performance obtained
when training in each task separately, an IoU 0.37 documented in Table 6. Finally, considering
the absolute numbers per task, our approach had better results in 63% (12) of the tasks. To
visually display the performance of each method for all datasets we elaborated the Figure 16,
notice our approach average line, in red, significantly over the other CL method averages.

The results obtained from these last experiments validate our approach suitability as a CL
method, even further, we documented significant improvements in the generalization capabi-
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Figure 16: Final IoU for all datasets, segmented by CL method. The horizontal lines represent the
average IoU values.

lity of the segmentation model when trained using our method, in comparison with other CL
methods of the literature. During the experiments we noticed a poor performance in some
datasets, that could be associated with the effects of catastrophic forgetting, requiring a more
profound analysis.

5.2.2.1 Catastrophic Forgetting

In this sub section we are conducting experiments to measure the in-depth effects of catas-
trophic forgetting in each CL algorithm. The next experiment was performed, again, by training
the model consecutively in all datasets making use of each CL algorithm. Just like before, our
main experimentation metric is the IoU, but this time, this metric is used to calculate the CL
metrics: Forward and Backward Transfer. Table 8 presents the FWT and BWT results per task.
For simplicity, one could understand FWT and BWT as the average influence that the present
dataset training had, respectively, on the performance of the next and previous datasets.

In this table, the colored highlights are following a different scheme. Considering that FWT
measures the performance on future tasks, that will eventually see during the training loop, our
main preoccupation should be the catastrophic forgetting effect, that happens on tasks that the
had model already seen. Because of this, we are going to weight heavily on the performances
in the BWT metrics, while not so much in the FWT. Therefore, we highlighted in light red the
datasets with a poor performance, where BWT ≤ −0.05∨FWT ≤ −1.0, and in light green the
datasets with a good performance, where BWT ≥ 0.05∨FWT ≥ 1.0. The colored complexity
highlights in column Dataset, and the Best and Worst Methods, were directly mapped from
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the findings of our previous CL experiment, in Table 7. Finally, we highlighted in bold the best
BWT results per task.

Table 8: Continual Learning: FWT and BWT Results (based on IoU)
EWC MAS LWF Ours Method

Dataset FWT BWT FWT BWT FWT BWT FWT BWT Best Worst
Adrenal 0.00 0.02 0.00 -0.02 0.00 -0.08 0.00 0.00 EWC LWF

Bile -0.04 0.03 -0.07 0.09 -0.05 0.03 -0.07 0.09 MAS EWC

Bladder 0.00 0.05 0.04 0.07 -0.02 0.08 -0.04 0.11 MAS EWC

Breast 0.07 0.03 0.07 -0.07 0.10 0.03 0.12 0.04 Our EWC/MAS

Cervix -0.14 0.03 -0.13 0.00 -0.10 0.01 -0.03 0.08 Our EWC

Colon -0.13 -0.03 -0.11 -0.09 -0.06 0.01 -0.06 0.00 Our EWC

Esophagus -0.14 -0.05 -0.11 -0.04 0.04 0.00 0.00 0.05 Our EWC

HeadNeck 0.07 0.02 0.07 0.03 0.17 -0.02 0.16 0.02 Our EWC

Kidney -0.11 0.06 -0.05 -0.06 0.00 0.00 0.07 0.02 Our MAS

Liver -0.09 0.03 -0.07 0.05 -0.05 -0.01 -0.04 0.04 MAS LWF

Lung 0.01 0.04 0.04 0.00 0.06 -0.02 0.11 0.01 Our EWC/LWF

Ovarian -0.21 0.00 -0.13 0.00 -0.11 -0.01 -0.03 0.01 Our EWC

Pancreatic -0.01 0.02 0.04 0.06 0.05 -0.01 -0.05 0.01 MAS Our

Prostate 0.00 0.01 0.01 -0.09 0.08 0.01 0.08 -0.01 Our EWC/MAS

Skin 0.07 0.03 0.06 0.01 0.06 -0.01 0.13 0.05 Our LWF

Stomach 0.02 0.05 -0.03 -0.04 0.15 0.01 0.09 0.01 LWF MAS

Testis -0.19 0.04 -0.10 -0.01 -0.08 -0.01 -0.10 0.01 LWF/Our EWC

Thyroid -0.04 0.01 -0.01 -0.01 0.00 0.00 -0.02 0.00 LWF EWC/MAS

Uterus -0.17 0.00 -0.18 0.00 -0.08 0.00 -0.01 0.00 Our EWC

Average -0.05 0.02 -0.03 -0.01 0.01 0.00 0.02 0.03 Our EWC

Following our previous experiment, first, we began to analyze the complexity colored high-
lights. Considering the poor performance datasets Colon, Pancreatic and Thyroid, we can cle-
arly see the reason for their lack of performance, all Cl methods had low BWT values for them,
sometimes even slightly below zero (catastrophic forgetting), this explains their results in our
previous experiment and finally establish them as the really hard datasets. Something similar
happens in dataset Testis, that achieved close to poor performance in our previous experiment,
this is now explained by the fact that most of its BWTs are close do zero.

That is the main difference in comparison to other datasets that performed relatively good,
for instance Adrenal or Kidney, even though sometimes there are negative BWTs, other methods
were able to preserve their knowledge, so they are not so much harder to generalize. In contrast,
its noticeable that the easiest datasets are the ones pilling up positive BWTs, for instance Blad-

der and Cervix, therefore, their good performances in our previous experiment are explainable.
Going even more in depth, we can majorly explain the final performance of each method in

each dataset by analyzing their FWT and BWT metric. For instance, taking a look at Figure 16,
from our previous experiment, and at our current Table 8, we would like to highlight the datasets
Esophagus and Kidney, notice how the poor performance of the methods EWC and MAS, and
good performance of LWF and Ours, on these datasets, are mirrored by their FWT and BWT
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values on our present experiment table. Also, for the special case of dataset Kidney, the EWC
metric for BWT was quite high, even though the final IoU was bellow average, which indicates
that there exists a sort of balance between the FWT and BWT metric.

We can confirm the existence of this balance mechanism by also analyzing the datasets Ova-

rian, Prostate and Uterus, where, even though they have not so bad BWT metrics, their final
performance in the methods with bad FWT was poor. This mechanic allows us to better explain
the behavior of each method for each dataset, where a method, to actually perform good at the
finally trained model, should have both metrics, FWT and BWT, with generally good values
over the training. Methods that perform better at one metric, than the other, will also suffer
from catastrophic forgetting at the end. This can be visually verified by looking at the color dis-
tribution in Table 8, where the presence of red values in the methods is proportional to their final
performance in our last experiment. Consequently, we can easily make the correlations between
our last two columns, the Best and Worst methods, and the methods metrics documented on the
table.

These resolutions and explanations validate our approach in contrast to the other CL methods,
where our method is visibly the one with the greater amount of good performance values, and
the lesser amount of the bad ones. We also have 36% (7) of the best BWT values, tied up with
EWC, but we still we have lesser negative FWTs. Finally, our performance is explained by our
average FWT 0.02 and BWT 0.03 metrics, surpassing the other CL algorithms, and meaning
that, on average, our method is the only one able to improve the learning of both past and future
tasks.

To visually display the performance of each method for all datasets as the training goes on,
we elaborated the Figure 17, notice how our approach line, for the majority of the datasets, have
a positive angle, meaning that the performance keeps improving over time. Also, notice that
our line is more smoother, having smaller performance fluctuations, demonstrating the stability
of our approach.

With this experiment we evaluated our CL method in-depth, accessing all the improvements
we achieved, and explaining our results in comparison with the baselines. The experiments in
this section numerically validated our approach, and documented our statistical leverage over
other CL methods, nonetheless, we still have to investigate the final model outputs, to examine
and compare the predictions made by the models after trained in the CL setup.

5.2.3 Output Analysis

For our final round of experiments, we aim analyze the segmentation masks outputted by
each CL method, to evaluate them semantically, and to compared them with the ground truth
masks. Our goal here is to understand the effect of the differences between the CL algorithms
have on their outputs quality.

In this experiment we extracted the predictions made by the models after they had been
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trained following the CL setup, that is, consecutively trained in all datasets making use of each
CL algorithm. Using the knowledge obtained so far with our experiments we elected 6 datasets
based on their final overall performance to be representatives of the possible difficulty classes
of tasks.

In Figure 18, we gathered the samples of some datasets, mounted with the predictions made
by models trained with each CL method. The datasets Ovarian and Bladder, in light green,
represent the easy tasks. While datasets HeadhNeck and Testis, in light blue, represent the
middle-term difficulty. And finally, datasets Thyroid and Colon, in light red, represent the hard
datasets. For each output, we documented the IoU metric and the overlay of the prediction, in
green, over the ground truth mask, in red.

Notice in this figure, that, as the tasks get more complex, the number of tumors in the ground
truth mask gets smaller, while the number of other structures that look like tumors increases.
For instance, the sample of the Colon dataset, has many cells that would be positively classified
as tumors in the context of other datasets, given its characteristics, like color and shape, but
are not tumor, therefore, for all CL methods, the model outputted many false positives. And
it gets even worse, given that the actual tumorous cells resembles the wealthy tissue of the
other datasets, we also had many false negatives in all CL methods, which is a big concern for
medical applications.

In the other hand, the easiest samples have very distinguishable structures for cells and
tumors, even better, common tumor characteristics could be seen between different datasets.
For example, the samples of Bladder and Testis have their tumors with similar tones of dark
purple in a more clear background, making the prediction much easier to perform, even that all
CL methods outputted good segmentation masks.

Nevertheless, when we analyze the predicted masks semantically, its noticeable that EWC
and MAS produced precise segmentations, with masks that circle the tumor shapes, and, be-
cause of this preciousness, many times the masks miss the entirety of the tumor cells. In con-
trast, LWF produced sparse segmentations, with masks that cover the whole the tumor area,
but, in the process, goes beyond the tumor edges and also marks the wealthy tissue nearby. Me-
anwhile, our approach sits on a comfortable sweet spot between both strategies, we produced
masks that cover more tumor area than the EWC and MAS methods, without going completely
rogue on the nearby wealthy tissue like the LWF outputs. In conclusion, over a semantic point
of view, our approach produced segmentation masks with a visibly significant improvement in
comparison to the other baselines.

This improvement can also be numerically verified, when analyzing the IoU per sample,
our approach outperforms all the other CL methods by 29,9% on average. Finally, we can
also notice a general degradation of 24,15% of the IoU metric for our baselines as the datasets
get more complex, again, our approach was able to perform better, with only 13,48% of IoU
degradation.

With this final experiment we successfully validated our CL approach over a semantic pers-
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pective. We concluded that our approach is not only suitable for generation segmentation masks
for multiple types of tissues, but also significantly better than our baselines at doing so. Finally,
we documented concerning results regarding the number of false negatives in the context of
hard datasets.

5.3 Discussion

In this chapter we exhaustively experimented our method, numerically evaluating our per-
formance in comparison to the baselines, accessing the nuances of each method results to ex-
plain their metrics, their pros and cons, and finally, analyzing the segmentation masks over the
semantic point of view of the histopathology problem.

With these experiments we validated that our Unet model is suitable to perform the his-
topathologic segmentation, that our CL framework is capable of retaining information while
learning new patterns, and that our model outputs are aligned to the necessities of our problem.

Performance-wise, our method surpassed all baselines metrics, even in comparison to the
approach of one model trained to each dataset, or one model with all datasets at once. Unfortu-
nately, we detected a concerning number of false negatives on our semantic analysis, specially
on the hard datasets.

Finally, our experiments could be used to answer our research question on Section 1.3.
Our method was the only technique able to leverage the generalization of a histopathology
segmentation model, in such a way that, it fulfills the requirements of this problem domain.
The problem requirements, in Section 1.2, are answered in the list bellow:

• New tasks: the method should allow the model to incorporate new knowledge and achi-
eve a good performance in new tasks.

Answer: Our approach can transfer its knowledge forward on a average of 0.02 IoU,
the greatest positive transfer of all baselines.

• Old tasks: the method should not only preserve the learned knowledge, but also increase
the performance of older tasks.

Answer: Our approach can transfer its knowledge backward on a average of 0.03
IoU, the greatest positive transfer of all baselines.

• Old data: the method should not take for granted the access to data from previous tasks.

Answer: Our approach does not make any use of old tasks data, and surpasses the
baseline that does have access.

• New data: the method should also generalize the knowledge to different distributions of
new data for the same old task.

Answer: Our approach can generalize its overall knowledge, for old and new tasks,
on average of 15,66% better than all baselines.
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6 CONCLUSION

The implementation of AI applications in the day-to-day clinic process is a topic of great
interest, the possibility of using AI to enhance the performance of clinicians is hardly limited
by the AI inherent limitations. The variety of clinics, processes, protocols, and patients create
a plethora of sub-domains for the same task/problem. Current AI models are trained into one
or few sub-domains, thus limited to a wider range of situations and applications, this non-
generalization ability makes even the more accurate AI solutions lose significant performance
in a real world scenario.

In this work we implemented a solution for the generalization problem into a specific cli-
nic task: Histopathology. We discussed the aspects involving the clinic and computational
problems, reviewed the current stat-of-the-art approaches specifically into the field of genera-
lization in CPATH, designed and experimented an enhanced version of the Learning without
Forgetting method to solve the continual segmentation problem over an UNet model.

Our method optimizes the common knowledge learned in previous tasks while integrates
new patterns, without forgetting the previous ones. This is possible due to the replacement the
hyperparameter λ by a dynamically calculated regularization term, this additional term impro-
ves the generalization of the UNet model by helping the stochastic optimizer to focus on the
common knowledge between tasks, smoothing the trade-off between the new and old task.

Through exhaustive experimentation using a number of datasets greater than the literature,
we evaluated our method both numerically and semantically, our results overcame, on average
of 15,66%, the metrics of the CL baselines, a model joint-trained in all datasets, and a scena-
rio with a list of models, one specifically for each dataset. Additionally, we performed a deep
analysis on how each CL method responds when induced to forgetting, proving that our appro-
ach was the only method to counter the catastrophic forgetting effects with statistically positive
transfer indexes, FWT 0.02 and BWT 0.03. Moreover, when evaluating the output segmentation
masks, our results also stand out semantically, with an average improvement of 29,9%.

Furthermore, our method relies on stochastic optimization to integrate the knowledge effi-
ciently, so the suggestion mechanism we implemented with the new regularization term (gene-
ralization term) depends of the impact that each term has on the final loss. Meaning that there
are possible scenarios where the optimization fails to reach a good balancing factor, or fails
to follow the suggestion term, leading the catastrophic forgetting. Also, the order of the tasks
can influence in the overall performance of the trained method, depending of the previous kno-
wledge acquired and the difficulty of the incoming tasks. Finally, more experiments could be
performed to establish this work as a strong baseline, such as using even more datasets, using
more epochs during training, applying a normalization filter over the patches, and messing with
the order of the datasets.

Finally, in this work we answered the research question stated in Section 1.3: our method
was the only approach to successfully leverage the segmentation model considering the requi-
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rements and the data-variability of the histopathology field.
In conclusion, this work presents a novel and enhanced continual learning method for his-

topathology segmentation, this method was statistically validated, produced outputs with im-
proved performance in comparison to the literature, and fulfilled the continual learning require-
ments of a generalist CPATH application, turning it into a strong candidate to be implemented
in a real world pathology clinic scenario.
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